
Yodl 2.xx.yyFrank B. Brokken (f.b.brokken�rug.nl)initially by Karel KubatComputing Center, University of Groningen1996-NOW

Abstra
tYodl is a pa
kage implementing a pre-do
ument language and tools to pro
ess it.The idea of Yodl is that you write up a do
ument in a pre-language, then use thetools (e.g. yodl2html) to
onvert it to some �nal do
ument language. Current
onverters are for HTML, man, LaTeX, a poor-man's text
onverter and an experi-mental XML
onverter. Main do
ument types are `arti
le', `report', `book', `letter'and `manpage'. The Yodl do
ument language is designed to be easy to use andextensible.

Contents
1 Introdu
tion 141.1 What's new in Yodl 2.00? . 151.2 Why use Yodl? . 181.3 Copying Yodl . 192 Yodl User Guide 202.1 Using the yodl program . 202.2 The Yodl grammar . 232.2.1 Language elements . 242.2.2 Line
ontinuation . 282.2.3 The +identi�er sequen
e . 292.2.4 Preventing ma
ros from being expanded 292.3 Chara
ter tables . 302.3.1 De�ning a translation table 302.3.2 Using a translation table . 312.3.3 Pushing and popping
hara
ter tables 322.4 Sending literal text to the output . 322.5 Counters . 332.5.1 Creating a
ounter . 332.5.2 Using
ounters . 343 All builtin fun
tions 363.1 Yodl's builtin
ommands . 363.1.1 ADDTOCOUNTER . 363.1.2 ADDTOSYMBOL . 372

3.1.3 ATEXIT . 373.1.4 CHAR . 383.1.5 CHDIR . 383.1.6 COMMENT . 393.1.7 COUNTERVALUE . 393.1.8 DECWSLEVEL . 393.1.9 DEFINECHARTABLE . 403.1.10 DEFINECOUNTER . 413.1.11 DEFINEMACRO . 413.1.12 DEFINESYMBOL . 463.1.13 DELETECHARTABLE . 463.1.14 DELETECOUNTER . 463.1.15 DELETEMACRO . 473.1.16 DELETENOUSERMACRO 473.1.17 DELETESYMBOL . 473.1.18 DUMMY . 473.1.19 ENDDEF . 483.1.20 ERROR . 483.1.21 EVAL . 483.1.22 FILENAME . 503.1.23 FPUTS . 503.1.24 IFBUILTIN . 503.1.25 IFCHARTABLE . 513.1.26 IFDEF . 513.1.27 IFEMPTY . 523.1.28 IFEQUAL . 533.1.29 IFGREATER . 543.1.30 IFMACRO . 543.1.31 IFSMALLER . 553.1.32 IFSTREQUAL . 563.1.33 IFSTRSUB . 563

3.1.34 IFSYMBOL . 573.1.35 IFZERO . 573.1.36 INCLUDEFILE . 583.1.37 INCLUDELIT, INCLUDELITERAL 593.1.38 INCWSLEVEL . 593.1.39 INTERNALINDEX . 593.1.40 NEWCOUNTER . 603.1.41 NOEXPAND . 603.1.42 NOEXPANDINCLUDE . 613.1.43 NOEXPANDPATHINCLUDE 623.1.44 NOTRANS . 633.1.45 NOUSERMACRO . 633.1.46 OUTBASE . 643.1.47 OUTDIR . 643.1.48 OUTFILENAME . 643.1.49 PARAGRAPH . 643.1.50 PIPETHROUGH . 663.1.51 POPCHARTABLE . 663.1.52 POPCOUNTER . 663.1.53 POPMACRO . 673.1.54 POPSYMBOL . 673.1.55 POPWSLEVEL . 683.1.56 PUSHCHARTABLE . 683.1.57 PUSHCOUNTER . 683.1.58 PUSHMACRO . 693.1.59 PUSHSYMBOL . 693.1.60 PUSHWSLEVEL . 693.1.61 RENAMEMACRO . 703.1.62 SETCOUNTER . 703.1.63 SETSYMBOL . 713.1.64 STARTDEF . 714

3.1.65 SUBST . 713.1.66 SYMBOLVALUE . 723.1.67 SYSTEM . 723.1.68 TYPEOUT . 733.1.69 UNDEFINEMACRO . 733.1.70 UPPERCASE . 733.1.71 USECHARTABLE . 743.1.72 USECOUNTER . 743.1.73 VERBOSITY . 743.1.74 WARNING . 763.1.75 WRITEOUT . 764 Ma
ros and Do
ument types 774.1 General stru
ture of a Yodl do
ument 784.1.1 Do
ument types . 794.1.2 The manpage do
ument type 804.2 Prede�ned ma
ros . 834.2.1 abstra
t(text) . 844.2.2 addntosymbol(symbol)(n)(text) 844.2.3 a�liation(site) . 844.2.4 AfourEnlarged() . 844.2.5 appendix() . 844.2.6 arti
le(title)(author)(date) . 844.2.7 bf(text) . 844.2.8 bind(text) . 844.2.9 book(title)(author)(date) . 854.2.10
ell(
ontents) . 854.2.11
ells(nColumns)(
ontents) . 854.2.12
enter(text) . 854.2.13
hapter(title) . 854.2.14
index() . 854.2.15
ite(1) . 855

4.2.16
learpage() . 854.2.17
ode(text) . 854.2.18
olumnline(from)(to) . 864.2.19 def(ma
roname)(nrofargs)(rede�nition) 864.2.20 des
ription(list) . 864.2.21 dit(itemname) . 864.2.22 eit() . 864.2.23 ellipsis() . 864.2.24 em(text) . 864.2.25 email(address) . 864.2.26 end
enter() . 874.2.27 enddit() . 874.2.28 endeit() . 874.2.29 endit() . 874.2.30 endmenu() . 874.2.31 endtable() . 874.2.32 enumerate(list) . 874.2.33 enumeration(list) . 874.2.34 euro() . 874.2.35 �g(label) . 884.2.36 �gure(�le)(
aption)(label) . 884.2.37 �le(text) . 884.2.38 �ndex() . 884.2.39 footnote(text) . 884.2.40 gagma
rowarning(name name ...) 884.2.41 geta�lstring() . 884.2.42 getauthorstring() . 884.2.43 get
hapterstring() . 894.2.44 getdatestring() . 894.2.45 get�gurestring() . 894.2.46 getpartstring() . 896

4.2.47 gettitlestring() . 894.2.48 getto
string() . 894.2.49 htmlbodyopt(option)(value) 894.2.50 html
ommand(
md) . 894.2.51 htmlheadopt(option) . 904.2.52 htmlnew�le() . 904.2.53 htmlstylesheet(url) . 904.2.54 htmltag(tagname)(start) . 904.2.55 ifnewparagraph(truelist)(falselist) 904.2.56 in
lude�le(�le) . 904.2.57 in
ludeverbatim(�le) . 904.2.58 it() . 914.2.59 itemization(list) . 914.2.60 itemize(list) . 914.2.61 kindex() . 914.2.62 label(labelname) . 914.2.63 langle() . 914.2.64 languagedut
h() . 914.2.65 languageenglish() . 914.2.66 languageportugese() . 914.2.67 LaTeX() . 924.2.68 latexaddlayout(arg) . 924.2.69 latex
ommand(
md) . 924.2.70 latexdo
ument
lass(
lass) . 924.2.71 latexlayout
mds(NOTRANSs) 924.2.72 latexoptions(options) . 924.2.73 latexpa
kage(options)(name) 924.2.74 l
hapter(label)(title) . 924.2.75 letter(language)(date)(subje
t)(opening)(salutation)(author) 934.2.76 letteraddenda(type)(value) 934.2.77 letteradmin(yourdate)(yourref) 937

4.2.78 letterfootitem(name)(value) 934.2.79 letterreplyto(name)(address)(zip
ity) 934.2.80 letterto(element) . 934.2.81 link(des
ription)(labelname) 934.2.82 lref(des
ription)(labelname) 944.2.83 lse
t(label)(title) . 944.2.84 lsubse
t(label)(title) . 944.2.85 lsubsubse
t(label)(title) . 944.2.86 lsubsubsubse
t(label)(title) 944.2.87 lurl(lo
ator) . 944.2.88 mailto(address) . 944.2.89 makeindex() . 944.2.90 man
ommand(
md) . 944.2.91 manpage(title)(se
tion)(date)(sour
e)(manual) 954.2.92 manpageauthor() . 954.2.93 manpagebugs() . 954.2.94 manpagedes
ription() . 954.2.95 manpagediagnosti
s() . 954.2.96 manpage�les() . 954.2.97 manpagename(name)(short des
ription) 954.2.98 manpageoptions() . 954.2.99 manpagese
tion(SECTIONNAME) 964.2.100manpageseealso() . 964.2.101manpagesynopsis() . 964.2.102mbox() . 964.2.103menu(list) . 964.2.104metaC(text) . 964.2.105metaCOMMENT(text) . 964.2.106mit() . 964.2.107ms
ommand(
md) . 964.2.108n
hapter(title) . 978

4.2.109nemail(name)(address) . 974.2.110nl() . 974.2.111node(previous)(this)(next)(up) 974.2.112nodepre�x(text) . 974.2.113nodepre�x(text) . 974.2.114nodetext(text) . 974.2.115nop(text) . 984.2.116nosloppyhfuzz() . 984.2.117notableof
ontents() . 984.2.118notitle
learpage() . 984.2.119noto

learpage() . 984.2.120notransin
lude(�lename) . 984.2.121noxlatin() . 984.2.122nparagraph(title) . 994.2.123npart(title) . 994.2.124nse
t(title) . 994.2.125nsubse
t(title) . 994.2.126nsubsubse
t(title) . 994.2.127nsubsubse
t(title) . 994.2.128paragraph(title) . 994.2.129part(title) . 994.2.130pindex() . 994.2.131plainhtml(title) . 1004.2.132printindex() . 1004.2.133quote(text) . 1004.2.134rangle() . 1004.2.135redef(nrofargs)(rede�nition) 1004.2.136rede�nema
ro(nrofargs)(rede�nition) 1004.2.137ref(labelname) . 1004.2.138report(title)(author)(date) . 1004.2.139ro�
md(dot
md)(sameline)(se
ondline)(thirdline) 1019

4.2.140row(
ontents) . 1014.2.141rowline() . 1014.2.142s
(text) . 1014.2.143se
t(title) . 1014.2.144seta�lstring(name) . 1014.2.145setauthorstring(name) . 1014.2.146set
hapterstring(name) . 1024.2.147setdatestring(name) . 1024.2.148set�gureext(name) . 1024.2.149set�gurestring(name) . 1024.2.150sethtml�gureext(ext) . 1024.2.151setin
ludepath(name) . 1024.2.152setlanguage(name) . 1024.2.153setlatexalign(alignment) . 1034.2.154setlatex�gureext(ext) . 1034.2.155setlatexverb
har(
har) . 1034.2.156setmanalign(alignment) . 1034.2.157setpartstring(name) . 1034.2.158setro�tab(x) . 1034.2.159setro�tableoptions(optionlist) 1044.2.160settitlestring(name) . 1044.2.161setto
string(name) . 1044.2.162sgml
ommand(
md) . 1044.2.163sgmltag(tag)(ono�) . 1044.2.164sloppyhfuzz(points) . 1044.2.165standardlayout() . 1054.2.166start
enter() . 1054.2.167startdit() . 1054.2.168starteit() . 1054.2.169startit() . 1054.2.170startmenu() . 10510

4.2.171starttable() . 1054.2.172sups(text) . 1054.2.173subse
t(title) . 1054.2.174subsubse
t(title) . 1054.2.175subsubsubse
t(title) . 1064.2.176sups(text) . 1064.2.177table(nColumns)(alignment)(Contents) 1064.2.178t
ell(text) . 1064.2.179tely
ommand(
md) . 1064.2.180TeX() . 1064.2.181texinfo
ommand(
md) . 1064.2.182tindex() . 1064.2.183title
learpage() . 1074.2.184to

learpage() . 1074.2.185tt(text) . 1074.2.186txt
ommand(
md) . 1074.2.187url(des
ription)(lo
ator) . 1074.2.188verb(text) . 1074.2.189verbin
lude(�lename) . 1074.2.190verbpipe(
ommand)(text) . 1084.2.191vindex() . 1084.2.192whenhtml(text) . 1084.2.193whenlatex(text) . 1084.2.194whenman(text) . 1084.2.195whenms(text) . 1084.2.196whensgml(text) . 1084.2.197whentely(text) . 1084.2.198whentexinfo(text) . 1094.2.199whentxt(text) . 1094.2.200whenxml(text) . 1094.2.201xit(itemname) . 10911

4.2.202xml
ommand(
md) . 1094.2.203xmlmenu(order)(title)(menulist) 1094.2.204xmlnew�le() . 1094.2.205xmlsetdo
umentbase(name) 1104.2.206xmltag(tag)(ono�) . 1104.3 Conversion-related topi
s . 1104.3.1 A

ents . 1104.3.2 Conversion-type spe
i�
 literal
ommands 1104.3.3 Figures . 1124.3.4 Fonts and sizes . 1144.3.5 Labels, links, referen
es and URLs 1144.3.6 Lists and environments . 1174.3.7 Se
tioning . 1204.3.8 Typesetting modi�ers . 1214.3.9 Mis
ellaneous
ommands . 1234.4 Lo
ations of the ma
ros . 1255 Conversions and
onvertors 1265.1 Conversion s
ript invo
ations . 1265.2 The HTML
onverter . 1275.3 The LaTeX
onverter . 1285.4 The man
onverter . 1295.5 The txt
onverter . 1295.6 The experimental XML
onverter . 1305.7 The Yodl Post-pro
essor `yodlpost' 1305.8 The support program `yodlverbinsert' 1315.8.1 Example . 1326 Te
hni
al information 1346.1 Obtaining Yodl . 1346.1.1 Installing Yodl . 1346.2 Organization of the software . 13612

6.2.1 Subdire
tories and their meanings 1366.3 Yodl's
omponent interrelations and
omponent setup 1386.4 The token-produ
er `lexer_lex()' . 1426.5 The Parser's Finite State Automaton 1446.6 Adding a new ma
ro . 1466.7 The Yodl post-pro
essor . 147

13

Chapter 1Introdu
tion
Yodl stands for `Your Own Do
ument Language' (originally: Yet Oneother Do
umentLanguage) and is basi
ally a pre-pro
essor to
onvert do
ument �les in a spe
ialma
ro language (the Yodl language) to any output format. The Yodl language isnot a `�nal' language, in the sense that it
an be viewed or printed dire
tly. Rather,a do
ument in the Yodl language is a `pre-do
ument', that is
onverted with somema
ro pa
kage to an output format, to be further pro
essed.Yodl was designed in 1996 by Karel Kubat when he needed a good do
umentprepro
essor to
onvert output to either LaTeX (for printing) or to HTML forpublishing via a WWW site. Although SGML does this too, he wanted somethingthat is used `intuitively' and with greater ease. This is re�e
ted in the syntax ofthe Yodl language, in the available ma
ros of the Yodl ma
ro pa
kage, and veryprobably also in other aspe
ts of Yodl. However, Yodl is designed to
onvert toany output format; so it is possible to write a ma
ro pa
kage that
onverts Yodldo
uments to, say, the man format for manual pages.Some highlights of Yodl:

• Yodl allows the in
lusion of �les. This makes it easier to split up a do
umentinto `logi
al' parts, ea
h kept in a separate �le. Thus, a `main do
ument' �le
an in
lude all the sub-parts. (Imagine that you're the editor of a journal.Authors are likely to send in their submissions in separate �les; in
lusion
anthen be very handy!)
• Files whi
h are in
luded are sear
hed for either `as-is', or in a given `system-wide in
lude' dire
tory, similar to the workings of the C prepro
essor. There-fore, it is possible to
reate a set of in
lude �les holding ma
ros, and to pla
ethem into one ma
ro dire
tory. (See also
hapter 4, where a ma
ro pa
kagethat is distributed with Yodl is des
ribed.)
• For all the handled �les (either stated on the
ommandline or in
luded), Yodlsupplies an extension if none is present. The default extension is .yo, but
anbe de�ned to anything in the
ompilation of the Yodl program.
• Yodl supports
onditional parsing of its input,
ontrolled by de�ned symbols.This resembles the #ifdef / #else / #endif prepro
essor ma
ros of the Clanguage. Yodl also supports other if
lauses, e.g., to test for the presen
e ofan argument to a ma
ro. 14

• Yodl o�ers hooks to de�ne
ounters, to modify them, and to use them in ado
ument. Thereby Yodl o�ers the possibility for automati
 numbering ofe.g., se
tions. Of
ourse, some do
ument languages (e.g., LaTeX) o�er thistoo; but some don't. When
onverting a Yodl do
ument to, say, HTML, thisfeature is very handy.
• Yodl is designed to be easy to use: Yodl uses `normal'
hara
ters to identify
ommands in the text, instead of insisting weird-looking tags or es
ape
har-a
ters. Editing a do
ument in the Yodl ma
ro language is designed to be aseasy as possible.
• Similar to other do
ument languages, Yodl supports `
hara
ter
onversiontables' whi
h de�ne how a
hara
ter should appear in the output.This do
ument �rst des
ribes Yodl from the point of the user: how
an ma
ros bede�ned, how is the program used et
.. Next, my own ma
ro pa
kage is presented andthe ma
ros therein des
ribed. Finally, this do
ument holds te
hni
al informationabout the installation and the inner workings of Yodl.1.1 What's new in Yodl 2.00?Compared to earlier versions, Yodl Version 2.00 is a
omplete rebuilt, and o�ersmany new features.
• Changed Yodl's name expansion. From `Yet Oneother Do
ument Language'to: Your Own Do
ument Language
• The following
ommands are now obsolete and should/must be avoided. Al-ternatives are always o�ered.ENDDEF DECWSLEVEL should be used;INCLUDELIT NOEXPANDINCLUDE should be used;NEWCOUNTER DEFINECOUNTER should be used;STARTDEF INCWSLEVEL should be used;UNDEFINEMACRO DELETEMACRO should be used;WRITEOUT FPUTS should be used;
• Several new
ommands were implemented:ADDTOSYMBOL adds text to a symbol's value;DEFINESYMBOLVALUE de�nes a symbol and its initial value;DELETECOUNTER opposite from NEWCOUNTER: removes an existing
ounter;IFBUILTIN
he
ks whether the argument is a builtin ma
ro;IFCOUNTER
he
ks whether the argument is a de�ned
ounter;IFEQUAL
he
ks whether two numeri
al values are equal;IFGREATER
he
ks whether the �rst numeri
al value ex
eeds the se
ondnumeri
al value; 15

IFMACRO
he
ks whether the argument is a de�ned ma
ro;IFSMALLER
he
ks whether the �rst numeri
al value is smaller than these
ond numeri
al value;IFSYMBOL
he
ks whether the argument is a de�ned symbol;PATHINCLUDELIT in
ludes literaly a �le found in the XXin
ludepathpath;POPCOUNTER pops a previously pushed
ountervalue;POPMACRO pops a previously pushed ma
rode�nition;POPSYMBOL pops a previously pushed symbolvalue;PUSHCOUNTER pushes the
urrent value of a
ounter, initilaizes thea
tive
ounter to 0;PUSHCOUNTERVALUE pushes the
urrent value of a
ounter, initilaizesthe a
tive
ounter to any value;PUSHMACRO pushes the
urrent de�nition of a ma
ro, a
tivates a lo
alrede�nition;PUSHSYMBOL pushes the
urrent value of a symbol, initializing the a
tivevalue to an empty string;SETSYMBOL assigns a new value to a symbol;SYMBOLVALUE returns the value of a symbol as text.
• Several ma
ros were depre
ated. Alternatives are suggested in the `man yo-dlma
ros' manpage:� enddit();� endeit();� endit();� endmenu();� endtable();� enumerate(list);� itemize(list);� menu(list);� mit();� node(previous)(this)(next)(up);� start
enter();� startdit();� starteit();� startit();� startmenu();� starttable(nColumns)(LaTexAllignment);
• XXin
ludePath: Symbol installed by Yodl itself, but modi�able by the user:It holds the value of the
urrent :-separated list of dire
tories that are vis-ited (sequentially) by the INCLUDEFILE
ommand. XXin
ludePath may
ontain $HOME, whi
h will be repla
ed by the user's home dire
tory if the`home' or `HOME' environment variable is de�ned. It may also
ontaint($STD_INCLUDE), whi
h will be repla
ed by the
ompilation de�ned stan-dard in
lude path. The standard in
ludepath may be overruled by either (in16

that order) the
ommand line swit
h -I or the tt(Yodl)_INCLUDE_PATH envi-ronment variable. By default, the
urrent dire
tory is added to the standardin
lude path. When -I or tt(Yodl)_INCLUDE_PATH is used, the
urrent di-re
tory must be mentioned expli
itly. The individual dire
tories need not beterminated by a /-
hara
ter. In the distributed .deb ar
hive, the standarddire
tory is de�ned as the
urrent working dire
tory and /usr/share/yodl,in that order.
• Initial blank lines in the generated do
ument are suppressed by default.
• Command line argument -D also allows the assignment of an initial value toa symbol
• Command line argument -P is now -p, the previously de�ned -p argument isnow -n (�max-nested-�les), de�ning the maximum number of nested �les yodlwill pro
ess.
• Command line argument -r (�max-repla
ements) de�nes the maximum num-ber of ma
ro and/or subst repla
ements a

epted between
onse
utive
har-a
ters read from s.
• All assignents to
ounters (SETCOUNTER, ADDTOCOUNTER, et
.) notonly a

ept numeri
al arguments, but also
ounter names.
• Rewrote several awkwardly
oded ma
ros, using the new SYMBOL and COUNTERfa
ilities
• Added experimental, very limited, xml support to help me generating xml forthe horrible `webplatform' of the university of Groningen. But at least Yodlnow o�ers xml support as well.
• The default extension for �gures in the HTML and XML
onversions is now.jpg rather than .gif. The sethtmlfigureext() ma
ro
an be used the
hange the default �gure extension.
• There is no limit to the number of
onversion-options that
an be spe
i�ed:ma
ros like htmlbodyopt() and latexoption()
an be spe
i�ed as often asrequired resulting in one
on
atenated spe
i�
ation.
• Upgraded most of the do
umentation.
• Separated yodl-ma
ro �les for the various formats. While this might notstri
tly be ne
essary, I feel this is better than using big fat generi
 ma
rode�nition �les whi
h are bloated with `, ' ma
ros. I introdu
ed a generi
frame, mentioning the ma
ros that must at least be de�ned by the individualformats.
• Internally, the software was VASTLY reorganized. I feel that generally pro-grams written in C don't bene�t from approa
hes that have be
ome quitenatural for C++ programmers. I had the
hoi
e to either rewrite Yodl toa C++ program or to reprogram Yodl in the line of C++, but still usingC. I opted for the latter. So, now the sr
 se
tion
ontains `obje
t-like' fun
-tion families, like `
ountermap_...()' handling all
ounte-related operations,`textve
tor_...()', handling all text-ve
tor like operations, and other. Otherfun
tions reveived minor modi�
ations. E.g., xreallo
() now requires you tospe
ify both the number of elements and the size of the elements. By doingso, it is sheer impossible to overlook the fa
t that you have to spe
ify the sizeof the elements, thus preventing the allo
ation of
hars when, e.g., ints arerequired. 17

• An old in
onvenien
e was removed: line number
ounting is now using naturalnumbers, starting at 1, rather than line indi
es, starting at 0.
• My old �i

e.rug.nl e-mail address has been
hanged into my
urrent e-mailaddress: "Frank B. Brokken" <f.b.brokken�rug.nl>
• The post pro
essing is now performed by the program `yodlpost'. This pro-gram again used Design Patterns originally developed for obje
t oriented
on-texts, resulting in an program that is easy to maintain. modify and expand.
• The post-pro
essor doesn't use .tt(Yodl)TAGSTART. and .YODTAGEND. any-more.
• The basi

onversion formats now supported are html, latex, man, and text.Xml support is experimental, other formats are no longer supported, mainlybe
ause my personal unfamiliarity with the format (texinfo), or be
ause theformat appears to be somewhat obsolete (sgml).
• Added a Yodl do
ument type `letter', indended to be used with the `brief.
ls'LaTeX do
ument
lass
• Yodl 2.00
onverts do
uments mu
h faster than earlier versions.1.2 Why use Yodl?Yodl is not a word pro
essor, not even an editor. At �rst glan
e you might say,yeah, why should I learn Your Own Do
ument Language? The answer is exa
tlythat: be
ause it
an be Your own do
ument language!First of all, Yodl may lower the threshold of new users to start writing do
uments.An example of an ex
ellent, though not very user-friendly do
ument language isLATEX. Typing all the ba
kslash and
urly bra
e
hara
ters in LATEX and remember-ing that an asterisk must be typed as $*$ may be hard at �rst. In su
h situations,a properly
on�gured Yodl ma
ro set removes these obsta
les and thereby helpsnovi
es. Yodl is designed to be easy to learn. As the Yodl pa
kage is growing, sois the manual. The ease of `learning Yodl' may thus somewhat diminish, but justkeep in mind: as long as you need just plain texts, Yodl does OK. If you wantmore fun
tionality, e.g., the
omposition of manual pages for Unix, dig into thedo
umentation.Se
ond, Yodl permits to
reate more than one ma
ro set, de�ning the same
om-mands, but leading to di�erent output a
tions. Thereby, the same input �le
an be
onverted to several output formats, depending on the loaded ma
ro set. In this,Yodl is a `general front' do
ument language, whi
h
onverts a Yodl do
ument to aspe
ialized language for further pro
essing. This was of
ourse one of my reasonsto write Yodl: I needed a good
onverter for either LaTeX or HTML.Third, Yodl always allows an `es
ape route' to the output format. Most situations
an be handled with Yodl ma
ros, but sure enough, some users will want spe
iala
tions for a given output format. A typi
al example for the ne
essity of su
h anes
ape route is the typesetting of mathemati
al formulas. Say you want to use Yodlfor a do
ument that is
onverted either to LaTeX (being a very good mathemati
al18

typesetter) or to HTML (a very poor mathemati
al typesetter). An approa
h mightbe to de
ide inside the do
ument how to typeset a mathemati
al formula. Yodlprovides
onditional
ommand pro
essing to a

omplish this. The de
ision wouldbe based on the output format: for LaTeX, you'd typeset the formula using allthe fa
ilities that LaTeX o�ers, and for HTML you'd use poor-mans typesetting.Typi
ally, other pre-pro
essors for do
uments don't allow su
h es
ape routes. Well,Yodl does.1.3 Copying YodlYodl is free software; it is distributed under the terms of the GNU General Publi
Li
en
e. For details, please refer to the �le COPYING.The original author and brainfather of Yodl Karel Kubat<karel�e-tunity.nl>would very mu
h like to to hear from you, if you use Yodl in a
ommer
ial setting(beats me why).Also, he likes to re
eive post
ards, preferably from far-away pla
es (i take it that'sfrom outside, or near the edges of, Europe).His snailmail address:Karel Kubat...ZwolleThe Netherlands

19

Chapter 2Yodl User Guide
This se
tion des
ribes the yodl program from the point of a meta-user, one who isinterested in how ma
ro �les work, or one who wants to write a new
onverter. Ifyou're just interested in using Yodl with the pre-existing
onverters and ma
ro �les,skip this
hapter and
ontinue with the ma
ro pa
kage des
ription (
hapter 4).The Yodl program the main
onverter of the Yodl pa
kage. The basi
 usage ofthe yodl program, yodl's built-in ma
ros, and the syntax of the Yodl language isdes
ribed here.2.1 Using the yodl programYodl reads one or more input �les, interprets the
ommands therein, and writes oneoutput �le. The program is started as:yodl options input�le [input�le...℄In this spe
i�
ation, the options are optional. Most options have `long variants'also, whi
h are mentioned in the following list. In this list, -x, �optionname aretwo alternate ways to spe
ify option x. If -x takes an argument, it may be spe
i�edimmediately following the -x, but separating blanks may also be used. Optionsnot taking arguments
an be
ombined (e.g., -a -b -
 may be
ombined to -ab
).Arguments spe
i�ed with long options should be separated from the long optionusing a =
hara
ter.The following options are
urrently available:

• -D, �define=NAME[=VALUE℄: De�nes name as a symbol. This option is a
tslike DEFINESYMBOL(NAME)(). If =VALUE is added, NAME is initialized to VALUE(identi
ally to DEFINESYMBOL(NAME)(VALUE)).
• -d, �definema
ro=NAME=EXPANSION: De�nes NAME as ma
ro expanding toEXPANSION
• -h, �help: usage information is written to the standard error stream, de-s
ribing all of Yodl's options. 20

• -i, �index[=file℄: `�le' is the name of the index �le. By default <outputbase>.idxis used. No default when output is written to stdout. The index �le is pro-
essed by Yodl's post-pro
essor, yodlpost.
• -I, �in
lude=DIR: This de�nes the system-wide in
lude dire
tory whereYodl sear
hes for its input �les. E.g. a statement to in
lude a given �le,like:INCLUDEFILE(latex)will
ause Yodl to sear
h for the �le latex in the
urrent dire
tory, and whenthat fails, in the system-wide in
lude dire
tory. The system-wide in
ludedire
tory is typi
ally the pla
e where the maintainer of a system stores ma
ro-�les for Yodl. This sear
hing pro
ess applies to �les that are in
luded insidea do
ument but also applies to �lenames on the
ommand line when invokingthe Yodl program.The name of the in
luded �le (latex in the above example) is the bare name,the Yodl program will supply a default extension (.yo), if ne
essary.The -I option overrules Yodl's built-in name for the system-wide in
ludedire
tory. The built-in name is de�ned when
ompiling Yodl, and is, e.g.,/usr/share/yodl. Furthermore, the de�nition may
ontain $HOME, whi
hwill be repla
ed by the user's home dire
tory if the `home' or `HOME' en-vironment variable is de�ned. It may also
ontain $STD_INCLUDE, whi
hwill be repla
ed by the
ompilation de�ned standard in
lude path. The stan-dard in
ludepath may be overruled by either (in that order) the
ommandline swit
h -I or the tt(Yodl)_INCLUDE_PATH environment variable. By de-fault, the
urrent dire
tory is added to the standard in
lude path. Hewver,when -I or tt(Yodl)_INCLUDE_PATH is used, the
urrent dire
tory must bementioned expli
itly. The individual dire
tories need not be terminated by a/-
hara
ter. In distributed .deb ar
hives, the standard dire
tory is de�ned as/usr/share/yodl (pre�xed by the
urrent working dire
tory).
• -k, �keep-ws: Sin
e Yodl version 2.00 blanks at the begin and end of linesare ignored, even without a trailing \, when the `white spa
e level' is non-zero.Earlier versions kept these blanks. The lega
y handling of white spa
e at endof lines
an by obtained using the -k �ag. Note that white spa
e are alwayskept when using verbatim
opying, and when the white-spa
e level is zero.
• -l, �live-data=HOW: This option
ontrols the poli
y for exe
uting SYSTEMor PIPETHROUGH
ommands; HOW being none (0) by default. The HOWargument
an have the following values:� none or 0: (the default): No ma
ros
alling system programs are allowed.�
onfirm or 1: The ma
ros
an be exe
uted, but only after user
on�r-mation is obtained. The ma
ros in question are shown while the Yodldo
ument is pro
essed, and the user must either a

ept or reje
t the
all.� report or 2: The ma
ros are exe
uted, but what is
alled is shown duringthe Yodl run (if the WARNING message level is a
tive).� ok or 3: The ma
ros are exe
uted, and not shown during the run. Be
areful when using �live-data ok. It should be used only when a do
-ument is
learly `unharmful'.

21

• -m, �messages=SET: Set the so-
alled `message level' to a
ombination of theSET a
deinw. The letters of this set have the following meanings:� a: alert. When an alert-error o

urs, Yodl terminates. Here Yodl re-quests something of the system (like a get_
wd()), but the system fails.�
:
riti
al. When a
riti
al error o

urs, Yodl terminates. The messageitself
an be suppressed, but exiting
an't. A
riti
al
ondition is, e.g.,the omission of an open parenthesis at a lo
ation where a parameter listshould appear, or a non-existing �le in an INCLUDEFILE spe
i�
ation (asthis �le should be parsed). A non-existing �le with a NOEXPANDINCLUDEspe
i�
ation is a plain (non-
riti
al) error.� d: debug. Probably too mu
h info, like getting information about ea
h
hara
ter that was read by Yodl.� e: error. An error (like doubly de�ned symbols). Error messages willnot stop the parsing of the input (up to a maximum number of errors),but no output is generated.� i: info. Not as detailed as `debug', but still very mu
h info, like infor-mation about media swit
hes.� n: noti
e. Information about, e.g.,
alls to the builtin fun
tion
alls.� w: warning. Something you should know about, but probably not a�e
t-ing Yodl's proper fun
tioningNon-
on�gurable is the handling of an emergen
y message. These messages
an't be suppressed, but shouldn't happen, as they point to some internal er-ror. It would be appre
iated to re
eive information1 about these messagesif they ever o

ur.
• -n, �max-nested-files=NR: This option
auses Yodl to abort when the num-ber of nested input �les ex
eeds NR, whi
h is 20 by default. Ex
eeding thisnumber usually means a
ir
ular de�nition somewhere in the do
ument. Thisis the
ase when, a �le a.yo in
ludes b.yo, while b.yo in
ludes a.yo et
..It does not prevent re
ursive ma
ro- or subst-repla
ements. For that the -r(�max-repla
ements) option is available.
• -o, �output=FILE: This option
auses Yodl to write its output to FILE. Bydefault, the output goes to the standard output stream. E.g., you
an use Yodlto read a �le input and to write to output with the following two
ommands:yodl input > outputyodl -ooutput inputThe di�eren
e being that in the latter
ase an index �le is generated, but notin the former
ase. Noti
e that writing an index �le
an be for
ed when the�index option is spe
i�ed.
• -p, �preload=CMD: This option `pre-loads' the string
md. It a
ts as though
md was the �rst
ommand in the �rst input �le that is pro
essed by Yodl.More than one �preload=CMD options may be present on the
ommand line.Ea
h of the
ommands is then pro
essed in turn, before reading any �le.1mailto:f.b.brokken�rug.nl 22

• -r, �max-repla
ements=NR: This option
auses Yodl to abort when the num-ber of ma
ro
alls or subst-repla
ements ex
eeds NR * 10,000. By default,NR equals 1. Setting �max-repla
ements=0 implies that no ma
ro- or subst-repla
ement
he
ks are performed.
• -t, �tra
e: This option enables tra
ing: while parsing, Yodl writes its out-put to the standard error stream. As is the
ase with the -k option, thisoption is de�ned for debugging purposes only.
• -V, �version. This option will show Yodl's a
tual version.
• -v, �verbose: This option in
reases Yodl's `verbosity level' and may o

urmore than on
e. By default yodl will show alerting,
riti
al, emergen
y anderror messages. Ea
h �verbose option will add a next message level. In order,warning, noti
e, info and debug messages will be added to this set. It is alsopossible to suppress messages. The VERBOSITY builtin
an be used for that.
• -W, �warranty. This option will show a warranty dis
laimer and a
opyrightnoti
e.
• -w, �warn: The presen
e of this option
aused Yodl to warn when, e.g.,symbols are rede�ned.The input�le elements on the
ommand line spe
ify whi
h �les Yodl should pro
ess.All names are supplied with an extension2. The �les are then sear
hed for in thedire
tories mentioned in the in
lude-path. Files may also be spe
i�ed using absolutepathnames.Note that all �lenames on the
ommand line are input �les. To de�ne an output�le, either use the �output option or redire
t the output.2.2 The Yodl grammarThe grammar whi
h is used by Yodl mixes `real' text that should appear on theoutput with markups :
ommands for Yodl. The markups must follow a
ertaingrammar, whi
h is des
ribed in this se
tion. Yodl therefore falls in the
ategory of`markup languages', in
ontrast to `WYSIWYG'-programs. As a
onsequen
e, Yodlpromotes
on
ept-oriented writing.Basi
ally, Yodl only does `something spe
ial' when it en
ounters the name of abuiltin fun
tion or the name of a user-de�ned ma
ro, followed by a parameter list.Sometimes a fun
tion or ma
ro requires multiple arguments, whi
h must then bespe
i�ed in sequen
e. All required parameter lists, however, must be spe
i�ed withinthe same input �le. It is not allowed to split the a
tivation of a builtin fun
tion orma
ro over multiple input �les. Plain text, on the other hand, may be split overmultiple �les.In this se
tion the elements of Yodl's grammar are brie�y dis
ussed.2this extension is de�ned in the installation of Yodl and is usually .yo

23

2.2.1 Language elementsAt the lowest level, Yodl's lexi
al s
anner returns small pie
es of information toits parser. These pie
es of information are
alled tokens, and
onsist of elementslike a blank spa
e, a non-blank
hara
ter, or an end-of-ile �ag. These tokens are attoo small an aggregation level to be useful for the
urrent user-guide, so here we
on
entrate our dis
ussion on the next aggregation level:
ompound elements and
on
eptual elements.Compound elements relate to the basi
 tokens as words in a senten
e to the individ-ual letters of the words. These
ompound elements are identi�ers, names, numbersand parameter lists.Con
eptual elements are found at the next higher aggregation levels: builtin fun
-tions are the buildin blo
ks for all of Yodl's fun
tionality, symbols and
ountersare Yodl's variables, and (user de�ned) ma
ros extend Yodl's fun
tionality beyondthose of the basi
 builtin fun
tions.In the
oming se
tions these basi
 and
on
eptual elements are dis
ussed in greaterdetail.Identi�ers and NamesIdenti�ers are names that
an have a spe
ial meaning in the Yodl language. E.g., thesequen
e INCLUDEFILE is an identi�er: when followed by a �lename in parentheses,Yodl will take some spe
ial a
tion (in this
ase, read the �le as a Yodl-sour
e �le).Identi�ers may
onsist of upper
ase or lower
ase
hara
ters. No other
hara
tersmay appear in them.In parti
ular, note that this diverts from the well known de�nition for identi�ersused in most programming languages: identi�ers may not
ontain unders
ores, nordigits. Yodl, therefore, won't a

ept identi�ers like run4 or under_s
ore.Names are sequen
es of
hara
ters, not
ontaining white spa
e
hara
ters. (i.e., anyseries of
hara
ters not
ontaining spa
es, tabs or newlines). Names are allowed with
ertain builtin fun
tions, liek the INCLUDEFILE fun
tion, expe
ting the name of a�le as its argument.NumbersNumbers
onsist of digits and an optional minus sign. They are most often used forso-
alled
ounters. In some
ontexts (e.g. with the builtin fun
tion VERBOSITY3.1.73, hexade
imal numbers are allowed. Hexade
imal numbers have 16 `digits':the familiar 0-9, but also a-f (or A-F), representing the de
imal values 10 until 15,respe
tively. Hexade
imal values are usually pre�xed by 0x, for example 0x4e.In other
ontexts (in parti
ular, with
hara
ter tables 2.3), o
tal numbers or
har-a
ter
onstants are allowed too.An o
tal number only
onsists of the digits 0-7. In Yodl, o
tal values must
onsistof three digits, and must be pre
eded by a ba
kslash.Chara
ter
onstants may very well be
onsidered numeri
al values. Chara
ter
on-24

stants
onsist of a
hara
ter value between single quotes, for example 'a'.Refer to se
tion 2.3 for more detailed information about the use of o
tal values and
hara
ter
onstants.Yodl has no
on
ept of �oating point values nor does it have fa
ilities for performing�oating point arithmeti
.Parameter listsParameter lists
ontain arguments to Yodl builtin fun
tions or user-de�ned ma
ros.Ea
h parameter list
ontains exa
tly one argument, and must be en
losed by paren-theses.A parameter list is re
ognized as su
h when en
ountered immediately following thename of a builtin fun
tion or user-de�ned ma
ro. Some fun
tions or ma
ros expe
tmultiple arguments. In those
ases, the required number of arguments must beprovided, possibly separated from ea
h other by white-spa
e only.For example, the following shows how to
all the builtin fun
tion DEFINECOUNTER,expe
ting two arguments:DEFINECOUNTER(MyCounter)()DEFINECOUNTER(MyCounter) ()DEFINECOUNTER(MyCounter)(12)Yodl re
ognizes the arguments to a ma
ro as parameter lists, i.e., delimited by (and). As long as the numbers of opening and
losing parentheses mat
h, Yodlwill
orre
tly re
ognize the list. E.g., given a hypotheti
al ma
ro somema
ro, thefollowing
ode sample shows the ma
ro followed by one parameter list:somema
ro(Here is a
hunk of text.)somema
ro(Here is a some (more) text.)A problem arises when the number of parentheses is unbalan
ed: i.e., when theparameter list
onsists of more opening than
losing parentheses or vi
e versa Tohandle su
h situations, Yodl o�ers a `literal-
hara
ter' me
hanism (see the CHARma
ro in 3.1.4) and a `global substitution' me
hanism (see the SUBST ma
ro in3.1.65). For example, to send the texthere's a ")"
losing parenthesisas an argument to our hypotheti
al ma
ro somema
ro, the following
an be used:COMMENT(-- Alternative 1: using CHAR --)somema
ro(here's a "CHAR(41)"
losing parenthesis)25

COMMENT(-- Alternative 2: using SUBST --)SUBST(
losepar)(CHAR(41))somema
ro(here's a "
losepar"
losing parenthesis)Both methods have disadvantages: the CHAR method requires you to remember thatan ASCII 41 is a
losing parenthesis. The SUBST method de�nes a string
loseparthat is always expanded to a
losing parenthesis, wherever it may o

ur in the text.But whatever method is used, it should be
lear by now that unbalan
ed parameterlists
an be handled by Yodl. Also, remember that unbalan
ed parenthesis pairsare only relevant in argument lists. Yodl handles parentheses in normal text asordinary
hara
ters.Builtin fun
tionsThe building blo
ks of Yodl's fun
tionality are its builtin fun
tions. Builtin fun
-tions exists to manipulate all of Yodl's builtin types (
hara
ter tables,
ounters,ma
ros and symbols) and to do basi
 bookkeeping and �ow-
ontrol: it is possible totest values of
ounters and symbols, to in
lude other input �les, to generate warningand error messages, and to start
hild- or subpro
esses. Ea
h builtin fun
tion isdes
ribed in a separate subse
tion of se
tion BUILTIN 3.1.Chara
ter translation tablesChara
ter translation tables exist to perform
onversion spe
i�
 transformations.For example, in html, the \'e is written as &ea
ute;, but in LaTeX it's writtenas \'e. Rather than using a potentially long if-else ladder to determine how to seta parti
ular
hara
ter, a
hara
ter translation table
an be used. The
hara
tertranslation table of a parti
ular
onversion is then a
tivated only for that type of
onversion.Chara
ter table translations are used very late during the pro
essing of Yodl's inputs: it is the output generator that handles the
hara
ter translations. Consequently,ma
ros or builtin fun
tion
alls that might appear in a
hara
ter's rede�nition in a
hara
ter table will not be expanded. In pra
ti
e this never is a point of
on
ern.In se
tion 2.3 the use of
hara
ter translation tables is dis
ussed in detail.CountersSome do
ument languages (notably LaTeX) automati
ally pre�x numbers whentypesetting se
tions, subse
tions, tables, �gures et
.. Other do
ument languages(e.g. html) don't.Therefore, a ma
ro pa
kage that
onverts a Yodl do
ument to LaTeX doesn't needto provide the numbering of se
tions et
.. However, if you do want the numberingand if you want to
onvert do
uments to, say, html, then you must take
are of thenumbering yourself.Counters exist to make this possible. Counters
an be in
remented,
an be given aparti
ular value,
an be given a new value temporarily and
an be removed. They26

always
ontain integral values, whi
h may be negative.Se
tion 2.5 des
ribes the use of
ounters in more detail.Ma
rosMa
ros are
omparable to builtin fun
tions, but they
an be de�ned in Yodl input�les. Ma
ros add fun
tionality to Yodl ex
eeding the basi
 fun
tionality of thebuiltin fun
tions. Ma
ros
an have arguments, and they are used in exa
tly thesame way as builtin fun
tions are used.When Yodl en
ounters a ma
ro, it a
ts as follows:
• Its arguments are obtained, by reading its argument lists. These argumentsare not interpreted in any way. They are simply removed from the input, andstored for further pro
essing;
• Referen
es to arguments in the ma
ro's de�nition (using the ARG# notation,where # is the sequen
e number of a parti
ular argument) are repla
ed by theliteral text of the
orresponding ma
ro's arguments.
• The thus modi�ed de�nition text is now pushed ba
k into the input stream,to be pro
essed by Yodl's lexi
al s
anner.De�ning ma
ros is des
ribed in se
tion 3.1.11. Ma
ros may be de�ned, deleted,renamed, and temporarily given other de�nitions.Nouserma
rosWhen Yodl is started using the -w �ag on the
ommand line, then warnings aregenerated when Yodl en
ounters a possible ma
ro name, followed by a parameterlist, without �nding a ma
ro by that name. Yodl then prints something like
annotexpand possible user ma
ro.Examples of su
h sequen
es are, The ne
essary file(s) are here, or see themanual page for sed(1). The
andidate ma
ros are file and sed, as these names
ould very well have been `valid' user ma
ros followed by their parameter list.A nouserma
ro
an be de�ned to suppress these warnings, by informing Yodl thatfile and sed aren't ma
ros. Nouserma
ros may be de�ned and unde�ned. Seese
tions 3.1.45 and 3.1.16 for details).SymbolsYodl symbols
ontain text. They were introdu
ed to allow the �exible expansionof text, the length and/or
ontent of whi
h
annot be determined in advan
e. Inparti
ular, symbols are useful to store a series of LaTeX do
ument options, or aseries of html body options. In earlier versions of Yodl
omplex and
onfusing
on-stru
tions using nested de�nitions of ma
ros were used for this. These ma
ros werenot only
onfusingly
omplex, but they also su�ered from a hard-
oded maximum.Symbols solve these drawba
ks, and now that they are available, they are used forall natural situations in whi
h an initially unknown pie
e of text must be stored.27

National language spe
i�
 strings are another useful area in whi
h symbols
an beused. The symbol CONTENTSHEADING
an be set to the name of the
ontents heading(e.g., Contents in English, Inhoud in Dut
h, Contenido in Spanish, and ma
ros
ansimply insert the value of the symbol CONTENTSHEADING at the appropriate lo
ation.Symbols
an be de�ned 3.1.12, removed 3.1.17, (temporarily 3.1.59 or permanently3.1.63) be given another value; pushed symbol values
an be restored 3.1.54 at alater point. Of
ourse, their values
an also be inserted 3.1.66 into Yodl's output�le.2.2.2 Line
ontinuationTo make the typing of input easier, Yodl allows you to end a line with a ba
kslash
hara
ter \and to
ontinue it on the next line. That way you
an split long lines to�t your s
reen. When pro
essing its input, Yodl will treat these lines as one longline, and will of
ourse ignore the \
hara
ter. This feature only works when the\
hara
ter is the last one on the line (no spa
es may follow).When the line following the one with the \
hara
ter has leading spa
es, then theseare omitted. This allows you to `indent' a �le as you wish, while the spa
e
hara
tersof the indentation are ignored by the Yodl program.A trivial example is the following:Grandpa and\grandma are sitting on the sofa.Due to the o

urren
e of the \
hara
ter in the sequen
e and\, Yodl will
ombinethe lines toGrandpa andgrandma are sitting on the sofa.Note that the spa
es before grandma are ignored, sin
e this is the se
ond line fol-lowing a \
hara
ter.If you do want one or more spa
es while joining lines with \, put the spa
es beforethe \
hara
ter.Summarizing:
• A Line ending in a ba
kslash
hara
ter is merged with the next line.
• This only happens if the \
hara
ter is the last
hara
ter of the line, no spa
esmay appear behind the \.
• When merging lines, Yodl ignores leading spa
es of the se
ond line.The question is of
ourse, how do you a

omplish that a line really ends with a \,when you do not want Yodl to merge it with the following line? In su
h a
ase,28

type a spa
e
hara
ter following your \: Yodl won't
ombine the lines. Or set the\
hara
ter as CHAR(\) or CHAR(92) (see se
tion 3.1.4 for the CHAR ma
ro).When Yodl pro
esses input �les, and the white-spa
e level ex
eeds zero (see se
tion3.1.38), then all lines are pro
essed as if they terminated by a \. This behavior wasimplemented �rst with Yodl version 2.00. It
an be suppressed using Yodl's -k �ag.2.2.3 The +identi�er sequen
eThere may be situations in whi
h you must type a ma
ro name right after a sequen
eof
hara
ters, while Yodl should re
ognize this. Imagine that someone wrote a greatma
ro footnote for you3, to typeset footnotes. If you'd type in a do
ument:The C Programming Languagefootnote(as defined byKernighan and Rit
hie) ...then of
ourse Yodl would fail to see the start of a ma
ro in the sequen
e Languagefootnote.You
ould sayThe C Programming Language footnote(as defined byKernighan and Rit
hie) ...but that would introdu
e a spa
e between Language and the footnote. Probablyyou don't want that, sin
e spa
es between a word and a footnote number look awfuland be
ause of the fa
t that the footnote number might be typeset on the followingline.For these spe
ial situations, Yodl re
ognizes the +identifier sequen
e as the startof a ma
ro, while the + sign is e�e
tively ignored. In the above example you
ouldtherefore useThe C Programming Language+footnote(as defined byKernighan and Rit
hie) ...The +identifier re
ognition only works when the identi�er following the + sign isa ma
ro. In all other situations, a + is just a plus-sign.(The +identifier sequen
e furthermore plays an important role in ma
ro pa
k-ages. If you're interested, see the �le shared.yo whi
h is by default installed to/usr/lo
al/lib/yodl.)2.2.4 Preventing ma
ros from being expandedOne more feature of the Yodl language remains to be des
ribed. In the previousse
tion it was des
ribed how a ma
ro may be
alled immediately following alphabet-i
al
hara
ters. What about the opposite situation where we do not want a ma
roto be expanded in a parti
ular situation? The NOUSERMACRO builtin
ommand (
f.se
tion 3.1.45) may be used to suppress the interpretation of a
hara
ter sequen
e3someone did, in fa
t, see the next
hapter 29

(e.g., file(...)) as a ma
ro, but what if a ma
ro should not be expanded in theo

asional situation? For this
ase various solutions are available:
• First, the tt(...) and verb(...) ma
ros may be used to suppress ma
roexpansion. These ma
ros will also temporarily
hange the typesetting font,though.
• Se
ond, NOEXPAND() builtin
ommand may be used: the ma
ro name may bepassed to NOEXPAND(), immediately followed by the `argument list':Like this: NOEXPAND(NOEXPAND)(hello world)
• Third, the nop() ma
ro may be used to separate a ma
ro name from itsargument list:Like this: NOEXPAND+nop()(hello world)2.3 Chara
ter tablesThe Yodl language provides a way to de�ne
hara
ter translation tables, to a
tivatethem, and to dea
tivate them. A
hara
ter translation table de�nes how a
hara
terin the input will appear in the output.There are two main reasons for the need of
hara
ter translation tables. First,a do
ument language be
omes mu
h easier to use when you
an type an asteriskas * instead of $*$ or \verb/*/ (these are sequen
es from the LaTeX do
umentlanguage). Hen
e, a me
hanism that expands a * in the input to to \verb/*/ onthe output, saves the users a lot of typing.Se
ond, for
ing users to type weird sequen
es won't work if you're planning on
onverting the same Yodl do
ument to a di�erent output format. If the user types\verb/*/ in the input to typeset an asterisk in the output, how should he or shearrive at a single * in the output in another output format?The solution is of
ourse to de�ne the translation for an input
hara
ter like * giventhe output format.2.3.1 De�ning a translation tableThe built-in ma
ro DEFINECHARTABLE de�nes a
hara
ter translation table. It takestwo parameter lists: the name of the table and the
hara
ter translations. Hen
e,ea
h table is de�ned by its own name.As an example of a table,
onsider the following fragment. It de�nes a table thattranslates the upper
ase
hara
ters A to E to their lower
ase equivalents:DEFINECHARTABLE(tolower)('A' = "a"'B' = "b"'C' = "
"'D' = "d"'E' = "e") 30

Ea
h DEFINECHARTABLE statementmust have a non-empty se
ond parameter. "Empty"
hara
ter tables
annot be de�ned, though one non-translation table is built-in.The syntaxis of the se
ond parameter list is as follows:
• On separate lines, input
hara
ters are mapped to a sequen
e to appear onthe output.
• Per line, the input
hara
ter is spe
i�ed as '
',
 being any
hara
ter. Es
ape-sequen
es from the C programming language
an be used in this spe
i�
ation;Yodl supports the sequen
es \a (alert), \b (beep), \f (formfeed), \n (newline),\r (
arriage return), \t (tab), and \v (verti
al tab). Any other
hara
terfollowing a \de�nes itself: \\ de�nes one ba
kslash
hara
ter.
• Following the
hara
ter spe
i�
ation, a = must appear.
• Following that, a sequen
e of one or more
hara
ters appears, en
losed indouble quotes, de�ning the translation. Again, es
ape sequen
es
an be used,as in:'\n' = "End of line\n"Su
h a mapping adds the text End of line to ea
h line, sin
e ea
h newline
hara
ter in the input is repla
ed by the text End of line, followed by thenewline itself.Translations whi
h are not spe
i�ed in the table are left to the default, whi
h is tooutput the
hara
ter as-is.Note that the
hara
ter table translation is something that the yodl program doesas one of its last a
tions, just before sending text to the output �le. The expansiontext is not further pro
essed by yodl, ex
ept for the
onversion of C-type es
apesequen
es to ordinary
hara
ters. The expansion text should therefore not be pro-te
ted by, e.g., NOTRANS (unless of
ourse you want some
hara
ter to generate thetext NOTRANS on the output).2.3.2 Using a translation tableA de�ned translation table is a
tivated by the ma
ro USECHARTABLE. This ma
rotakes one parameter list, whi
h may be:
• empty, in whi
h
ase the default mapping is restored,
• a name of a previously de�ned
hara
ter table.The default mapping, sele
ted when an empty parameter list is given, means thatYodl enters its `zero translation state', meaning no
hara
ter translation at all.

31

2.3.3 Pushing and popping
hara
ter tablesBesides the previously des
ribed ma
ro USECHARTABLE(), Yodl has one other me
h-anism of a
tivating and dea
tivating
hara
ter translation tables. This me
hanismuses a sta
k, and hen
e, the related ma
ros are appropriately named PUSHCHARTABLE()and POPCHARTABLE().
• PUSHCHARTABLE(name) pushes the
urrently a
tive translation table onto asta
k, and a
tivates the table identi�ed by name. The argument may beemtpy; in that
ase, the zero-translation table is a
tivated (analogously toUSECHARTABLE()).
• POPCHARTABLE() a
tivates the translation table that was last pushed. Thereis no argument to this ma
ro.Using the push/pop me
hanism is handy when a table must be temporarily a
ti-vated, but when it is not known whi
h table exa
ty is a
tive prior to the temporarya
tivation. E.g., imagine that you need to use a
hara
ter table
alled listing totypeset a listing, but that you do not know the
urrent table. The pushing andpopping me
hanism is then used as follows:COMMENT(First, we save the
urrent table on the sta
k andwe a
tivate our "listing" table.)PUSHCHARTABLE(listing)COMMENT(Now the text is question is typeset.)...COMMENT(The previously a
tive table is re-a
tivated, whatever its name.)POPCHARTABLE()2.4 Sending literal text to the outputThe Yodl program has three built-in ma
ros to send literal text to the output �le.The ma
ros are listed in the above se
tion 3.1 and are furthermore des
ribed here.
• The CHAR ma
ro takes one argument: the ASCII number of a
hara
ter orthe
hara
ter itself. The
hara
ter is sent to the output �le without beingtranslated with the
urrently a
tive
hara
ter translation table.
• The NOTRANS ma
ro takes one argument: the text in question. The text isneither parsed (i.e., ma
ros in it are not expanded), nor translated with the
urrent
hara
ter translation table.The NOTRANS ma
ro is
on
eptually like a series of CHAR ma
ros.
• The NOEXPAND ma
ro takes one argument: the text in question. The text isnot parsed, but it is translated with the
urrent
hara
ter translation table.To illustrate the need for the distin
tion between NOTRANS and NOEXPAND,
onsiderthe following. The HTML
onverter (des
ribed in
hapter 4) must be able to send32

HTML
ommands to the output �le, but must also be able to send literal text (e.g.,a sour
e �le listing). The HTML
ommands of
ourse must be neither translatedwith any
hara
ter table, nor must they be expanded in regard to ma
ros. In
ontrast, a sour
e �le listing must be subje
t to
hara
ter translations: the &, < and>
hara
ters
an
ause di�
ulties. Two possible ma
ros for a HTML
onverter are:COMMENT(--- html
ommand(
md) sends its argument as a HTML
ommandto the output ---)DEFINEMACRO(html
ommand)(1)(NOTRANS(ARG1))COMMENT(--- verb(listing) sends the listing to the output ---)DEFINECHARTABLE(list)('&' = "&"'<' = "<"'>' = ">")DEFINEMACRO(verb)(1)(USECHARTABLE(list)NOTRANS(<listing>)NOEXPAND(ARG1)NOTRANS(</listing>)USECHARTABLE(standard))In this example it is assumed that a
hara
ter translation table standard exists,de�ning the `normal' translations. This table is re-a
tivated in the verb ma
ro.2.5 CountersSome do
ument languages (notably LaTeX) automati
ally pre�x numbers whentypesetting se
tions, subse
tions, tables, �gures et
.. Other do
ument languages(e.g. HTML) unfortunately don't.Therefore, a ma
ro pa
kage that
onverts a Yodl do
ument to LaTeX doesn't needto provide the numbering of se
tions et
.. However, if you do want the numberingand if you want to
onvert do
uments to, say, HTML, then you must take
are ofthe numbering yourself.This se
tion des
ribes the
ounters in Yodl: how to
reate
ounters, how to usethem, et
..2.5.1 Creating a
ounterBefore a
ounter
an be used, it must be
reated with the fun
tion DEFINECOUNTERor PUSHCOUNTER. These fun
tions expe
ts two parameter lists: the name of the
ounter and an optional value.The
ounter's value, named number below, may be set as follows:33

• If left unspe
i�ed, the
ounter is set to 0;
• number may be a postive or negative integral value;
• number may be the name of an existing
ounter, in whi
h
ase that
ounter'svalue is used.For example, let's say that our ma
ro pa
kage should provide two se
tioning
om-mands: se
tion and subse
tion. The se
tions should be numbered 0, 1, 2, et
.,and the subse
tions 1.1, 1.2, 1.3 et
.. Hen
e we'd need two
ounters:DEFINECOUNTER(se
t
ounter)()DEFINECOUNTER(subse
t
ounter)(1)The fun
tion NEWCOUNTER, as de�ned in earlier releases of Yodl, is still available,but is depre
ated.2.5.2 Using
ountersThe builtin fun
tion COUNTERVALUE(some
ounter) expands to the value of some
ounter.E.g., if the
urrent value is 2, then the value 2 is inserted into the output obje
t.It is an error to use COUNTERVALUE on a non-existing
ounter or on a
ounter nothaving a de�ned value (see below).Yodl has several fun
tions to modify and/or to set the values of
ounters. The
ounter's value, named number below, may be set as follows:
• If left unspe
i�ed, the
ounter is set to 0;
• number may be a postive or negative integral value;
• number may be the name of an existing
ounter, in whi
h
ase that
ounter'svalue is used.The fun
tions modifying values of
ounters are:
• POPCOUNTER(some
ounter): This fun
tion pops the most re
ently pushedvalue o� the
ounter's sta
k, assigning it to some
ounter. An error o
-
urs when some
ounter doesn't exist. If the
ounter was never pushed,it will still exist following POPCOUNTER, but its value is unde�ned: usingCOUNTERVALUE(some
ounter) in that
ase generates an error.
• PUSHCOUNTER(some
ounter)(number): This fun
tion pushes the
urrent valueof the
ounter some
ounter on the
ounter's sta
k, making number its newvalue. number may be left unspe
i�ed, in whi
h
ase the
ounter will be setto 0. When some
ounter doesn't exist yet, it is
reated with an initial valueof number.
• SETCOUNTER(some
ounter)(number): This fun
tion sets the value of some
ounterto the value of number. The se
ond parameter list must be an integer number(i.e.,
onsisting of the
hara
ters 0 to 9, optionally pre�xed by a - sign). Thefun
tion does not expand to anything; i.e., it does not write to the output �le.34

• ADDTOCOUNTER(some
ounter)(number): This fun
tion adds the value of numberto some
ounter. The number may be negative.
• USECOUNTER(some
ounter): This fun
tion �rst in
reases the value of some
ounterby 1, and then writes the value of the
ounter to the output �le.This fun
tion is parti
ularly useful in
ombination with DEFINECOUNTER: sin
eDEFINECOUNTER initializes a
ounter to zero, USECOUNTER
an be used to in-
rease the value and to output it. The �rst time that USECOUNTER is usedon a new
ounter, the number 1 appears on the output �le. The next time,number 2 appears on the output �le et
..Given the numbering requirements of the hypotheti
al
ommands se
tion andsubse
tion (see the previous se
tion), we
an now
omplete the de�nitions:DEFINECOUNTER(se
t
ounter)DEFINECOUNTER(subse
t
ounter)DEFINEMACRO(se
tion)(1)(\SETCOUNTER(subse
t
ounter)(0)\USECOUNTER(se
t
ounter) ARG1)DEFINEMACRO(subse
tion)(1)(\COUNTERVALUE(se
t
ounter).USECOUNTER(subse
t
ounter) ARG1)

35

Chapter 3All builtin fun
tions
3.1 Yodl's builtin
ommandsAs mentioned previously, Yodl's input
onsists of text and of
ommands. Yodl sup-ports a number of built-in
ommands whi
h may either be used in a Yodl do
ument,or whi
h
an be used to
reate a ma
ro pa
kage.Don't despair if you �nd that the des
ription of this se
tion is too te
hni
al. Exa
tlyfor this reason, Yodl supports the ma
ro pa
kages to make the life of a do
umen-tation writer easier. E.g., see
hapter 4 that des
ribes a ma
ro pa
kage for Yodl.Most built-in fun
tions and ma
ros expand the information they re
eive the waythey re
eive the information. I.e., the information itself is only evaluated by thetime it is eventually inserted into an output medium (usually a �le). However, somebuiltin fun
tions will evaluate their argument(s) on
e the argument is pro
essed.They are:

• The ERROR() built-in fun
tion (see se
tion 3.1.20);
• The EVAL() built-in fun
tion (see se
tion 3.1.21);
• The FPUTS() built-in fun
tion (see se
tion 3.1.23);
• The INTERNALINDEX() built-in fun
tion (see se
tion 3.1.39);
• The TYPEOUT() built-in fun
tion (see se
tion 3.1.68);
• The UPPERCASE() built-in fun
tion (see se
tion 3.1.70);
• The WARNING() built-in fun
tion (see se
tion 3.1.74);All other built-in fun
tions will not evaluate their arguments. See the mentionedfun
tions for details, and in parti
ular EVAL() for a des
ription of this evaluationpro
ess.3.1.1 ADDTOCOUNTERThe ADDTOCOUNTER fun
tion adds a given value to a
ounter. It expe
ts two param-eter lists: the
ounter name, and the value to add. The
ounter must be previously36

reated with DEFINECOUNTER.The value to add
an be negative; in that
ase, a value is of
ourse subtra
ted fromthe
ounter.See further se
tion 2.5.3.1.2 ADDTOSYMBOLSin
e Yodl version 2.00 symbols
an be manipulated. To add text to an existingsymbol the builtin ADDTOSYMBOL is available. It expe
ts two parameter lists: thesymbol's name, and the text to add to the symbol. The symbol must have been
reated earlier using DEFINECOUNTER (see se
tion 3.1.10). The ma
ro's se
ondargument is not evaluated while ADDTOSYMBOL is pro
essed. Therefore, it is easy toadd the text of another symbol or the expansion of a ma
ro to a symbol value. E.g.,ADDTOSYMBOL(one)(SYMBOLVALUE(two)XXnl())This will add the text of symbol two, followed by a new line, to the
ontents ofsymbol one only when symbol one is evaluated, not when ADDTOSYMBOL is evaluated.Example:ADDTOSYMBOL(LOCATION)(this is appended to LOCATION)3.1.3 ATEXITATEXIT takes one parameter list as argument. The text of the parameter list isappended to the output �le. Note that this text is subje
t to
hara
ter table trans-lations et
..An example using this fun
tion is the following. A do
ument in the LaTeX type-setting language requires \end{do
ument} to o

ur at the end of the do
ument. Toautomati
ally append this string to the output �le, the following spe
i�
ation
anbe used:ATEXIT(NOEXPAND(\end{do
ument}))Several ATEXIT lists
an be de�ned. They are appended to the output �le in thereverse order of spe
i�
ation; i.e., the �rst ATEXIT list is appended to the output�le last. That means that in general the ATEXIT text should be spe
i�ed when a`mat
hing' starting
ommand is sent to the output �le; as in:
37

COMMENT(Start the LaTeX do
ument.)NOEXPAND(\begin{do
ument})COMMENT(Ensure its proper ending.)ATEXIT(NOEXPAND(\end{do
ument}))3.1.4 CHARThe
ommand CHAR takes one argument, a number or a
hara
ter, and outputs its
orresponding ASCII
hara
ter to the �nal output �le. This
ommand is built for`emergen
y situations', where you need to typeset a
hara
ter despite the fa
t thatit may be rede�ned in the
urrent
hara
ter table (for a dis
ussion of
hara
tertables, see 2.3). Also, the CHAR fun
tion
an be used to
ir
umvent Yodl's way ofmat
hing parentheses in a parameter list.The following arguments may be spe
i�ed with CHAR (attempted in this order):
• A de
imal number indi
ating the number of the
hara
ter in the as
ii-table(for example CHAR(41));
• A plain, single
hara
ter (for example CHAR(#)).So, when you're sure that you want to send a printable
hara
ter that is not a
losingparenthesis to the output �le, you
an use the form CHAR(
),
 being the
hara
ter(as in, CHAR(;)). To send a non-printable
hara
ter or a
losing parenthesis to theoutput �le, look up the ASCII number of the
hara
ter, and supply that number asargument to the CHAR
ommand.Example: The following two statements send an A to the output �le.CHAR(65)CHAR(A)The following statement sends a
losing parenthesis:CHAR(41)Another way to send a string to the output �le without expansion by
hara
tertables or by ma
ro interpretation, is by using the fun
tion NOTRANS (see se
tion3.1.44). If you want to send a string to the output without ma
ro interpretation,but with
hara
ter table translation, use NOEXPAND (see se
tion 3.1.41).3.1.5 CHDIRThe
ommand CHDIR takes one argument, a dire
tory to
hange to. This
ommandis implemented to simplify the working with in
ludefile (see in
ludefile inyodlma
ros(7)). As a demonstration by example,
onsider the following fragment:38

in
ludefile(subdir/onefile)in
ludefile(subdir/anotherfile)in
ludefile(subdir/yetanotherfile)This fragment
an be
hanged to:CHDIR(subdir)in
ludefile(onefile)in
ludefile(anotherfile)in
ludefile(yetanotherfile)CHDIR(..)The
urrent dire
tory, as given to CHDIR, only a�e
ts how in
ludefile will sear
hfor its �les.Note that this example assumes that the
urrent working dire
tory is a member ofYodl's in
lude-path spe
i�
ation (
f., Yodl's �in
lude option).3.1.6 COMMENTThe COMMENT fun
tion takes one parameter list. The text in the list is treated as
omment. I.e., it is ignored. The text is not
opied to the �nal output �le.3.1.7 COUNTERVALUECOUNTERVALUE expands to the value of a
ounter. Its single parameter list must
ontain the name of a
ounter. The
ounter must have been
reated earlier usingthe builtin DEFINECOUNTER.Example:The
ounter has value COUNTERVALUE(MYCOUNTER).See also se
tion 2.5.3.1.8 DECWSLEVELDECWSLEVEL requires one (empty) parameter list. It redu
es the
urrent white-spa
e level. The white-spa
e level typi
ally is used in �les that only de�ne Yodlma
ros. When no output should be generated while pro
essing these �les, the white-spa
e level
an be used to
he
k for this. If the white-spa
e level ex
eeds zero, awarning will be generated if the �le produ
es non-whitespa
e output. The builtinfun
tion DECWSLEVEL is used to redu
e the whitespa
e level following a previous
allof INCWSLEVEL. 39

On
e the white spa
e level ex
eeds zero, no output will be generated. White spa
e,therefore will e�e
tively be ignored. The white spa
e level
annot be redu
ed tonegative values. A warning is issued if that would have happened if it were allowed.Example:INCWSLEVEL()DEFINESYMBOL(....)DEFINEMACRO(...)(...)(...)DECWSLEVEL()Without the INCWSLEVEL and DECWSLEVEL,
alls, the above de�nition would generatefour empty lines to the output stream.The INCWSLEVEL and DECWSLEVEL
alls may be nested. The best approa
h is toput an INCWSLEVEL at the �rst line of a ma
ro-de�ning Yodl-�le, and a mat
hingDECWSLEVEL
all at the very last line.3.1.9 DEFINECHARTABLEDEFINECHARTABLE is used to de�ne a
hara
ter translation table. The fun
tionexpe
ts two parameterlists,
ontaining the name of the
hara
ter table and
hara
tertable translations on separate lines. These
hara
ter table translations are of theform
hara
ter = quoted-stringHere,
hara
ter is always a value within single quotes. It may be a single
hara
ter,an o
tal
hara
ter value or a hexade
imal
hara
ter value. The single
hara
ter maybe pre�xed by a \-
hara
ter (e.g., '\\'). The o
tal
hara
ter value must start witha ba
kslash, followed by three o
tal digits (e.g., '\045'. The hexade
imal
hara
tervalue starts with 0x, followed by two hexade
imal
hara
ters. E.g., '0xbe'. Thedouble quoted string may
ontain anything (but the string must be on one line),possibly
ontaining es
ape-sequen
es too.Example:DEFINECHARTABLE(demotable)('&' = "&"'\\' = "\\ba
kslash"'\045' = "o
t(45)"'0xa4' = "hex(a4)")The builtin fun
tion DEFINECHARTABLE does not a
tivate the table. The table ismerely de�ned. To a
tivate the
hara
ter translation table, use USECHARTABLE. Thedis
ussion of
hara
ter tables is postponed to se
tion 2.3.40

3.1.10 DEFINECOUNTERDEFINECOUNTER
reates a new
ounter, to be subsequently used by, e.g, the USECOUNTERfun
tion. DEFINECOUNTER expe
ts two parameter list: the name of the
ounter to
reate and an optional initial value. By default the
ounter will be initialized tozero.Examples:DEFINECOUNTER(YEAR)(1950)DEFINECOUNTER(NTIMES)()See also se
tion 2.5.3.1.11 DEFINEMACRODEFINEMACRO is used to de�ne new ma
ros. This fun
tion requires three parameterlists:
• An identi�er, being the name of the ma
ro to de�ne. This identi�er may only
onsist of upper
ase or lower
ase
hara
ters. Note that it
an not
ontainnumbers, nor unders
ore
hara
ters.
• A number, stating the number of arguments that the ma
ro will require on
eused. The number must be in the range 0 to 61.
• The text that the ma
ro will expand to, on
e used. This text may
ontain thestrings ARGx, x being 1, 2, et
.. At these pla
es the arguments to the ma
rowill be pasted in. The numbers that identify the arguments are 1 to 9, then Ato Z and �nally a to z. This gives a range of 61 expandable arguments, whi
his enough for all real-life appli
ations.For example, the following fragment de�nes a ma
ro bookref, whi
h
an be usedto typeset a referen
e to a book. It requires three arguments; say, an author, a titleand the name of a publisher:DEFINEMACRO(bookref)(3)(Author(s): ARG1Book title: ARG2Published by: ARG3)Su
h a ma
ro
ould be used as follows:bookref(Sobotta/Be
her)(Atlas der Anatomie des Mens
hen)41

(Urban und S
hwarzenberg, Berlin, 1972)When
alled, it would produ
e the following output:Author(s): Sobotta/Be
herBook title: Atlas der Anatomie des Mens
henPublished by: Urban und S
hwarzenberg, Berlin, 1972While applying a ma
ro, the three parameter lists are pasted to the pla
es whereARG1, ARG2 et
. o

ur in the de�nition.Note the following when de�ning new ma
ros:
• The parameter list
ontaining the name of the new ma
ro, (bookref) in theabove example, must o

ur right after DEFINEMACRO. No spa
es are allowedin between. Spa
e
hara
ters and newlines may however o

ur following this�rst parameter list.This behavior of the yodl program is similar to the usage of the de�ned ma
ro:the author information must, en
losed in parentheses, follow right after thebookref identi�er. I implemented this feature to improve the distinguishingbetween ma
ros and real text. E.g., a ma
ro me might be de�ned, but thetext I like me (but so do you)still is simple text; the ma
ro me only is a
tivated when a parenthesis imme-diately follows it.
• Be
areful when pla
ing newlines or spa
es in the de�nition of a new ma
ro.E.g., the de�nition, as given:DEFINEMACRO(bookref)(3)(Author(s): ARG1Book title: ARG2Published by: ARG3)introdu
es extra newlines at the beginning and ending of the ma
ro, whi
h willbe
opied to the output ea
h time the ma
ro is used. The extra newline o

urs,of
ourse, right before the sequen
e Author(s): and following the evaluationof ARG3. A simple ba
kslash
hara
ter at the end of the DEFINEMACRO linewould prevent the insertion of extra newline
hara
ters:DEFINEMACRO(bookref)(3)(\Author(s): ARG142

Book title: ARG2Published by: ARG3)
• Note that when a ma
ro is used whi
h requires no arguments at all, one emptyparameter list still must be spe
i�ed. E.g., my ma
ro pa
kage (see
hapter4) de�nes a ma
ro it that starts a bullet item in a list. The ma
ro takes noarguments, but still must be typed as it().This behavior is
onsistent: it helps distinguish whi
h identi�ers are ma
rosand whi
h are simple text.
• Ma
ro arguments may evaluate to text. When a \is appended to the ma
ro-argument, or in the default input handling within a non-zero white-spa
elevel (see se
tion 3.1.38) this may invalidate a subsequent ma
ro
all. E.g.,the ma
roDEFINEMACRO(oops)(1)(ARG1XXnl())will, when
alled as oops(hello world), produ
e the output:hello worldXXnl()To prevent this gluing to arguments to subsequent ma
ros, a single + shouldbe prepended to the ma
ro
all:DEFINEMACRO(oops)(1)(ARG1+XXnl())See also se
tion 2.2.3 obout the `+identi�er'-sequen
e.
• Note the preferred layout of ma
ro de�nitions and ma
ro
alls. Adhere to thisform, to prevent drowning in too many parentheses. In parti
ular:� Put all elements of the ma
ro de�nition on one line, ex
ept for the ma
ro-expansion itself. Ea
h expansion element should be on a line by itself.� When
alling ma
ros put the ma
ro parameter lists underneath ea
hother. If the ma
rolists themselves
ontain ma
ro-
alls, put ea
h
allagain on a line of its own, indenting one tab-position beyond the lo
ationof the opening parenthesis of the argument.� No
ontinnuation ba
kslashes are required between parameter lists. So,do not use them there to prevent unne
essary
lutter.43

� With
omplex
alls, indent just the arguments, and put the parenthesesin their required of logi
al lo
ations.Example of a
omplex
all:
omplex(first(ARG1)(ARG2+XXnl())ARG3+nop()ARG4+XXnl())
• Ma
ro expansion pro
eeds as follows:� The parameter lists are read from the input� The
ontents of the parameters then repla
e their ARGx referen
es inthe ma
ro's de�nition (in some ex
eptional
ases,
learly indi
ated assu
h when appli
able, the arguments will themselves be evaluated �rst,and then these evaluated arguments are used as repla
ements for their
orresponding ARGx referen
es).� The now modi�ed ma
ro is read by Yodl's lexi
al s
anner. This mayresult in yet another ma
ro expansion, whi
h will then be evaluatedre
ursively.� Eventually, all expansion is
ompleted (well, should
omplete, sin
e Yodldoesn't test for eternal re
ursion) and s
anning of the input
ontinuesbeyond the original ma
ro
all.For example, assume we have the following two ma
ros:DEFINEMACRO(First)(1)(Hello ARG1+XXnl())DEFINEMACRO(Se
ond)(1)(First(ARG1)First(ARG1))and the following
all is issued:Se
ond(Yodl) 44

then the following will happen:� Se
ond(Yodl) is read as en
ountered.� ARG1 in Se
ond is repla
ed by Yodl, and the resulting ma
ro body is sentto the lexi
al s
anner for evaluation: It will see:First(Yodl)First(Yodl)� The �rst
all to First() is now evaluated. This will put (after repla
ingARG1 by Yodl) the following on the s
anner's input:Hello Yodl+XXnl()First(Yodl)� Hello Yodl
ontains no ma
ro
all, so it is written to the output stream.Remains:+XXnl()First(Yodl)� Assume XXnl() merely
ontains a newline (represented by \n, here), so+XXnl() is now repla
ed by \n. This results in the following input forthe lexi
al s
anner:\nFirst(Yodl)� The \n is now written to the output stream, and the s
anner sees:First(Yodl)� The se
ond
all to First() is now evaluated. This will put the followingon the s
anner's input:Hello Yodl+XXnl()� Hello Yodl is written to the output stream. Remains:+XXnl()� +XXnl() is now repla
ed by \n. The lexi
al s
anner sees:\n� The newline is printed and we're done.
45

3.1.12 DEFINESYMBOLNOTE: this fun
tion has
hanged at the release of Yodl 2.00. It nowexpe
ts two parameter lists, rather than oneDEFINESYMBOL expe
ts two arguments. An identi�er, whi
h is the name of thesymbol to de�ne, and the textual value of the symbol. If the se
ond argument isempty, the symbol is de�ned, but has an empty value.The earlier interpretation of a Yodl symbol as a logi
al �ag
an still be used, butallowing it to obtain textual values greatly simpli�es various Yodl ma
ros.Example:DEFINESYMBOL(Yodl)(Your own do
ument language)DEFINESYMBOL(Options)()3.1.13 DELETECHARTABLEDELETECHARTABLE removes a de�nition of a
hara
ter table that was de�ned byDEFINECHARTABLE. This fun
tion expe
ts one argument: the name of the
hara
tertable remove.It's an error to attempt to delete a
hara
ter table that is
urrently in use or toattempt to delete a non-existing
hara
ter table.Example:DELETECHARTABLE(mytable)3.1.14 DELETECOUNTERDELETECOUNTER removes a de�nition of a
ounter that was de�ned by DEFINECOUNTER.This fun
tion expe
ts one argument: the name of the
ounter to remove.If the
ounter does not exist, a warning is issued. It is not
onsidered an error totry to delete a
ounter that has not been de�ned earlier.Example:DELETECOUNTER(my
ounter)
46

3.1.15 DELETEMACRODELETEMACRO removes a de�nition of a ma
ro that was de�ned by DEFINEMACRO.This fun
tion takes one argument: the ma
ro name to remove.There is no error
ondition (ex
ept for syntax errors): when no ma
ro with a mat
h-ing name was previously de�ned, no a
tion is taken.For example, the safe way to de�ne a ma
ro is by �rst unde�ning it. This ensuresthat possible previous de�nitions are removed �rst:Example:DELETEMACRO(myma
ro)3.1.16 DELETENOUSERMACRODELETENOUSERMACRO removes a `nouserma
ro' de�nition. The fun
tion expe
tsone argument: the name of the `nouserma
ro' identi�er to be removed from thenouserma
ro-set.There is no error
ondition (ex
ept for syntax errors): when the identi�er wasn'tstored as a `nouserma
ro' no a
tion is taken.Example:DELETENOUSERMACRO(myma
ro)3.1.17 DELETESYMBOLDELETESYMBOL removes the de�nition of a symbol variable. It expe
ts one parameterlist, holding the name of the variable to deleted.This ma
ro has no error
ondition (ex
ept for syntax errors): the symbol in questionmay be previously de�ned, but that is not ne
essary.Example:DELETESYMBOL(Options)3.1.18 DUMMYThis fun
tion is obsolete. It does nothing, and may be removed in future versionsof Yodl.
47

3.1.19 ENDDEFENDDEF is obsolete, and should be repla
ed by DECWSLEVEL. It may be removed infuture versions of Yodl.3.1.20 ERRORThe ERROR fun
tion takes one argument: text to display to the standard errorstream. The
urrent input �le and line number are also displayed. After displayingthe text, the yodl program aborts with an exit status of 1.The text passed to the fun
tion is expanded �rst. See the example.The ERROR fun
tion is an example of a fun
tion that evaluates its parameter listitself.This
ommand
an be used, e.g., in a ma
ro pa
kage when an in
orre
t ma
ro isexpanded. In my ma
ro pa
kage (see
hapter 4) the ERROR fun
tion is used when these
tioning
ommand
hapter() is used in an arti
le do
ument (in the pa
kage,
hapter's are only available in books or reports).An analogous builtin fun
tion is WARNING, whi
h also prints a message but does notexit (see se
tion 3.1.74).Example: In the following
all, COUNTERVALUE(NTRIES) is repla
ed by its a
tualvalue:ERROR(Stopping after COUNTERVALUE(NTRIES) attempts)3.1.21 EVALThe EVAL fun
tion takes one argument: the text to be evaluated. This fun
tionallows you to perform an indire
t evaluation of Yodl
ommands. Assume that thereis a symbol varnam
ontaining the name of a
ounter variable, then the followingwill display the value of the
ounter, in
rementing it �rst:EVAL(NOTRANS(USECOUNTER)(SYMBOLVALUE(varnam)))The a
tions of the EVAL fun
tion
an be des
ribed as follows:
• First, the NOTRANS(USECOUNTER) is evaluated, produ
ing USECOUNTER.
• Next, the open parentheses is pro
essed, produ
ing the open parenthesis itself
• Then, SYMBOLVALUE(varnam) is evaluated, produ
ing the name of a
ounter,e.g. `
ounter'.
• Eventually the
losing parentheis is pro
essed, produ
ing the
losing paren-thesis itself. 48

• All this results in the textUSECOUNTER(
ounter)
• This text is now presented to Yodl's lexi
al s
anner, resulting in in
rementingthe
ounter, and displaying its in
remented value.It should be realized that ma
ro arguments themselves are usually not evaluated.So, a
onstru
tion likeUSECOUNTER(EVAL(SYMBOLVALUE(varnam)))will fail, sin
e EVAL(SYMBOLVALUE(varnam)) is not a legal name for a
ounter: theEVAL()
all is used here as an argument, whi
h is not expanded. The distin
tionis subtle, and is
aused by the fa
t that builtin fun
tions re
eive unpro
essed argu-ments, and may impose
ertain requirements on them (like USECOUNTER requiringthe name of a
ounter).Summarizing: EVAL a
ts as follows:
• Its argument is presented to Yodl's lexi
al s
anner
• The output produ
ed by the pro
essing of the argument is then inserted intothe input stream in lieu of the original EVAL
all.Mosy built-in fun
tions will not evaluate their arguments. In fa
t, only ERROR,EVAL, FPUTS, INTERNALINDEX, TYPEOUT, UPPERCASE and WARNING() will evalu-ate their arguments.Postponing evaluations allows you to write:DEFINESYMBOL(later)(SYMBOLVALUE(earlier))Eventually, and not when later is de�ned, a statement likeSYMBOLVALUE(later)will produ
e the value of earlier at the moment SYMBOLVALUE(later) is pro
essed.This is, in all its
omplex
onsequen
es, what would be expe
ted in most
ases. Itallows us to write general ma
ros produ
ing output that is only evaluated when thetext of symbols and values of arguments be
ome eventually, rather than when thema
ro is de�ned, available.De
isions like these invariably result in questions like `what if I have to keep originalvalues in some situation?' In those situations EVAL() must be used. The following49

example shows the de�nition of three symbols: one re
eives an initial value, two willreturn one's a
tual value when two's value is displayed, three will, using EVAL(),store one's initial value. The example also shows yet another way to suppress ma
ro
alls. It uses the ma
ro nop() whi
h is de�ned in the all standard
onversion types.DEFINESYMBOL(one)(This is one, before)DEFINESYMBOL(two)(SYMBOLVALUE(one))EVAL(DEFINESYMBOL+nop()(three)(SYMBOLVALUE(one)))SETSYMBOL(one)(this is one, after)SYMBOLVALUE(two)SYMBOLVALUE(three)3.1.22 FILENAMEThe fun
tion FILENAME() produ
es an absolute path to the
urrently pro
essed Yodl�le. This is not ne
essarily the
anoni
al path name, as it may
ontain
urrent-and parent-path dire
tories.3.1.23 FPUTSThe fun
tion FPUTS expe
ts two arguments: the �rst argment is information tobe appended to a �le, whose name is given as the se
ond argument. The �rstargument is pro
essed by Yodl before it is appended to the requested �lename, soit may
ontain ma
ro
alls.For example, the following statement will append a
ountervalue to the mentioned�le: FPUTS(There have been COUNTERVALUE(attempts) attempts)(/tmp/logfile)The se
ond argument (name of the �le) is not evaluated, but is used as re
eived.3.1.24 IFBUILTINThe IFBUILTIN fun
tion tests whether its �rst argument is the name of a builtinfun
tion. If so, the se
ond parameter list is evaluated, else, the third parameter listis evaluated. All three parameter lists (the variable, the true-list and the false-list)must be present; though the true-list and/or the false-list may be empty parameterlists.Example:IFBUILTIN(IFBUILTIN)(\`BUILTIN' is a builtin - fun
tion50

)(\ `BUILTIN' is NOT a builtin - fun
tion)Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.25 IFCHARTABLEThe IFCHARTABLE fun
tion tests whether its �rst argument is the name of a
har-a
ter table. The
hara
ter table needs not be a
tive. If the name is the name ofa
hara
ter table, the se
ond parameter list is evaluated, else, the third parameterlist is evaluated. All three parameter lists (the name, the true list and the false list)must be present; though the true list and/or the false list may be empty parameterlists.Example:IFCHARTABLE(standard)(\`standard' is a
hara
ter tablebuiltin - fun
tion)(\ `standard' is NOT a
hara
ter tablebuiltin - fun
tion)Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.26 IFDEFThe IFDEF fun
tion tests for the de�nition status of the argument in its �rst pa-rameter list. If it is a de�ned entity, the se
ond parameter list is evaluated, else, thethird parameter list is evaluated. All three parameter lists (the entity, the true listand the false list) must be present; though the true list and/or the false list may beempty parameter lists.The true list is evaluated if the �rst argument is the name of:
• a built-in fun
tion, or
• a
hara
ter table, or
• a
ounter, or
• a no-user-ma
ro symbol, or 51

• a symbol, or
• a user-de�ned ma
ro, orExample:IFDEF(someName)(\`someName' is a defined entity)(\ `someName is not defined.)Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.27 IFEMPTYIFEMPTY expe
ts three arguments: a symbol, a true-list and a false-list. IFEMPTYevaluates to the true-list if the symbol is an empty string; otherwise, it evaluates tothe false-list.The fun
tion does not further evaluate its argument. Its use is primarily to testwhether a ma
ro has re
eived an argument or not. If the intent is to
he
k whethera symbol's value is empty or not, IFSTREQUAL 3.1.32 should be used, where the�rst argument is the name of a symbol, and the se
ond argument is empty.Example:IFEMPTY(something)(\`something' is empty...)(\ `something' is not an empty string)In the same way, IFEMPTY
an be used to test whether an argument expands to anon-empty string. A more elaborate example follows below. Say you want to de�nea bookref ma
ro to typeset information about an author, a book title and aboutthe publisher. The publisher information may be absent, the ma
ro then typesetsunknown:\ DEFINEMACRO(bookref)(3)(\Author(s): ARG1Title: ARG2Published by: \ 52

IFEMPTY(ARG3)(\ Unknown\)(\ ARG3\))Using the ma
ro, as in:\ bookref(Helmut Leonhardt)(Histologie, Zytologie und Mi
roanatomie des Mens
hen)()would now result in the text Unknown behind the Published by: line.Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.28 IFEQUALIFEQUAL expe
ts four argument lists. It tests whether its �rst argument is equal toits se
ond argument. If so, the third parameter list is evaluated, else, the fourthparameter list is evaluated. All four argument lists must be present, though all
anbe empty lists.The �rst two arguments of IFEQUAL should be integral numeri
al arguments. Inorder to determine whether the �rst two arguments are equal, their values aredetermined:
• If the argument starts with an integral numeri
al value, that value is the valueof the argument.
• If the argument is the name of a
ounter, the
ounter's value is the value ofthe argument
• If the values of the �rst two arguments van be determined a

ordingly, theirequality will determine whether the true list (when the values are equal) orthe false list (when the values are unequal) will be evaluated.
• Otherwise, IFEQUAL will evaluate the false list.Example:IFEQUAL(0)()(\0 and an empty string are equal53

)(\ 0 and an empty string are not equal)Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.29 IFGREATERIFGREATER expe
ts four argument lists. It tests whether its �rst argument is greaterto its se
ond argument. If so, the third parameter list is evaluated, else, the fourthparameter list is evaluated. All four argument lists must be present, though all
anbe empty lists.The �rst two arguments of IFGREATER should be integral numeri
al arguments.In order to determine whether the �rst two arguments are equal, their values aredetermined:
• If the argument starts with an integral numeri
al value, that value is the valueof the argument.
• If the argument is the name of a
ounter, the
ounter's value is the value ofthe argument
• If the values of the �rst two arguments van be determined a

ordingly, theirorder relation will determine whether the true list (when the �rst value isgreater than the se
ond value) or the false list (when the �rst value is smalleror equal than the se
ond value) will be evaluated.
• Otherwise, IFGREATER will evaluate the false list.Example:IFGREATER(
ounter)(5)(\
ounter ex
eeds the value 5)(\
ounter does not ex
eeds the value 5, or
ounter is no Yodl-
ounter.)Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.30 IFMACROThe IFMACRO fun
tion tests whether its �rst argument is the name of a ma
ro. Ifthe name is the name of a ma
ro, the se
ond parameter list is evaluated, else, the54

third parameter list is evaluated. All three parameter lists (the name, the true listand the false list) must be present; though the true list and/or the false list may beempty parameter lists.Example:IFMACRO(nested)(\`nested' is the name of a ma
ro)(\ There is no ma
ro named `nested')Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.31 IFSMALLERIFSMALLER expe
ts four argument lists. It tests whether its �rst argument is smallerto its se
ond argument. If so, the third parameter list is evaluated, else, the fourthparameter list is evaluated. All four argument lists must be present, though all
anbe empty lists.The �rst two arguments of IFSMALLER should be integral numeri
al arguments.In order to determine whether the �rst two arguments are equal, their values aredetermined:
• If the argument starts with an integral numeri
al value, that value is the valueof the argument.
• If the argument is the name of a
ounter, the
ounter's value is the value ofthe argument
• If the values of the �rst two arguments van be determined a

ordingly, theirorder relation will determine whether the true list (when the �rst value issmaller than the se
ond value) or the false list (when the �rst value is greaterthan or equal to the se
ond value) will be evaluated.
• Otherwise, IFSMALLER will evaluate the false list.Example:IFSMALLER(
ounter)(5)(\
ounter is smaller than the value 5, or
ounter is no Yodl-
ounter)(\
ounter ex
eeds the value 5) 55

Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.32 IFSTREQUALIFSTREQUAL tests for the equality of two strings. It expe
ts four arguments: twostrings to mat
h, a true list and a false list. The true list is only evaluated whenthe
ontents of the two string arguments exa
tly mat
h.The �rst two arguments of IFSTREQUAL are partially evaluated:
• If the argument is the name of a symbol, the symbol's value is the value ofthe argument
• Otherwise, the argument itself is used.In the degenerate
ase where the string to be
ompared is a
tually the name of aSYMBOL, use a temporary SYMBOL variable
ontaining the name of that symbol, and
ompare it to whatever you want to
ompare it with. Alternatively, write a blankspa
e behind the arguments, sin
e the arguments are then interpreted `as is'. Inpra
ti
e, the need for these
onstru
tions seem to arise seldomly, however.Example:IFSTREQUAL(MYSYMBOL)(Hello world)(The symbol `MYSYMBOL' holds the value `Hello world')(The symbol `MYSYMBOL' doesn't hold the value `Hello world')3.1.33 IFSTRSUBIFSTRSUB tests whether a string is a sub-string of another string. It a
ts similar toIFSTREQUAL, but it tests whether the se
ond string is part of the �rst one.The �rst two arguments of IFSTREQULA are partially evaluated:
• If the argument is the name of a symbol, the symbol's value is the value ofthe argument
• Otherwise, the argument itself is used.In the degenerate
ase where the string to be
ompared is a
tually the name of aSYMBOL, use a temporary SYMBOL variable
ontaining the name of that symbol, and
ompare it to whatever you want to
ompare it with. Alternatively, write a blankspa
e behind the arguments, sin
e the arguments are then interpreted `as is'. Inpra
ti
e, the need for these
onstru
tions seem to arise seldomly, however.56

Example:IFSTRSUB(haysta
k)(needle)(`needle' was found in `haysta
k')(`needle' was not found in `haysta
k')Note that both `haysta
k' and `needle' may be the names of symbols. If they are,their
ontents are is
ompared, rather than the literal names `haysta
k' and `needle'3.1.34 IFSYMBOLThe IFSYMBOL fun
tion tests whether its �rst argument is the name of a symbol. Ifit is the name of a symbol, the se
ond parameter list is evaluated, else, the thirdparameter list is evaluated. All three parameter lists (the name, the true list andthe false list) must be present; though the true list and/or the false list may beempty parameter lists.Example:IFSYMBOL(nested)(\`nested' is the name of a symbol)(\ There is no symbol named `nested')Please note the preferred layout: The �rst argument immediately follows the fun
-tion name, then the se
ond argument (the true list) is indented, as is the falselist. The layout
losely follows the preferred layout of if-else statements of manyprogramming languages.3.1.35 IFZEROIFZERO expe
ts three parameter lists. The �rst argument de�nes whether the wholefun
tion expands to the true list or to the false list.The �rst argument of IFZERO should be an integral numeri
al value. Its value isdetermined as follows:
• If the argument starts with an integral numeri
al value, that value is the valueof the argument.
• If the argument is the name of a
ounter, the
ounter's value is the value ofthe argument
• Otherwise, IFZERO will evaluate the false list.57

Note that, starting with Yodl version 2.00 the �rst argument is not evaluated anyfurther. So, COUNTERVALUE(some
ounter) will always be evaluated as 0. If thevalue of a
ounter is required, simply provide its name as the �rst argument of theIFZERO fun
tion.Example:DEFINEMACRO(environment)(2)(\IFZERO(ARG2)(\NOEXPAND(\end{ARG1})\)(\ NOEXPAND(\begin{ARG1})\)\)Su
h a ma
ro may be used as follows:environment(
enter)(1)Now
omes
entered text.environment(
enter)(0)whi
h would of
ourse lead to \begin and \end{
enter}. The numeri
 se
ondargument is used here as a on/o� swit
h.3.1.36 INCLUDEFILEINCLUDEFILE takes one argument, a �lename. The �le is pro
essed by Yodl. If a �leshould be inserted without pro
essing the builtin fun
tion NOEXPANDINCLUDE3.1.42 or NOEXPANDPATHINCLUDE 3.1.43 should be used.The yodl program supplies, when ne
essary, an extension to the �lename. Thesupplied extension is .yo, unless de�ned otherwise during the
ompilation of theprogram.Furthermore, Yodl tries to lo
ate the �le in the Yodl's in
lude path (whi
h may beset using the �in
lude option). The a
tual value of the in
lude path is shown inthe usage information, displayed when Yodl is started without arguments.Example:INCLUDEFILE(latex)will try to in
lude the �le latex or latex.yo from the
urrent in
lude parth. Whenthe �le is not found, Yodl aborts. 58

3.1.37 INCLUDELIT, INCLUDELITERALINCLUDELIT and INCLUDELITERAL are obsolete. NOEXPANDINCLUDE 3.1.42 orNOEXPANDPATHINCLUDE 3.1.43 should be used instead.3.1.38 INCWSLEVELINCWSLEVEL requires one (empty) parameter list. It in
reases the
urrent white-spa
e level. The white-spa
e level typi
ally is used in �les that only de�ne Yodlma
ros. When no output should be generated while pro
essing these �les, the white-spa
e level
an be used to
he
k for this. If the white-spa
e level ex
eeds zero, awarning will be generated if the �le produ
es non-whitespa
e output. The builtinfun
tion DECWSLEVEL is used to redu
e the whitespa
e level following a previous
allof INCWSLEVEL.On
e the white spa
e level ex
eeds zero, no output will be generated. White spa
e,therefore will e�e
tively be ignored. The white spa
e level
annot be redu
ed tonegative values. A warning is issued if that would have happened if it were allowed.Example:INCWSLEVEL()DEFINESYMBOL(....)DEFINEMACRO(...)(...)(...)DECWSLEVEL()Without the INCWSLEVEL and DECWSLEVEL,
alls, the above de�nition would generatefour empty lines to the output stream.The INCWSLEVEL and DECWSLEVEL
alls may be nested. The best approa
h is toput an INCWSLEVEL at the �rst line of a ma
ro-de�ning Yodl-�le, and a mat
hingDECWSLEVEL
all at the very last line.3.1.39 INTERNALINDEXINTERNALINDEX expe
ts one argument list. The argument list is evaluated andwritten to the index �le.The index �le is de�ned sin
e Yodl version 2.00, and
ontains the �xup informationwhi
h was previously written to Yodl's output as the .tt(Yodl)TAGSTART.tt(Yodl)TAGEND. sequen
e.The index �le allows for greated pro
essing speed, at the expense of an additional�le. The asso
iated yodlpost postpro
essing program will read and pro
ess theindex �le, and will �xup the
orresponding yodl-output a

ordingly.The index �le is not
reated when output is written to the standard output name,sin
e Yodl is unable to request the system for the
urrent �le o�set.The entries of the index �le always �t on one line. INTERNALINDEXwill alter newline
hara
ters in its argument into single blank spa
es. Ea
h line starts with the
urrent59

o�set of Yodl's output �le, thus indi
ating the exa
t lo
ation where a �xup isrequested. An example of a produ
ed �xup line
ould be3004 ref MACROPACKAGEindi
ating that at o�set 3004 in the produ
ed output �le a referen
e to the labelMACROPACKAGE is requested. Assuming a html
onversion, The postpro
essor willthereupon write something like4.3.2.into the a
tual output �le while pro
essing Yodl's output up to o�set lo
ation 3004.Consequently, produ
ing Yodl-output normally
onsists of two steps:
• First, Yodl itself is started, produ
ing, e.g., out.idx (the index �le) andout.yodl (Yodl's raw output).
• Then, Yodl's post-pro
essor pro
esses out.idx and out.yodl, produ
ing oneor more �nal output �les, in whi
h the elements of the index �le have beenproperly handled. This may result in multiple output �le, like report.html,report01.html, report02.html et
.3.1.40 NEWCOUNTERNEWCOUNTER is obsolete. DEFINECOUNTER 3.1.10 should be used instead.3.1.41 NOEXPANDNOEXPAND is used to send text to the �nal output �le without being expanded byYodl (the other methods are the CHAR ma
ro, see se
tion 3.1.4, and the NOTRANSma
ro, see se
tion 3.1.44). NOEXPAND takes one parameter list, the text in question.Whatever o

urs in the argument is not subje
t to parsing or expansion by Yodl,but is simply
opied to the output �le (ex
ept for CHAR fun
tions in the argument,whi
h are expanded. If CHAR-expansion is not required either NOTRANS 3.1.44
an be used).Furthermore, the
ontents of the parameter list are also subje
t to
hara
ter tabletranslations, using the
urrently a
tive table. This should
ome as no surprise.Ignoring
hara
ter tables would make both the pro
essing of CHAR
alls and theNOTRANS fun
tion super�uous.So, the following situations are re
ognized:

60

support
hartablesand CHARMa
ro expansion yes noYes (standard) Push
hartable(standard)Pop
hartableNo NOEXPAND NOTRANSE.g., let's assume that you need to write in your do
ument the following text:INCLUDEFILE(something or the other)IFDEF(onething)(...)(....)NOEXPAND(whatever)The way to a

omplish this is by pre�xing the text by NOEXPAND followed by anopen parenthesis, and by post�xing it by a
losing parenthesis. Otherwise, the textwould be expanded by Yodl while pro
essing it (and would lead to syntax errors,sin
e the text isn't
orre
t in the sen
e of the Yodl language).For this fun
tion, keep the following
aveats in mind:
• There is only one thing that a NOEXPAND
annot prote
t from expansion: anARGx in a ma
ro de�nition. The argument spe
i�er is always pro
essed. E.g.,afterDEFINEMACRO(thatsit)(1)(That is --> NOEXPAND(ARG1) <-- it!)thatsit(after all)the ARG1 inside the NOEXPAND statement is repla
ed with after all.
• The NOEXPAND fun
tion must, as all fun
tions, be followed by a parameter list.The parentheses of the list must therefore be `balan
ed'. For unbalan
ed lists,use CHAR(40) to set an open parenthesis, or CHAR(41) to typeset a
losingparenthesis.3.1.42 NOEXPANDINCLUDENOEXPANDINCLUDE takes one argument, a �lename. The �le is in
luded.The �lename is uses `as is'. The in
lude path is not used when lo
ating this �le.The argument to NOEXPANDINCLUDE is partially evaluated:61

• If the argument is the name of a symbol, the symbol's value is the value ofthe argument
• Otherwise, the argument itself is used.The thus obtained �le name is not further evaluated: in parti
ular, it will not besubje
t to
hara
ter translations.The
ontents of the �le are in
luded literally, not subje
t to ma
ro expansion.Chara
ter translations are performed, though. If
hara
ter translations are not ap-propriate, PUSHCHARTABLE
an be used to suppress
hara
ter table translationstemporarily.The purpose of NOEXPANDINCLUDE is to in
lude sour
e
ode literally in thedo
ument, as in:NOEXPANDINCLUDE(literal.
)The fun
tion NOEXPANDPATHINCLUDE
an be used to insert a �le whi
h islo
ated in one of the dire
tories spe
i�ed in Yodl's in
lude path.3.1.43 NOEXPANDPATHINCLUDENOEXPANDPATHINCLUDE takes one argument, a �lename. The �le is in
luded. The�le is sear
hed for in the dire
tories spe
i�ed in Yodl's in
ludepath.The argument to NOEXPANDPATHINCLUDE is partially evaluated:
• If the argument is the name of a symbol, the symbol's value is the value ofthe argument
• Otherwise, the argument itself is used.The thus obtained �le name is not further evaluated: in parti
ular, it will not besubje
t to
hara
ter translations.Like the NOEXPANDINCLUDE fun
tion, the
ontents of the �le are in
luded literally,not subje
t to ma
ro expansion. Chara
ter translations are performed, though. If
hara
ter translations are not appropriate, PUSHCHARTABLE 3.1.56
an be usedto suppress
hara
ter table translations temporarily.The purpose of NOEXPANDPATHINCLUDE is to in
lude sour
e
ode as de�nedin a ma
ro pa
kage literally into the do
ument, as in:NOEXPANDPATHINCLUDE(rug-menubegin.xml)

62

3.1.44 NOTRANSNOTRANS
opies its one argument literally to the output �le, without expandingma
ros in it and without translating the
hara
ters with the
urrent translationtable. The NOTRANS fun
tion is typi
ally used to send
ommands for the outputformat to the output �le.For example,
onsider the following
ode fragment:COMMENT(--- Define
hara
ter translations for \, { and } in LaTeX. ---)DEFINECHARTABLE(standard)('\\' = "$\\ba
kslash$"'{' = "\\verb+{+"'}' = "\\verb+}+")COMMENT(--- A
tivate the translation table. ---)USECHARTABLE(standard)COMMENT(--- Now two tests: ---)NOEXPAND(\input{epsf.tex})NOTRANS(\input{epsf.tex})NOEXPAND will send$\ba
kslash$input\verb+{+epsf.tex\verb+}+sin
e the
hara
ters in its argument are translated with the standard translationtable. In
ontrast, NOTRANS will send \input{epsf.tex}.The parameter list of NOTRANS must be balan
ed with respe
t to its parentheses.When using an unbalan
ed set of parentheses, use CHAR(40) to send a literal (, orCHAR(41) to send a).The NOEXPAND des
ription summarizes all
ombinations of
hara
ter translationsand/or ma
ro expansion, and how they are handled and realized by Yodl.3.1.45 NOUSERMACRONOUSERMACRO
ontrols yodl's warnings in the following way: When Yodl is startedwith the -w �ag on the
ommand line, then warnings are generated when Yodlen
ounters a possible ma
ro name, followed by a parameter list, without �nding ama
ro by that name. Yodl then prints something like
annot expand possibleuser ma
ro.Examples of su
h sequen
es are, The ne
essary file(s) are in /usr/lo
al/lib/yodl,or see the manual page for sed(1). The
andidate ma
ros are file and sed;63

these names
ould just as well be `valid' user ma
ros followed by their parameterlist.When a
orresponding NOUSERMACRO statement appears before yodl en
ounters the
andidate ma
ros, no warning is generated. A fragment might therefore be:NOUSERMACRO(file sed)The ne
essary file(s) are in ...See the manual page for sed(1).The NOUSERMACRO a

epts one or more names in its argument, separated by whitespa
e,
ommas,
olons, or semi-
olons.3.1.46 OUTBASEOUTBASE inserts the
urrent basename of the output �le into the output �le. Thebasename is the name of the �le of whi
h the dire
tory
omponents and extensionwere stripped.If the output �le is the standard output �le, - is inserted.3.1.47 OUTDIROUTDIR inserts the
urrent path name of the output �le into the output �le. Thepath name is a, not ne
essarily absolute, designator of the dire
tory in whi
h theoutput �le is lo
ated. If the output �le is indi
ated as, e.g., -o out, then OUTDIRsimply inserts a dot.If the output �le is the standard output �le, a dot is inserted too.3.1.48 OUTFILENAMEOUTFILENAME inserts the
urrent �lename of the output �le into the output �le. The�lename is the name of the �le of whi
h the dire
tory
omponents were stripped.If the output �le is the standard output �le, - is inserted.3.1.49 PARAGRAPHPARAGRAPH isn't really a builtin fun
tion, but as it is handled espe
ially by Yodl,it is des
ribed here nonetheless. Starting with Yodl 2.00 PARAGRAPH operates asfollows:If the ma
ro is not de�ned, new paragraphs, de�ned as series of
onse
utive emptylines written to the output stream, are not handled di�erent from any other seriesof
hara
ters sent to the output stream. I.e., they are inserted into that stream.64

However, if the ma
ro has been de�ned, Yodl will
all it whenever a new paragraph(de�ned as a series of at least two blank lines) was re
ognized.The empty lines that were a
tually re
ognized may be obtained inside the PARAGRAPHma
ro from the XXparagraph symbol, if this symbol has been be de�ned by thattime. If de�ned, it will
ontain the white spa
e that
aused Yodl to
all thePARAGRAPH ma
ro.Note that, in order to inspe
t XXparagraph it must have been de�ned �rst. Yodlitself will not de�ne this symbol itself.The PARAGRAPH ma
ro should be de�ned as a ma
ro not expe
ting arguments. Thema
ro is thus given a
han
e to pro
ess the paragraph in a way that's �tting forthe parti
ular
onversion type. If the PARAGRAPH ma
ro produ
es series of emptylines itself, then those empty lines will not
ause Yodl to a
tivate PARAGRAPH. So,Yodl itself will not re
ursively
all PARAGRAPH, although the ma
ro
ould
all itselfre
ursively. Of
ourse, su
h re
ursive a
tiv
ation of PARAGRAPH is then the soleresponsibility of the ma
ro's author, and not Yodl's.Some do
ument languages do not need paragraph starts; e.g., LaTeX handles itsown paragraphs. Other do
ument languages do need it: typi
ally, PARAGRAPH isthen de�ned in a ma
ro �le to trigger some spe
ial a
tion. E.g., a HTML
onvertermight de�ne a paragraph as:DEFINEMACRO(PARAGRAPH)(0)(XXnl()NOTRANS(<p>))A sytem like xml has more stri
t requirements. Paragraphs here must be openedand
losed using pairs of <p> and </p> tags. In those
ases an auxiliary
ounter
an be used to indi
ate whether there is an open paragraph or not. The PARAGRAPHma
ro
ould
he
k for this as follows, assuming the availability of a
ounter XXp:DEFINEMACRO(PARAGRAPH)(0)(XXnl()IFZERO(XXp)()(NOTRANS(</p>))NOTRANS(<p>)SETCOUNTER(XXp)(1))Note that the above fragment exempli�es an approa
h, not ne
essarily the imple-mentation of the PARAGRAPH ma
ro for an xml-
onvertor.
65

3.1.50 PIPETHROUGHThe builtin fun
tion PIPETHROUGH is, besides SYSTEM, the se
ond fun
tion withwhi
h a Yodl do
ument
an a�e
t its environment. Therefore, the danger of `livedata' exists whi
h is also des
ribed in the se
tion about SYSTEM (see se
tion 3.1.67).Nevertheless, PIPETHROUGH
an be very useful. It is intended to use external pro-grams to a

omplish spe
ial features. The idea is that an external
ommand isstarted, to whi
h a blo
k of text from within a Yodl do
ument is `piped'. Theoutput of that
hild program is piped ba
k into the Yodl do
ument; hen
e, a blo
kof text is `piped through' an external program. Whatever is re
eived again in theYodl run, is further pro
essed.The PIPETHROUGH fun
tion takes two arguments:
• the
ommand to run, and
• the text to send to that
ommand.Fun
tionally, the o

urren
e of the PIPETHROUGH fun
tion and of its two argumentsis repla
ed by whatever the
hild program produ
es on its standard output.An example might be the in
lusion of the
urrent date, as in:The
urrent date is:PIPETHROUGH(date)()In this example the
ommand is date and the text to send to that program is empty.The main purpose of this fun
tion is to provide a way by whi
h external programs
an be used to
reate, e.g., tables or �gures for a given output format. Furtherreleases of Yodl may
ontain su
h dedi
ated programs for the output formats.3.1.51 POPCHARTABLEChara
ter tables whi
h are pushed onto the table sta
k using PUSHCHARTABLE()are restored (popped) using POPCHARTABLE(). For a des
ription of this me
hanismplease refer to se
tion 2.3.3.3.1.52 POPCOUNTERPOPCOUNTER is used to remove the topmost
ounter from the
ounter sta
k. Thevalues of
ounters may be pushed on a sta
k using PUSHCOUNTER 3.1.57. To re-move the topmost element of a
ounter's sta
k POPCOUNTER is available. POPCOUNTERexpe
ts one argument: the name of the
ounter to pop. The previously pushed valuethen be
omes the new value of the
ounter. A
ounter's value may be popped afterde�ning it, whereafter the sta
k will be empty, but the
ounter will still be de�ned.In that
ase, using the
ounter's value is
onsidered an error.Examples: 66

DEFINECOUNTER(YEAR)(1950)POPCOUNTER(YEAR)COMMENT(YEAR now has an undefined value)See also se
tion 2.5.3.1.53 POPMACROPOPMACRO is used to remove the a
tual ma
ro de�nition, restoring a previouslypushed de�nition. The values of ma
ros may be pushed on a sta
k using PUSHMACRO.To remove the topmost element of a ma
ro's sta
k POPMACRO is available. POPMACROexpe
ts one argument: the name of the ma
ro to pop. The previously pushed valuethen be
omes the new value of the ma
ro.A ma
ro's value may be popped after de�ning it, whereafter the sta
k will be empty,but the ma
ro will still be de�ned. In that
ase, using the ma
ro is
onsidered anerror.Example:DEFINEMACRO(Hello)(1)(Hello, ARG1, this is a ma
ro definition)Hello(Karel)PUSHMACRO(Hello)(1)(Hello, ARG1, this is the new definition)Hello(Karel)POPMACRO(Hello)Hello(Karel)COMMENT(The third a
tivation of Hello() produ
es the same outputas the first a
tivation)3.1.54 POPSYMBOLPOPSYMBOL is used to remove the topmost symbol from the symbol sta
k. The valuesof symbols may be pushed on a sta
k using PUSHSYMBOL 3.1.59. To remove thetopmost element of a symbol's sta
k POPSYMBOL is available.POPSYMBOL expe
ts one argument: the name of the symbol to pop. The previouslypushed value then be
omes the new value of the symbol. A symbol's value may bepopped after de�ning it, whereafter the sta
k will be empty, but the symbol willstill be de�ned. In that
ase, using the symbol's value is
onsidered an error.Example:DEFINESYMBOL(YEAR)(This happened in 1950)POPSYMBOL(YEAR)COMMENT(YEAR now has an undefined value)67

3.1.55 POPWSLEVELPOPWSLEVEL is used to remove the topmost wslevel from the wslevel sta
k. Thevalues of wslevels may be pushed on a sta
k using PUSHWSLEVEL 3.1.60. Seealso se
tion DECWSLEVEL 3.1.8To remove the topmost element of a wslevel's sta
k POPWSLEVEL is available. POPWSLEVELexpe
ts one argument: the name of the wslevel to pop. The previously pushed valuethen be
omes the new value of the wslevel. A wslevel's value may be popped afterde�ning it, whereafter the sta
k will be empty, but the wslevel will still be de�ned.In that
ase, using the wslevel's value is
onsidered an error.Example:COMMENT(Assume WS level is zero)PUSHWSLEVEL(1)COMMENT(WS level now equals 1)POPWSLEVEL()COMMENT(WS level now equals 0 again)3.1.56 PUSHCHARTABLEOn
e a
hara
ter table has been de�ned, it
an be pushed onto a sta
k usingPUSHCHARTABLE. The pushed
hartable may be popped later. PUSHCHARTABLE isdes
ribed in more detail in se
tion 2.3.3.3.1.57 PUSHCOUNTERPUSHCOUNTER is used to start another lifetime for a
ounter, pushing its
urrentvalue on a sta
k. A sta
k is available for ea
h individual
ounter.PUSHCOUNTER expe
ts two arguments: the name of the
ounter to push and its newvalue after pushing. When the se
ond argument is an empty parameter list, thenew value will be zero. The new value may be spe
i�ed as a numeri
al value, or asthe name of an existing
ounter. Spe
ify the name of the
ounter twi
e to merelypush its value, without modifying its
urrent value.Examples:DEFINECOUNTER(YEAR)(1950)PUSHCOUNTER(YEAR)(1962)COMMENT(YEAR now has the value 1962, and a pushed value of 1950)See also se
tion 2.5. 68

3.1.58 PUSHMACROPUSHMACRO is used to start another lifetime for a ma
ro, pushing its
urrent de�ni-tion on a sta
k. A sta
k is available for ea
h individual ma
ro.PUSHMACRO expe
ts three arguments: the name of the ma
ro to push, the number ofits arguments after pushing (whi
h may be di�erent from the number of argumentsinterpreted by the pushed ma
ro) and its new de�nition.So, PUSHMACRO is used exa
tly like DEFINEMACRO, but will rede�ne a
urrent ma
ro(or de�ne a new ma
ro if no ma
ro was de�ned by the name spe
i�ed as its �rstargument.Example:DEFINEMACRO(Hello)(1)(Hello, ARG1, this is a ma
ro definition)Hello(Karel)PUSHMACRO(Hello)(1)(Hello, ARG1, this is the new definition)Hello(Karel)POPMACRO(Hello)Hello(Karel)COMMENT(The third a
tivation of Hello() produ
es the same outputas the first a
tivation)3.1.59 PUSHSYMBOLPUSHSYMBOL is used to start another lifetime for a symbol, pushing its
urrent valueon a sta
k. A sta
k is available for ea
h individual symbol.PUSHSYMBOL expe
ts two arguments: the name of the symbol to push and its newvalue after pushing. When the se
ond argument is an empty parameter list, thenew value will be zero. The new value may be spe
i�ed as a numeri
al value, or asthe name of an existing symbol. Spe
ify the name of the symbol twi
e to merelypush its value, without modifying its
urrent value.Examples:DEFINESYMBOL(YEAR)(This happened in 1950)PUSHSYMBOL(YEAR)(This happended in 1962)COMMENT(YEAR now has the value `This happended in 1962' and apushed value of `This happened in 1950')3.1.60 PUSHWSLEVELPUSHWSLEVEL is used to start another lifetime of the white-spa
e level pushing thelevel's
urrent value on a sta
k. See also se
tion INCWSLEVEL 3.1.38PUSHWSLEVEL expe
ts one argument, the new value of the white-spa
e level. This69

value may be spe
i�ed as a numeri
al value or as the name of a
ounter. Theargument may be empty, in whi
h the new value will be zero.Example:COMMENT(Assume WS level is zero)PUSHWSLEVEL(1)COMMENT(WS level now equals 1)POPWSLEVEL()COMMENT(WS level now equals 0 again)3.1.61 RENAMEMACRORENAMEMACRO takes two arguments: the name of a built-in ma
ro (su
h as INCLUDEFILE)and its new name.E.g., afterRENAMEMACRO(INCLUDEFILE)(in
lude)a �le must be in
luded by in
lude(file). INCLUDEFILE
an no longer be usedfor this: following the RENAMEMACRO a
tion, the old name
an no longer be used; itbe
omes an unde�ned symbol.If you want to make an alias for a built-in
ommand, do it with DEFINEMACRO. E.g.,after:DEFINEMACRO(in
lude)(1)(INCLUDEFILE(ARG1))both INCLUDEFILE and in
lude
an be used to in
lude a �le.3.1.62 SETCOUNTERSETCOUNTER expe
ts two parameter lists: the name of a
ounter, and a numeri
value or the name of another
ounter.The
orresponding
ounter (whi
h must be previously
reated with NEWCOUNTER) isset to, respe
tively, the numeri
 value or the value of the other
ounter.See also se
tion 2.5.
70

3.1.63 SETSYMBOLSETSYMBOL expe
ts two parameter lists: the name of a symbol, and the text toassign to the named symbol.3.1.64 STARTDEFSTARTDEF is obsolete. Instead, INCWSLEVEL 3.1.38 should be used.3.1.65 SUBSTSUBST is a general-purpose substitution me
hanism for strings in the input. SUBSTtakes two arguments: a sear
h string and a substitution string. E.g., afterSUBST(VERSION)(1.00)Yodl will transorm all o

urren
es of VERSION in its input into 1.00.SUBST is also useful in situations where multi-
hara
ter sequen
es should be
on-verted to a

ent
hara
ters. E.g., a LATEX
onverter might de�ne:SUBST('e)(NOTRANS(\'{e}))Ea
h 'e in the input will then be
onverted to +latex
ommand(\'{e}).SUBST may be useed in
ombination with the
ommand line �ag -P, as in a invo
a-tion yodl2html -P'SUBST(VERSION)(1.00)' myfile.yoAnother useful substitution might be:SUBST(_OP_)(CHAR(40))SUBST(_CP_)(CHAR(41))whi
h de�nes an opening parenthesis (_OP_) and a
losing parenthesis (_CP_) asmapped to the CHAR fun
tion. The strings _OP_ and _CP_ might then be used toprodu
e unbalan
ed parameter lists.Note that:
• The �rst argument of the SUBST
ommand, the sear
h string, is taken literally.Yodl does not expand it; the string must be literally mat
hed in the input.71

• The se
ond argument, the repla
ement, is further pro
essed by Yodl. Prote
tthis text by NOTRANS or NOEXPAND where appropriate.Substitutions o

ur extremely early while Yodl pro
esses its input �les. In order topro
esss its input �les, Yodl takes the following basi
 steps:1. It requests input from its lexi
al s
anner (so-
alled tokens)2. Its parser pro
esses the tokens produ
ed by the lexi
al s
anner3. Its parser may send text to an output `obje
t', whi
h will eventually appearin the output �le generated by Yodl.Yodl will perform all ma
ro substitutions in step 2, and all
hara
ter table
onver-sions in step 3. However, the lexi
al s
anner has a

ess to the SUBST de�nitions: assoon as its lexi
al analyzer dete
ts a series of
hara
ters mat
hing the de�ning se-quen
e of a SUBST de�nition, it will repla
e that de�ning sequen
e by its de�nition.That de�nition is then again read by the lexi
al s
anner. Of
ourse, this de�nitionmay, in turn,
ontain de�ning sequen
es of other SUBST de�nitions: these will thenbe repla
ed by their de�nitions as well. This implies:
• Cir
ular de�nitions may
ause the lexi
al s
anner to get stu
k in a repla
ementloop. It is the responsibility of the author de�ning SUBST de�nitions to makesure that this doesn't happen.
• Neither the parser, nor the output obje
t ever sees the SUBST de�ning
har-a
ter sequen
es: they will only see their de�nitions.3.1.66 SYMBOLVALUESYMBOLVALUE expands to the value of a symbol. Its single parameter list must
ontain the name of a symbol. The symbol must have been
reated earlier usingthe builtin DEFINESYMBOL.Example:The symbol has value SYMBOLVALUE(MYSYMBOL).3.1.67 SYSTEMSYSTEM takes one argument: a
ommand to exe
ute. The
ommand is run viathe standard C fun
tion system. The presen
e of this fun
tion in the Yodl lan-guage introdu
es the danger of live data. Imagine someone sending you a do
ument
ontainingSYSTEM(rm *) 72

To avoid su
h malevolent side e�e
ts, Yodl has a �ag -l to de�ne the `live datapoli
y'. By default, -l0 is implied whi
h suppresses the SYSTEM fun
tion and therelated PIPETHROUGH fun
tion. See also se
tion 2.3.2.Despite the potential danger, SYSTEM
an be useful in many ways. E.g., you mightwant to log when someone pro
esses your do
ument, as in:SYSTEM(e
ho Do
ument pro
essed! | mail myself�my.host)Note that SYSTEM merely performs an system-related task. It's a pro
ess that isseparated from the Yodl pro
ess itself. One of the
onsequen
es of this is thatany output generated by SYSTEM will not normally appear into Yodl's output �le.If the output of a subpro
ess should be inserted into Yodl's output �le, eitheruse PIPETHROUGH 3.1.50, or insert a temporary �le as shown in the followingexample:SYSTEM(date > datefile)The
urrent date is:INCLUDEFILE(datefile)SYSTEM(rm datefile)3.1.68 TYPEOUTTYPEOUT requires one parameter list. The text of the list is sent to the standard errorstream, followed by a newline. This feature
an be handy to show, e.g., messagessu
h as version numbers in ma
ro pa
kage �les.Example: The following ma
ro in
ludes a �le and writes to the s
reen that this �leis
urrently pro
essed.DEFINEMACRO(in
ludefile)(1)(TYPEOUT(About to pro
ess do
ument: ARG1)INCLUDEFILE(ARG1))3.1.69 UNDEFINEMACROUNDEFINEMACRO is depre
ated. Use DELETEMACRO 3.1.15 instead.3.1.70 UPPERCASEUPPERCASE
onverts a string or a part of it to upper
ase. It has two arguments:
• The string to
onvert; 73

• A length, indi
ating how many
hara
ters (starting from the beginning of thestring) should be
onverted.The length indi
ator
an be smaller than one or larger than the length of the string;in that
ase, the whole string is
onvertered.Example:UPPERCASE(hello world)(1)UPPERCASE(hello world)(5)UPPERCASE(hello world)(0)This
ode sample expands to:Hello worldHELLO worldHELLO WORLD3.1.71 USECHARTABLEUSECHARTABLE takes one parameter list: the name of a translation table to a
tivate.The table must previously have been de�ned using DEFINECHARTABLE. See se
tion2.3 for a des
ription of
hara
ter translation tables.Alternatively, the name may be empty in whi
h
ase the default
hara
ter mappingis restored.3.1.72 USECOUNTERUSECOUNTER is a
ombination of ADDTOCOUNTER and COUNTERVALUE. It expe
ts oneparameter list: the name of an de�ned
ounter (see DEFINECOUNTER 3.1.10).The
ounter is �rst in
remented by 1. Then the fun
tion expands to the
ounter'svalue.See also se
tion 2.5.3.1.73 VERBOSITYVERBOSITY expe
ts two arguments, and may be used to
hange the verbosity levelinside Yodl �les. The fun
tion may be used pro�tably for debugging purposes, todebug the expansion of a ma
ro or the pro
essing of a Yodl input �le.The �rst argument indi
ates the pro
esing mode of the se
ond argument, and itmay be: 74

• Empty, in whi
h
ase the message-level is set to the value spe
i�ed in these
ond argument;
• +, in whi
h
ase the value spe
i�ed in the se
ond argument augments the
urrent message level;
• -, in whi
h
ase the value spe
i�ed in the se
ond argument augments is re-moved from the
urrent message levelThe se
ond argument spe
i�es one or more, separated by blanks, message levelnames or it may be set to a hexade
imal value (starting with 0x), using hexade
imalvalues to represent message levels. Also, NONE may be used, to spe
ify no messagelevel, or ALL
an be used to spe
ify all message levels.The following message levels are de�ned:
• ALERT (0x40). When an alert-error o

urs, Yodl terminates. Here Yodlrequests something of the system (like a get_
wd()), but the system fails.
• CRITICAL (0x20). When a
riti
al error o

urs, Yodl terminates. The mes-sage itself
an be suppressed, but exiting
an't. A
riti
al
ondition is, e.g., theomission of an open parenthesis at a lo
ation where a parameter list shouldappear, or a non-existing �le in an INCLUDEFILE spe
i�
ation (as this �leshould be parsed). A non-existing �le with a NOEXPANDINCLUDE spe
i�
ationis a plain (non-
riti
al) error.
• DEBUG (0x01). Probably too mu
h info, like getting information about ea
h
hara
ter that was read by Yodl.
• ERROR (0x10). An error (like doubly de�ned symbols). Error messages willnot stop the parsing of the input (up to a maximum number of errors), butno output is generated.
• INFO (0x02). Not as detailed as `debug', but still very mu
h info, like infor-mation about media swit
hes.
• NOTICE (0x04). Information about, e.g.,
alls to the builtin fun
tion
alls.
• WARNING (0x08). Something you should know about, but probably nota�e
ting Yodl's proper fun
tioningThere also exists a level EMERG (0x80) whi
h
annot be suppressed.The value 0x00 represents NONE, the value 0xff represents ALL.When spe
ifying multiple message levels using the hexade
imal form, their hexade
-imal values should be binary-or-ed: adding them is ok, as long as you don't spe
ifyALL: VERBOSITY()(0x06)COMMENT(this spe
ifies `INFO' and `NOTICE')When spe
ifying message levels by their names, the names may be trun
ated at aunique point. However, the message level names are interpreted
ase sensitively, so75

INF for INFO is re
ognized as su
h, but info for INFO isn't. The following examplesall spe
ify verbosity levels INFO and NOTICE:VERBOSITY()(I N)VERBOSITY()(N I)VERBOSITY()(NOT IN)VERBOSITY()(INFO NOTICE)3.1.74 WARNINGWARNING takes one argument: text to display as a warning. The yodl programmakessure that before showing the text, the
urrent �le and line number are printed. Otherthan this, WARNING works just as TYPEOUT (see se
tion 3.1.68).Note that an analogous fun
tion ERROR exists, whi
h prints a message and thenterminates the program (see se
tion 3.1.20).3.1.75 WRITEOUTWRITEOUT is depre
ated, use FPUTS 3.1.23 instead.

76

Chapter 4Ma
ros and Do
ument types
The ma
ro pa
kage distributed with Yodl is des
ribed in this
hapter. The ma
ropa
kage
onsists of a number of de�nition �les, whi
h
onvert a Yodl do
ument thatfollows a
ertain syntax to an output format. The main output formats,
urrentlysupported, are:

• HTML;
• LaTeX (plain LaTeX, no latex2e);
• The groff `man' format whi
h is used for man pages;
• The groff `ms' format whi
h is more expressive;
• Basi
, plain textThe following
onversion format is in an experimental stage:
• XML, as used by the University of Groningen's so-
alled `webplatform'.Currently dis
ontinued
onversion formats are:
• SGML, although the basi
 ma
ros are available. SGML
an probably berea
tivated fairly qui
kly. Conta
t the maintainer if support for SGML shouldbe reinstated
• texinfo, mainly due to the fa
t that the
urrent maintainer doesn't know whatthe required post-pro
essing a
tions are.
• tely, sin
e this
onversion format is unknown to the
urrent maintainer.Other formats may be available, but maybe in an unstable state. Conta
t the themaintainer if you have a new format to add, or want to reanimate formates thatwere previously available.

77

4.1 General stru
ture of a Yodl do
umentThis se
tion des
ribes the general format of a Yodl do
ument.First of all, a Yodl do
ument needs a preamble. This part of the do
ument must beat the top, and must de�ne the modi�ers and the do
ument type. Modi�ers, whenpresent, must appear �rst.Modi�ers are often spe
i�
 for a parti
ular target do
ument type (e.g., latexoptionsor mailto), but may also have a general nature (e.g., affiliation or abstra
t).All modi�ers are used to modify parameters of do
ument types. Therefore, theymust be spe
i�ed before the do
ument type is de�ned.All modi�ers are listed in se
tion 4.3.8. In general, you should use as many modi�ersas appropriate. E.g., you should de�ne a mailto even when you're not planningto
onvert your do
ument to HTML. The reason is twofold: �rst, you might laterde
ide that a HTML version isn't a bad idea after all. Se
ond, later versions of the
onverters might use mailto even for non-HTML output formats.Following the modi�ers, the do
ument type is de�ned. The do
ument type is eitherarti
le, report, book, plainhtml or manpage. Ex
ept for the manpage do
umenttype, whi
h is a highly spe
ialized do
ument type, des
ribed in se
tion 4.1.2, thefollowing rules apply:A de
ision about the do
ument type to use should be based on its
omplexity. Ifthe do
ument's organization be
omes too
omplex, it is probably a good idea to usea do
ument type supporting a more
omplex organization. E.g., a
omplex arti
lemight be written as an a

essible report,
ombining related se
tions into
hapters.Similarly, the stru
ture of a report having 30
hapters might improve when it's re-organized as a book having parts. To o�er a rule of thumb: a do
ument should haveno more than approximately ten top-level se
tions, and ea
h top-level se
tioningshould have no more than approximately ten subse
tions, et
..The do
ument type in�uen
es the way Yodl formats the output. An arti
le (orplainhtml) results in one output �le. E.g., one �nal do
ument when
onverting toHTML. If your arti
le is way too long, then the loading of the HTML do
umentwill also take mu
h time. When
onverting to HTML, Yodl splits reports andbooks into �les ea
h holding a
hapter. These
an be a

essed through the tableof
ontents. So, the do
ument length
an also be relevant when you
ontemplateswit
hing to a report or book.Do
uments using spe
ial ma
ros, must have de�ned these ma
ros before they areused. An appropriate lo
ation for these ma
ros is immediately beyond the pream-ble. E.g., see the �le Do
umentation/manual/manual.yo distributed with the Yodlpa
kage. This is the main �le of this manual, showing the preferred organization ofYodl �les.To answer yes-but-what-if oriented minds, here are two results of the wrong orderof text, preamble and modi�ers:
• If you put text before the preamble, i.e., before stating the do
ument type,
han
es are that Yodl will happily translate the �le, but subsequent states willprobably fail. E.g., the <html> tag would
ome too late in a HTML
onversion,
ausing the HTML browser to be
ome
onfused. Or, the \do
umentstylede�nition would be seen too late by the LaTeX typesetter.78

• If you put modi�ers, su
h as latexoptions, beyond the do
ument type, thenthe modi�ers will have no e�e
t; though Yodl won't
omplain either. Thereason for this is the de�nition of su
h modi�ers will be seen following thestage where they are needed..4.1.1 Do
ument typesAs distributed, Yodl supports four do
ument types: arti
le, report, book and themanual page. Note that do
ument types have nothing in
ommon with outputformats; a book
an be
onverted to ea
h of the output formats, and a manualpage
an be
onverted to a .dvi �le. Nevertheless, some formats are parti
ularlyusefule for some do
ument types. A book
onverted to the man output format to bepro
essed later with groff won't look too good. Its looks would greatly improvewhen the do
ument would be
onverted to ASCII using the ms output format.Following the preamble and the de�nition of spe
ialized ma
ros symbols and
oun-ters, do
uments start by spe
ifying the do
ument type. The available ma
ros are:
• arti
le(title)(author)(date): The arti
le do
ument type should beused for short do
uments. Its arguments spe
ify the do
ument's title, authorand date.In arti
les, the title page is numbered and the table of
ontents is on the titlepage. The se
tioning
ommands se
t, subse
t et
. are available.
• report(title)(author)(date): The report do
ument type di�ers from anarti
le in that it has a separate unnumbered title page, a table of
ontentson a page of its own, and it supports the se
tioning
ommand
hapter inaddition to the ones supported by arti
les. A report should be used �rlarger do
uments.
• book(title)(author)(date): The book type is for even larger do
uments.In addition to the se
tioning
ommands supported by report it supports these
tioning
ommand part.
• plainhtml(title): This do
ument type is typi
ally used in HTML output.It's implemented for situations where you only need to
reate a HTML �le,but want to use Yodl to help you by providing useful ma
ros. This do
umenttype is similar to arti
le, but does not require you to spe
ify author anddate arguments (In fa
t, you
an emulate plainhtml by using an arti
le,using empty author and date arguments).
• manpage(title)(se
tion)(date)(sour
e)(manual): The manpage do
u-ment type should only be used to write Unix-style manual pages. It usesits own se
tioning
ommands to re�e
t the ne
essary se
tions in a manualpage. This do
ument format is des
ribed separately in 4.1.2.These ma
ros provide, globally, three fun
tions: First, the ma
ros generate any
ommands that need to appear before `real' text is sent to the output �le. E.g.,the LaTeX output needs a \do
umentstyle preamble, HTML output needs <html>and <body> tags.Se
ond, the ma
ros de�ne appropriate do
ument-dependent settings. E.g., the La-TeX
onverter de�nes the title, author and date using \title et
..79

Third, the a
tual do
ument is started. E.g., for LaTeX this means a \begin{type},followed by the appropriate
ommands to generate a the do
ument title and thetable of
ontents. The title setting in the above ma
ros de�nes the do
ument titlewhi
h always appears on the front page of the do
ument. For HTML output, thisis also the title of the HTML �le (or �les), as appearing in the HTML <title> tag.The fa
t that the ma
ros de�ning the do
ument type perform many fun
tions meansthat on
e the ma
ro is started, nothing `extra'
an be inserted between, e.g., thegenerated title and the table of
ontents. Sometimes this is not what you'd like;as is the
ase with an abstra
t. Yodl therefore uses modi�ers, appearing beforethe do
ument type ma
ros, to insert information between the various elements of ado
ument de�nition.4.1.2 The manpage do
ument typeThe manpage do
ument type was implemented to simplify the
onstru
tion of Unix-style manual pages. A manpage do
ument must be organized as follows:1. The manual page itself is de�ned, using the ma
romanpage(short title)(se
tion)(date)(sour
e)(manual)Its arguments are:Short title: This should be the program name or something similar; i.e.,whatever the manpage is des
ribing.Se
tion: A number, stating the manpage se
tion. The Linux man (7) pagere
ognizes the following manpage se
tions:
• Se
tion 1 is for
ommands, like ls;
• Se
tion 2 is for system
alls, like fork();
• Se
tion 3 is for library
alls, like strdup();
• Se
tion 4 is for spe
ial �les (like devi
es);
• Se
tion 5 is for �le formats, (like syslog.
onf);
• Se
tion 6 is for games;
• Se
tion 7 is for ma
ro pa
kages and
onventions;
• Se
tion 8 is for system management
ommands;
• Se
tion 9 is for other types of manpages, su
h as kernel
ommands.Date: The date of release.Sour
e: The pa
kage where the manpage belongs to.Manual: The manual to whi
h the pa
kage belongs.The arguments of the manpage ma
ro de�ne, e.g., the headers and footers ofthe manual page. The date, sour
e and manual arguments
an be empty.80

2. The subje
t of the manpage is de�ned usingmanpagename(name)(short des
ription)The name argument should be a short name (e.g., the program name), andthe short des
ription should state the fun
tion. The des
riptive argumentis used by, e.g., the whatis database.3. The synopsis starts after:manpagesynopsis()Following this, an abbreviated usage information is presented. This informa-tion should show, e.g., the possible program �ags and required arguments;but no more.4. The des
ription is given after:manpagedes
ription()This is followed by some des
riptive text. The des
riptive text
an e.g. showwhat the program (fun
tion, �le, game, et
.) is supposed to do.5. Options are expe
ted after:manpageoptions()The options are typi
ally a des
riptive list of possible �ags and their meaning.This se
tion lists the information of the synopsis, but also gives an in-depthdes
ription. The manpageoptions() se
tion is optional.6. Ne
essary �les are listed after:manpagefiles()7. The `see also' entry is de�ned by:manpageseealso()This is then followed by a list of related manual pages. Here, use the formatbf(topi
)(se
tionnr), e.g., Yodl(1).81

8. Diagnosti
s are des
ribed after:manpagediagnosti
s()Diagnosti
s
an state, e.g., what error messages are produ
ed by the programand what the
ure is.9. Known bugs should be mentioned after:manpagebugs()This se
tion is optional.10. Finally, the author is stated after:manpageauthor()The manpage do
ument type requires you to follow the above order of
ommandsstri
tly and to state all the ne
essary se
tions (and optionally, to state the notrequired se
tions but in their proper sequen
e). Furthermore, se
tioning
ommandsthat are available in other do
ument types (se
t, subse
t et
.) are not allowedin a manpage. You
an however insert other se
tions in the manual page with thema
ro manpagese
tion. This ma
ro takes one argument: the title of the extrase
tion. It is suggested that you type the se
tion name in upper
ase, to
onformto the standard.As an example, the manual page for the yodl program follows (the a
tual manualpage may di�er):manpage(yodl)(1)(1996)(The Yodl Pa
kage)(Yet oneOther Do
ument Language)manpagename(yodl)(main Yodl
onvertor)manpagesynopsis()tt(Yodl) [-DNAME℄ [-IDIR℄ [-oFILE℄ [-PCMD℄ [-pPASS℄ [-t℄ [-v℄ [-w℄ [-h℄[-?℄ inputfile [inputfile...℄manpagedes
ription()This manual page des
ribes the tt(Yodl) program, the main
onverter of theYodl pa
kage. This program is used by the bf(yodl2....) shell s
ripts,e.g., bf(yodl2tex) or bf(yodl2html).manpageoptions() 82

des
ription(dit(-DNAME) Defines symbol em(NAME).dit(-IDIR) Overrules the standard in
lude dire
tory (defaultem(/usr/lo
al/lib/yodl)) with em(DIR).dit(-oFILE) Spe
ifies em(FILE) as the output file (default is stdout).dit(-PCMD) `Preloads'
ommand em(CMD), as if em(CMD) was the first lineof the input.dit(-pPASS) Defines em(PASS) as the maximum number of `passes'; when thisnumber is ex
eeded, tt(Yodl) aborts.dit(-t) Enables tra
ing mode. Useful for debugging.dit(-v) Raises the verbosity mode. Useful for debugging.dit(-w) Enables warning. When enabled, tt(Yodl) will warn when it seesin
onsisten
ies.dit(-h, -?) Shows usage information.dit(inputfile) File to pro
ess, use em(-) to instru
t tt(Yodl) to readfrom stdin.)manpagefiles()The tt(Yodl) program requires no files, but `normal' usage of the Yodl pa
kagerequires ma
ro files installed (usually in bf(/usr/lo
al/share/yodl)). Thefiles in this dire
tory are in
luded by the
onverters bf(yodl2txt) et
..manpageseealso()bf(yodl2tex), bf(yodl2html), bf(yodl2man), et
..manpagediagnosti
s()Warnings and errors of tt(Yodl) are too many to enumerate, but all errorsare printed to em(stderr) after whi
h tt(Yodl) exits with a non-zerostatus.manpagebugs()There may be bugs in the tt(Yodl) program, but that's not very likely.More likely you'll en
ounter bugs or omissions in the ma
ro pa
kageitself.manpageauthor()Karel Kubat4.2 Prede�ned ma
rosThis se
tion des
ribes all ma
ros de�ned by default. Altering or removing thesema
ros may produ
e unexpe
ted results when
onverting Yodl do
uments to otherformats. Furthermore, these ma
ros often depend on ma
ros or other symbolsde�ned for internal use.Many prede�ned ma
ros depend on symbols start with XX. Therefore, it is stronglyadvised not to start any lo
ally de�ned symbol with XX as doing so, or unde�ningexisting symbols starting with XX, may also produ
e unexpe
ted results.Here are the default ma
ros, alphabeti
ally ordered:83

4.2.1 abstra
t(text)De�nes an abstra
t for an arti
le or report do
ument. Abstra
ts are not imple-mented for books or manpages. Must appear before starting the do
ument withthe arti
le or report ma
ro.4.2.2 addntosymbol(symbol)(n)(text)Adds text n times to symbol. The value n may also be the name of a de�ned
ounter (whi
h itself will not be modi�ed).4.2.3 a�liation(site)De�nes an a�liation, to appear in the do
ument titlepage below the author �eld.Must appear before starting the do
ument with arti
le, report or book. Thea�liation is only printed when the author �eld is not empty.4.2.4 AfourEnlarged()Enlarges the usable height of A4 paper by 2
m.: the top margin is redu
ed by 2
m. This ma
ro should be
alled in the preamble. The ma
ro is available only forLATEX
onversions.4.2.5 appendix()Starts appendi
es4.2.6 arti
le(title)(author)(date)Starts an arti
le. The top-level se
tioning
ommand is (n)se
t. In HTML
onver-sions only one output �le is written.4.2.7 bf(text)Sets text in boldfa
e.4.2.8 bind(text)Generate a binding
hara
ter after text.
84

4.2.9 book(title)(author)(date)Starts a book do
ument. The top-level se
tioning
ommand is (n)
hapter, (n)partbeing optional. In HTML output �les are
reated for ea
h
hapter.4.2.10
ell(
ontents)Sets a table
ell, i.e., one element in a row. With the man/ms
onverters multipleblanks between
ell() ma
ro
alls are merged into a single blank
hara
ter.4.2.11
ells(nColumns)(
ontents)Set a table
ell over nColumns
olumns. In html, LATEX and xml formats the in-formation in the
ombined
ells will be
entered. With man/ms
onversions the
ells() ma
ro simply
alls the
ell() ma
ro, but here the setmanalign()ma
ro
an be used to determine the alignment of multiple
ells.4.2.12
enter(text)Sets text
entered, when the output format permits. Use nl() in the text to breaklines.4.2.13
hapter(title)Starts a new
hapter in books or reports.4.2.14
index()Generate an index entry for index
.4.2.15
ite(1)Sets a
itation or quotation4.2.16
learpage()Starts a new page, when the output format permits. Under HTML a horizontal lineis drawn.4.2.17
ode(text)Sets text in
ode font, and prevents it from being expanded. For unbalan
edparameter lists, use CHAR(40) to get (and CHAR(41) to get).85

4.2.18
olumnline(from)(to)Sets a horizontal line over some
olumns in a row. Note that
olumnline de�nesa row by itself,
onsisting of just a horizontal line spanning some of its
olumns,rather than the table's full width, like rowline. The two arguments represent
olumn numbers. It is the responsibility of the author to make sure that the fromand to values are sensible. I.e.,1 <= from <= to <= n
olumns4.2.19 def(ma
roname)(nrofargs)(rede�nition)De�nes ma
roname as a ma
ro, having nrofargs arguments, and expanding toredefinition. This ma
ro is a shorthand for DEFINEMACRO. An error o

urs whenthe ma
ro is already de�ned. Use redef() to un
onditionally de�ne or rede�ne ama
ro.4.2.20 des
ription(list)Sets list as a des
ription list. Use dit(item) to indi
ate items in the list.4.2.21 dit(itemname)Starts an item named itemname in a des
riptive list. The list is either en
losed bystartdit() and enddit(), or is an argument to des
ription().4.2.22 eit()Indi
ates an item in an enumerated list. The eit() ma
ro should be an argumentin enumerate().4.2.23 ellipsis()Sets ellipsis (...).4.2.24 em(text)Sets text as emphasized, usually itali
s.4.2.25 email(address)In HTML, this ma
ro sets the address in a lo
ator. Inother output formats, the address is sent to the output. The email ma
ro is a86

spe
ial
ase of url.4.2.26 end
enter()DEPRECATED. Use
enter().4.2.27 enddit()DEPRECATED. Use des
ription().4.2.28 endeit()DEPRECATED. Use enumeration().4.2.29 endit()DEPRECATED. Use itemization().4.2.30 endmenu()DEPRECATED. Use menu().4.2.31 endtable()DEPRECATED. Use table().4.2.32 enumerate(list)DEPRECATED. Use enumeration().4.2.33 enumeration(list)enumeration() starts an enumerated list. Use eit() in the list to indi
ate itemsin the list.4.2.34 euro()Sets the euro
urren
y symbol in latex, html, (and possibly sgml and xml). In allother
onversions EUR whi
h is the o�
ial textual abbreviation (
f. http://e
.europa.eu/euro/entry.html)is written. Note that LATEX may require latexpa
kage()(eurosym).87

4.2.35 �g(label)This ma
ro is a shorthand for figure ref(label) and just makes the typingshorter, as in see fig(s
hemati
) for .. See getfigurestring()and setfigurestring()for the figure text.4.2.36 �gure(�le)(
aption)(label)Sets the pi
ture in file as a �gure in the
urrent do
ument, using the des
riptivetext
aption. The label is de�ned as a pla
eholder for the �gure number and
an be used in a
orresponding ref statement. Note that the file must be the�lename without extension: By default, Yodl will supply .gif when in HTMLmode, or .ps when in LaTeX mode. Figures in other modes may not (yet) havenbeen implemented.4.2.37 �le(text)Sets text as �lename, usually boldfa
e.4.2.38 �ndex()Generate an index entry for index f.4.2.39 footnote(text)Sets text as a footnote, or in parentheses when the output format does not allowfootnotes.4.2.40 gagma
rowarning(name name ...)Prevents the yodl program from printing
annot expand possible user ma
ro. E.g.,if you have in your do
ument the file(s) are .. then you might want to putbefore that: gagma
rowarning(file). Calls NOUSERMACRO.4.2.41 geta�lstring()Expands to the string that de�nes the name of A�liation Information, by defaultAFFILIATION INFORMATION. Can be rede�ned for national language supportby setaffilstring(). Currently, it is relevant only for txt.4.2.42 getauthorstring()Expands to the string that de�nes the name of Author Information, by defaultAUTHOR INFORMATION. Can be rede�ned for national language support bysetauthorstring(). Currently, it is relevant only for txt.88

4.2.43 get
hapterstring()Expands to the string that de�nes a `
hapter' entry, by default Chapter. Can berede�ned for national language support by set
hapterstring().4.2.44 getdatestring()Expands to the string that de�nes the name of Date Information, by default DATEINFORMATION. Can be rede�ned for national language support by setdatestring().Currently, it is relevant only for txt.4.2.45 get�gurestring()Returns the string that de�nes a `�gure' text, in
aptions or in the fig() ma
ro.The string
an be rede�ned using the setfiguretext() ma
ro.4.2.46 getpartstring()Expands to the string that de�nes a `part' entry, by default Part. Can be rede�nedfor national language support by setpartstring().4.2.47 gettitlestring()Expands to the string that de�nes the name of Title Information, by default TITLEINFORMATION. Can be rede�ned for national language support by settitlestring().Currently, it is relevant only for txt.4.2.48 getto
string()Expands to the string that de�nes the name of the table of
ontents, by default Tableof Contents. Can be rede�ned for national language support by setto
string().4.2.49 htmlbodyopt(option)(value)Adds option="value" to the options of the <body ...> tag in HTML �les. Usefuloptions are, e.g., fg
olor and bg
olor, whose values are expressed as #rrggbb,where rr are two hexade
imal digits of the red
omponent, gg two hexade
imaldigits of the green
omponent, and bb two hexade
imal digits of the blue
omponent.4.2.50 html
ommand(
md)Writes
md to the output when
onverting to html. The
md is not further expandedby Yodl. 89

4.2.51 htmlheadopt(option)Adds the literal text option to the
urrent information in the head se
tion of anHTML do
ument. Option may (or: should)
ontain plain html text. A
om-monly o

urring head option is link, de�ning, e.g., a style sheet. Sin
e that op-tion is frequently used, it has re
eived a dedi
ated ma
ro: htmlstylesheet. Likehtmlbodyopt this ma
ro should be pla
ed in the do
ument's preamble.4.2.52 htmlnew�le()In HTML output, starts a new �le. All other formats are not a�e
ted. Note thatyou must take your own provisions to a

ess the new �le; say via links. Also, it's safeto start a new �le just befoore opening a new se
tion, sin
e se
tions are a

essiblefrom the
li
kable table of
ontents. The HTML
onverter normally only starts new�les prior to a
hapter de�nition.4.2.53 htmlstylesheet(url)Adds a <link rel="stylesheet" type="text/
ss" ...> element to the headse
tion of an HTML do
ument, using url in its href �eld. The argument urlis not expanded, and should be plain HTML text, without surrounding quotes.The ma
ro htmlheadopt
an also be used to put information in the head-se
tionof an HTML do
ument, but htmlheadopt is of a mu
h more general nature. Likehtmlbodyopt this ma
ro should be pla
ed in the do
ument's preamble.4.2.54 htmltag(tagname)(start)Sets tagname as a HTML tag, en
losed by < and >. When start is zero, thetagname is pre�xed with /.4.2.55 ifnewparagraph(truelist)(falselist)The ma
ro ifnewparagraph should be
alled from the PARAGRAPHma
ro, if de�ned.It will insert truelist if a new paragraph is inserted, otherwise falselist isinserted (e.g., following two
onse
utive
alls of PARAGRAPH). This ma
ro
an beused to prevent the output of multiple blank lines.4.2.56 in
lude�le(�le)In
ludes file and de�nes a label with the same name. The default extension .yois supplied if ne
essary.4.2.57 in
ludeverbatim(�le)In
lude file into the output. No pro
essing is done, file should be in preformattedform, e.g.: 90

whenhtml(in
ludeverbatim(foo.html)).4.2.58 it()Indi
ates an item in an itemized list. The list is either surrounded by startit()and endit(), or it is an argument to itemize().4.2.59 itemization(list)Sets list as an itemizationd list. Use it() to indi
ate items in the list.4.2.60 itemize(list)DEPRECATED. Use itemization().4.2.61 kindex()Generate an index entry for index k.4.2.62 label(labelname)De�nes labelname as an an
hor for a link
ommand, or to stand for the lastnumbering of a se
tion or �gure in a ref
ommand.4.2.63 langle()Chara
ter <4.2.64 languagedut
h()De�nes the Dut
h-language spe
i�
 headers. A
tive this ma
ro via setlanguage(dut
h).4.2.65 languageenglish()De�nes the English-language spe
i�
 headers. A
tive this ma
ro via setlanguage(english).4.2.66 languageportugese()De�nes the Portugese-language spe
i�
 headers. A
tive this ma
ro via setlanguage(portugese).91

4.2.67 LaTeX()The LaTeX symbol.4.2.68 latexaddlayout(arg)This ma
ro is provided to add Yodl-interpreted text to your own LaTeX layout
ommands. The
ommand is terminated with an end-of-line. See also the ma
rolatexlayout
mds()4.2.69 latex
ommand(
md)Writes
md plus a white spa
e to the output when
onverting to LaTeX. The
md isnot further expanded by Yodl.4.2.70 latexdo
ument
lass(
lass)For
es the LaTeX \do
ument
lass{...} setting to
lass. Normally the
lass isde�ned by the ma
ros arti
le, report or book. This ma
ro is an es
ape routein
ase you need to spe
ify your own do
ument
lass for LaTeX. This option is amodi�er and must appear before the arti
le, report or book ma
ros.4.2.71 latexlayout
mds(NOTRANSs)This ma
ro is provided in
ase you want to put your own LaTeX layout
ommandsinto LaTeX output. The NOTRANSs are pasted right after the \do
ument
lassstanza. The default is, of
ourse, no lo
al LaTeX
ommands. Note that thisma
ro does not overrule my favorite LaTeX layout. Use nosloppyhfuzz() andstandardlayout() to disable my favorite LaTeX layout.4.2.72 latexoptions(options)Set latex options: do
ument
lass[options℄. This
ommand must appear beforethe do
ument type is stated by arti
le, report, et
..4.2.73 latexpa
kage(options)(name)In
lude latex pa
kage(s), a useful pa
kage is, e.g., epsf. This
ommand mustappear before the do
ument type is stated by arti
le, report, et
..4.2.74 l
hapter(label)(title)Starts a new
hapter in books or reports, setting a label at the beginning of the
hapter. 92

4.2.75 letter(language)(date)(subje
t)(opening)(salutation)(author)Starts a letter written in the indi
ated language. The date of the letter is set to`date', the subje
t of the letter will be `subje
t'. The letter starts with `opening'.It is based on the `letter.
ls' do
ument
lass de�nition. The ma
ro is available forLATEX only. Preamble
ommand suggestions:
• latexoptions(11pt)
• a4enlarged()
• letterreplyto(name)(address)(postal
ode/
ity)
• letterfootitem(phone)(number), maybe e-mail too.
• letteradmin(yourdate)(yourref)
• letterto(addressitem). Use a separate letterto()ma
ro
all for ea
h newline of the address.4.2.76 letteraddenda(type)(value)Adds an addendum at the end of a letter. `type' should be `bijlagen', `

' or `ps'.4.2.77 letteradmin(yourdate)(yourref)Puts `yourletterfrom' and `yourreferen
e' elements in the letter. If left empty, twodashes are inserted.4.2.78 letterfootitem(name)(value)Puts a footer at the bottom of letter-pages. Up to three will usually �t. LATEX only.4.2.79 letterreplyto(name)(address)(zip
ity)De�nes the `reply to' address in LATEX or txt-letters.4.2.80 letterto(element)Adds `element' as an additional line to the address in LaTex() letters.4.2.81 link(des
ription)(labelname)In HTML output a
li
kable link with the text des
ription is
reated that pointsto the pla
e where labelname is de�ned using the label ma
ro. Using link issimilar to url, ex
ept that a hyperlink is set pointing to a lo
ation in the samedo
ument. For output formats other than HTML, only the des
ription appears.93

4.2.82 lref(des
ription)(labelname)This ma
ro is a
ombination of the ref and link ma
ros. In HTML output a
li
kable link with the text des
ription and the label value is
reated that pointsto the pla
e where labelname is de�ned using the labelma
ro. For output formatsother than HTML, only the des
ription and the label value appears.4.2.83 lse
t(label)(title)Starts a new se
tion, setting a label at the beginning of the se
tion.4.2.84 lsubse
t(label)(title)Starts a new subse
tion. Other se
tioning
ommands are subsubse
t and subsubsubse
t.A label is added just before the subse
tion.4.2.85 lsubsubse
t(label)(title)Starts a sub-subse
tion, a label is added just before the se
tion4.2.86 lsubsubsubse
t(label)(title)Starts a sub-sub-sub se
tion. This level of se
tioning is not numbered, in
ontrastto `higher' se
tionings. A label is added just before the subsubsube
tion.4.2.87 lurl(lo
ator)An url des
ribed by its Lo
ator. For small urls with readable addresses.4.2.88 mailto(address)De�nes the default mailto address for HTML output. Must appear before thedo
ument type is stated by arti
le, report, et
..4.2.89 makeindex()Make index for latex.4.2.90 man
ommand(
md)Writes
md to the output when
onverting to man. The
md is not further expandedby Yodl. 94

4.2.91 manpage(title)(se
tion)(date)(sour
e)(manual)Starts a manual page do
ument. The se
tion argument must be a number, statingto whi
h se
tion the manpage belongs to. Most often used are
ommands (1), �le for-mats (5) and ma
ro pa
kages (7). The se
tioning
ommands in a manpage are not(n)se
t et
., but manpage...(). The �rst se
tion must be the manpagename, thelast se
tionmust be the manpageauthor. The standard manpage for se
tion 1
on-tains the following se
tions (in the given order): manpagename, manpagesynopsis,manpagedes
ription, manpageoptions, manpagefiles, manpageseealso, manpagediagnosti
s,manpagebugs, manpageauthor. Optional extra se
tions
an be added with manpagese
tion.Standard manpageframes for several manpagese
tions are provided in /usr/lo
al/share/yodl/manframes.4.2.92 manpageauthor()Starts the AUTHOR entry in a manpage do
ument. Must be the last se
tion of amanpage.4.2.93 manpagebugs()Starts the BUGS entry in a manpage do
ument.4.2.94 manpagedes
ription()Starts the DESCRIPTION entry in a manpage do
ument.4.2.95 manpagediagnosti
s()Starts the DIAGNOSTICS entry in a manpage do
ument.4.2.96 manpage�les()Starts the FILES entry in a manpage do
ument.4.2.97 manpagename(name)(short des
ription)Starts the NAME entry in a manpage do
ument. The short des
ription is used by,e.g., the whatis database.4.2.98 manpageoptions()Starts the OPTIONS entry in a manpage do
ument.
95

4.2.99 manpagese
tion(SECTIONNAME)Inserts a non-required se
tion named SECTIONNAME in a manpage do
ument. Thisma
ro
an be used to augment `standard' manual pages with extra se
tions, e.g.,EXAMPLES. Note that the name of the extra se
tion should appear in upper
ase, whi
h is
onsistent with the normal typesetting of manual pages.4.2.100 manpageseealso()Starts the SEE ALSO entry in a manpage do
ument.4.2.101 manpagesynopsis()Starts the SYNOPSIS entry in a manpage do
ument.4.2.102 mbox()Unbreakable box in latex(). Other formats may have di�erent opitions on ourunbreakable boxex.4.2.103 menu(list)DEPRECATED.4.2.104 metaC(text)Put a line
omment in the output.4.2.105 metaCOMMENT(text)Write format-spe
i�

omment to the output.4.2.106 mit()DEPRECATED.4.2.107 ms
ommand(
md)Writes
md to the output when
onverting to ms. The
md is not further expandedby Yodl.
96

4.2.108 n
hapter(title)Starts a
hapter (in a book or report) without generating a number before the titleand without pla
ing an entry for the
hapter in the table of
ontents.4.2.109 nemail(name)(address)Named email. A more
onsistent naming for url, lurl, email and nemail would beni
e.4.2.110 nl()For
es a newline; i.e., breaks the
urrent line in two.4.2.111 node(previous)(this)(next)(up)DEPRECATED De�nes a node with name this, and links to nodes previous,next and (up), for the node
ommand.4.2.112 nodepre�x(text)Prepend text to node names, e.g.nodeprefix(LilyPond) se
t(Overview)Currently used in texinfo des
riptions only.4.2.113 nodepre�x(text)Prepend text to node names, e.g.nodeprefix(LilyPond) se
t(Overview)Currently used in texinfo des
riptions only.4.2.114 nodetext(text)Use text as des
ription for the next node, e.g.nodetext(The GNU Musi
 Typesetter)
hapter(LilyPond)Currently used in texinfo des
riptions only.97

4.2.115 nop(text)Expand to text, to avoid spa
es before ma
ros e.g.: a2. Although a+sups(2) shouldhave the same e�e
t.4.2.116 nosloppyhfuzz()By default, LaTeX output
ontains
ommands that
ause it to shut up about hboxesthat are less than 4pt overfull. When nosloppyhfuzz() appears before stating thedo
ument type, LaTeX
omplaints are `vanilla'.4.2.117 notableof
ontents()Prevents the generation of a table of
ontents. This is default in, e.g., manpage andplainhtml do
uments. When present, this option must appear before stating thedo
ument type with arti
le, report et
..4.2.118 notitle
learpage()Prevents the generation of a
learpage() instru
tion after the typesetting of titleinformation. This instru
tion is default in all non arti
le do
uments. Whenpresent, must appear before stating the do
ument type with arti
le, book orreport.4.2.119 noto

learpage()With the LATEX
onvertor, no
learpage() instru
tion is inserted immediatelybeyond the do
ument's table of
ontents. The
learpage() instru
tion is defaultin all but the arti
le do
ument type. When present, must appear before statingthe do
ument type with arti
le, book or report. With other
onvertors than theLATEX
onvertor, it is ignored.)4.2.120 notransin
lude(�lename)Reads �lename and inserts it literally in the text not subje
t to ma
ro expansionor
hara
ter translation. No information is written either before or after the �le's
ontents, not even a newline.4.2.121 noxlatin()When used in the preamble, the LaTeX
onverter disables the in
lusion of the �lexlatin1.tex. Normally this �le gets in
luded in the LateX output �les to ensurethe
onversion of high ASCII
hara
ters (like é) to LaTeX-understandable
odes.(The �le xlatin1.tex
omes with the Yodl distribution.)98

4.2.122 nparagraph(title)Starts a non-numbered paragraph (duh,
orresponds to subparagraph in latex).4.2.123 npart(title)Starts a part in a book do
ument, but without numbering it and without enteringthe title of the part in the table of
ontents.4.2.124 nse
t(title)Starts a se
tion, but does not generate a number before the title nor an entry inthe table of
ontents. Further se
tioning
ommands are nsubse
t, nsubsubse
tand nsubsubsubse
t.4.2.125 nsubse
t(title)Starts a non-numbered subse
tion.4.2.126 nsubsubse
t(title)Starts a non-numbered sub-sub se
tion.4.2.127 nsubsubse
t(title)Starts a non-numbered sub-subse
tion.4.2.128 paragraph(title)Starts a parapgraph. This level of se
tioning is not numbered, in
ontrast to `higher'se
tionings (duh,
orresponds to subparagraph in latex).4.2.129 part(title)Starts a new part in a book do
ument.4.2.130 pindex()Generate an index entry for index p.
99

4.2.131 plainhtml(title)Starts a do
ument for only a plain HTML
onversion. Not available in other outputformats. Similar to arti
le, ex
ept that an author- and date �eld are not needed.4.2.132 printindex()Make index for texinfo (?).4.2.133 quote(text)Sets the text as a quotation. Usually, the text is indented, depending on the outputformat.4.2.134 rangle()Inserts the right angle
hara
ter (>).4.2.135 redef(nrofargs)(rede�nition)De�nes ma
ro ma
ro to expand to redefinition. Similar to def, but any pre-existing de�nition is overruled. Use ARGx in the rede�nition part to indi
ate wherethe arguments should be pasted. E.g., ARG1 pla
es the �rst argument, ARG2 these
ond argument, et
...4.2.136 rede�nema
ro(nrofargs)(rede�nition)De�nes ma
ro ma
ro to expand to redefinition. Similar to def, but any pre-existing de�nition is overruled. Use ARGx in the rede�nition part to indi
ate wherethe arguments should be pasted. E.g., ARG1 pla
es the �rst argument, ARG2 these
ond argument, et
... This
ommands is a
tually
alling redef().4.2.137 ref(labelname)Sets the referen
e for labelname. Use label to de�ne a label.4.2.138 report(title)(author)(date)Starts a report type do
ument. The top-level se
tioning
ommand in a report is
hapter.
100

4.2.139 ro�
md(dot
md)(sameline)(se
ondline)(thirdline)Sets a t/nro�
ommand that starts with a dot, on its own line. The arguments are:dot
md - the
ommand itself, e.g., .IP; sameline - when not empty, set followingthe dot
md on the same line; se
ondline - when not empty, set on the next line;thirdline - when not empty, set on the third line. Note that dot
md and thirdlineare not further expanded by Yodl, the other arguments are.4.2.140 row(
ontents)The argument
ontents may
ontain a man-page alignment spe
i�
ation (only onespe
i�
ation
an be entered per row), using setmanalign(). If omitted, the stan-dard alignment is used. Furthermore it
ontains the
ontents of the elements ofthe row, using
ell() or
ells() ma
ros. If
ells() is used, setmanalign()should have been used too. In this ma
ro
all only the
ell(),
ells() andsetmanalign() ma
ros should be
alled. Any other ma
ro
all may produ
e unex-pe
ted results.4.2.141 rowline()Sets a horizontal line over the full width of the table. See also
olumnline(). Userowline() instead of a row() ma
ro
all to obtain a horizontal line-separator.4.2.142 s
(text)Set text in small
aps (or tt).4.2.143 se
t(title)Starts a new se
tion.4.2.144 seta�lstring(name)De�nes name as the `a�liation information' string, by default AFFILIATION IN-FORMATION. E.g., after setaffilstring(AFILIACION), Yodl outputs this Span-ish string to des
ribe the a�liation information. Currently, it is relevant only fortxt.4.2.145 setauthorstring(name)De�nes name as the `Author information' string, by default AUTHOR INFORMA-TION. E.g., after setauthorstring(AUTOR), Yodl outputs this portuguese stringto des
ribe the author information. Currently, it is relevant only for txt.
101

4.2.146 set
hapterstring(name)De�nes name as the `
hapter' string, by default Chapter. E.g., after set
hapterstring(Hoofdstuk),Yodl gains some measure of national language support for Dut
h. Note that LaTeXsupport has its own NLS, this ma
ro doesn't a�e
t the way LaTeX output looks.4.2.147 setdatestring(name)De�nes name as the `date information' string, by default DATE INFORMATION.E.g., after setdatestring(DATA), Yodl outputs this portuguese string to des
ribethe date information. Currently, it is relevant only for txt.4.2.148 set�gureext(name)De�nes the name as the `�gure' extension. The extension should in
lude the period,if used. E.g., use set�gureext(.ps) if the extensions of the �gure-images should endin .ps4.2.149 set�gurestring(name)De�nes the name as the `�gure' text, used e.g. in �gure
aptions. E.g., aftersetfigurestring(Figuur), Yodl uses Dut
h names for �gures.4.2.150 sethtml�gureext(ext)De�nes the �lename extension for HTML �gures, defaults to .jpg. Note that aleading dot must be in
luded in ext. The new extension takes e�e
t starting withthe following usage of the figure ma
ro. It is only a
tive in html, but otherwisea
ts identi
ally as set�gureext().4.2.151 setin
ludepath(name)Sets a new value of the in
lude-path spe
i�
ation used when opening .yo �les. Awarning is issued when the path spe
i�
ation does not in
lude a .: element. Notethat the lo
al dire
tory may still be an element of the new in
lude path, as thelo
al dire
tory may be the only or the last element of the spe
i�
ation. For theseeventualities the new path spe
i�
ation is not
he
ked.4.2.152 setlanguage(name)Installs the headers spe
i�
 to a language. The argument must be the name ofa language, whose headers have been set by a
orresponding languageXXX()
all.For example: languagedut
h(). The language ma
ros should set the names of theheaders of the following elements: table of
ontents, a�liation, author,
hapter,date, �gure, part and title 102

4.2.153 setlatexalign(alignment)This ma
ro de�nes the table alignment used when setting tables in LATEX. Use asmany l (for left-alignment), r (for right alignment), and
 (for
entered-alignment)
hara
ters as there are
olumns in the table. See also table()4.2.154 setlatex�gureext(ext)De�nes the �lename extension for en
apsulated PostS
ript �gures in LaTeX, de-faults to .ps. The dot must be in
luded in t new extension ext. The new extensiontakes e�e
t starting with a following usage of the figure ma
ro. It is only a
tivein latex(), but otherwise a
ts identi
ally as set�gureext().4.2.155 setlatexverb
har(
har)Set the
har used to quote latex() \verb sequen
es4.2.156 setmanalign(alignment)This ma
ro de�nes the table alignment used when setting tables used in man-pages(see tbl(1)). Use as many l (for left-alignment), r (for right alignment), and
 (for
entered-alignment)
hara
ters as there are
olumns in the table. Furthermore, s
an be used to indi
ate that the
olumn to its left is
ombined (spans into) the
urrent
olumn. Use this spe
i�
ation when
ells spanning multiple
olumns arede�ned. Ea
h row in a table whi
h must be
onvertable to a manpage may
ontaina separate setmanalign()
all. Note that neither rowline nor
olumnline requiressetmanalign() spe
i�
ations, as these ma
ros de�ne rows by themselves. It is theresponsibility of the author to ensure that the number of alignment
hara
ters isequal to the number of
olumns of the table.4.2.157 setpartstring(name)De�nes name as the `part' string, by default Part. E.g., after setpartstring(Teil),Yodl identi�es parts in the German way. Note that LaTeX output does its ownnational language support; this ma
ro doesn't a�e
t the way LaTeX output looks.4.2.158 setro�tab(x)Sets the
hara
ter separating items in a line of input data of a roff (manpage)table. By default it is set to ~. This separator is used internally, and needs onlybe
hanged (into some unique
hara
ter) if the table elements themselves
ontain ~
hara
ters.
103

4.2.159 setro�tableoptions(optionlist)Set the options for tbl table, default: none. Multiple options should be separatedby blanks, by default no option is used. From the tbl(1) manpage, the followingoptions are sele
ted for
onsideration:
•
enter Centers the table (default is left-justi�ed)
• expand Makes the table as wide as the
urrent line length
• box En
loses the table in a box
• allbox En
loses ea
h item of the table in a boxNote that starting with Yodl V 2.00 no default option is used anymore. See alsosetrofftab() whi
h is used to set the
hara
ter separating items in a line of inputdata.4.2.160 settitlestring(name)De�nes name as the `title information' string, by default TITLE INFORMATION.E.g., after settitlestring(TITEL), Yodl outputs this Dut
h string to des
ribe thetitle information. Currently, it is relevant only for txt.4.2.161 setto
string(name)De�nes name as the `table of
ontents' string, by default Table of Contents. E.g.,after setto
string(Inhalt), Yodl identi�es the table of
ontents in the Germanway. Note that LaTeX output does its own national language support; this ma
rodoesn't a�e
t the way LaTeX output looks.4.2.162 sgml
ommand(
md)Writes
md to the output when
onverting to sgml. The
md is not further expandedby Yodl.4.2.163 sgmltag(tag)(ono�)Similar to htmltag, but used in the SGML
onverter.4.2.164 sloppyhfuzz(points)By default, LaTeX output
ontains
ommands that
ause it to shut up about hboxesthat are less than 4pt overfull. When sloppyhfuzz() appears before stating thedo
ument type, LaTeX
omplaints o

ur only if hboxes are overfull by more thanpoints. 104

4.2.165 standardlayout()Enables the default LaTeX layout. When this ma
ro is absent, then the �rst lines ofparagraphs are not indented and the spa
e between paragraphs is somewhat larger.The standardlayout() dire
tive must appear before stating the do
ument typeas arti
le, report, et
..4.2.166 start
enter()DEPRECATED.
enter() should be used.4.2.167 startdit()DEPRECATED. Use des
ription().4.2.168 starteit()DEPRECATED. Use enumeration().4.2.169 startit()DEPRECATED. Use itemization().4.2.170 startmenu()DEPRECATED. Use menu().4.2.171 starttable()DEPRECATED. Use table().4.2.172 sups(text)Sets supers
ript in formats allowing so4.2.173 subse
t(title)Starts a new subse
tion. Other se
tioning
ommands are subsubse
t and subsubsubse
t.4.2.174 subsubse
t(title)Starts a sub-subse
tion. 105

4.2.175 subsubsubse
t(title)Starts a sub-sub-sub-subse
tion. This level of se
tioning is not numbered, in
on-trast to `higher' se
tionings.4.2.176 sups(text)Sets supers
ript in formats allowing so4.2.177 table(nColumns)(alignment)(Contents)The table()-ma
ro de�nes a table. Its �rst argument spe
i�es the number of
olumns in the table. Its se
ond argument spe
i�es the (standard) alignment of theinformation within the
ells as used by LATEX or man/ms. Use l for left-alignment,
 for
entered-alignment and r for right alignment. Its third argument de�nes the
ontents of the table whi
h are the rows, ea
h
ontaining
olumn-spe
i�
ations andoptionally man/ms alignment de�nitions for this row.See also the spe
ialized setmanalign() ma
ro.4.2.178 t
ell(text)Ro� helper to set a table text
ell, i.e., a paragraph. For LATEX spe
ial table format-ting p{} should be used.4.2.179 tely
ommand(
md)Writes
md to the output when
onverting to tely. The
md is not further expandedby Yodl.4.2.180 TeX()The TeX symbol.4.2.181 texinfo
ommand(
md)Writes
md to the output when
onverting to texinfo. The
md is not further ex-panded by Yodl.4.2.182 tindex()Generate an index entry for index t.
106

4.2.183 title
learpage()For
es the generation of a
learpage() dire
tive following the title of a do
u-ment. This is already the default in books and reports, but
an be overruled withnotitle
learpage(). When present, must appear in the preamble; i.e., before thedo
ument type is stated with arti
le, book or report.4.2.184 to

learpage()With the LATEX
onvertor, a
learpage() dire
tive if inserted, immediately fol-lowing the do
ument's table of
ontents. This is already the default in all but thearti
le do
ument type, but it
an be overruled by noto

learpage(). Whenpresent, it must appear in the preamble; i.e., before the do
ument type is statedwith arti
le, book or report. With other
onvertors than the LATEX
onvertor, itis ignored.4.2.185 tt(text)Sets text in teletype font, and prevents it from being expanded. For unbalan
edparameter lists, use CHAR(40) to get (and CHAR(41) to get).4.2.186 txt
ommand(
md)Writes
md to the output when
onverting to txt. The
md is not further expandedby Yodl.4.2.187 url(des
ription)(lo
ator)In LaTeX do
uments the des
ription is sent to the output. For HTML, a linkis
reated with the des
riptive text des
ription and pointing to lo
ator. Thelo
ator should be the full URL, in
luding servi
e; e.g, http://www.i

e.rug.nl,but ex
luding the double quotes that are ne
essary in plain HTML. Use the ma
rolink to
reate links within the same do
ument. For other formats, something likedes
ription [lo
ator℄ will appear.4.2.188 verb(text)Sets text in verbatim mode: not subje
t to ma
ro expansion or
hara
ter tableexpansion. The text appears literally on the output, usually in a teletype font (thatdepends on the output format). This ma
ro is for larger
hunks, e.g., listings. Forunbalan
ed parameter lists, use CHAR(40) to get (and CHAR(41) to get).4.2.189 verbin
lude(�lename)Reads �lename and inserts it literally in the text, set in verbatim mode. not sub-je
t to ma
ro expansion.The text appears literally on the output, usually in a tele-107

type font (that depends on the output format). This ma
ro is an alternative toverb(...), when the text to set in verbatim mode is better kept in a separate �le.4.2.190 verbpipe(
ommand)(text)Pipe text through
ommand, but don't expand the output.4.2.191 vindex()Generate an index entry for index v.4.2.192 whenhtml(text)Sends text to the output when in HTML
onversion mode. The text is furtherexpanded if ne
essary.4.2.193 whenlatex(text)Sends text to the output when in LATEX
onversion mode. The text is furtherexpanded if ne
essary.4.2.194 whenman(text)Sends text to the output when in MAN
onversion mode. The text is furtherexpanded if ne
essary.4.2.195 whenms(text)Sends text to the output when in MS
onversion mode. The text is further ex-panded if ne
essary.4.2.196 whensgml(text)Sends text to the output when in SGML
onversion mode. The text is furtherexpanded if ne
essary.4.2.197 whentely(text)Sends text to the output when in TELY
onversion mode. The text is furtherexpanded if ne
essary.
108

4.2.198 whentexinfo(text)Sends text to the output when in TEXINFO
onversion mode. The text is furtherexpanded if ne
essary.4.2.199 whentxt(text)Sends text to the output when in TXT
onversion mode. The text is furtherexpanded if ne
essary.4.2.200 whenxml(text)Sends text to the output when in XML
onversion mode. The text is furtherexpanded if ne
essary.4.2.201 xit(itemname)Starts an xml menu item where the �le to whi
h the menu refers to is the argumentof the xit() ma
ro. It should be used as argument to xmlmenu(), whi
h has a 3rdargument: the default path pre�xed to the xit() elements.This ma
ro is only available within the xml-
onversion mode. The argument mustbe a full �lename, in
luding .xml extension, if appli
able.No .xml extension indi
ates a subdire
tory,
ontaining another sub-menu.4.2.202 xml
ommand(
md)Writes
md to the output when
onverting to xml. The
md is not further expandedby Yodl.4.2.203 xmlmenu(order)(title)(menulist)Starts an xmlmenu. Use itemization() to de�ne the items. Only available in xml
onversion. The menutitle appears in the menu as the heading of the menu. Themenulist is a series of xit() elements,
ontaining the name of the �le to whi
h themenu refers as their argument (in
luding a �nal /). Pre�xed to evert every xit()-element is the value of XXdo
umentbase.Order is the the `order' of the menu. If omitted, no order is de�ned.4.2.204 xmlnew�le()In XML output, starts a new �le. All other formats are not a�e
ted. Note that youmust take your own provisions to a

ess the new �le; say via links. Also, it's safeto start a new �le just befoore opening a new se
tion, sin
e se
tions are a

essible109

from the
li
kable table of
ontents. The XML
onverter normally only starts new�les prior to a
hapter de�nition.4.2.205 xmlsetdo
umentbase(name)De�nes name as the XML do
ument base. No default. Only interpreted with xml
onversions. It is used with the �gure and xmlmenu ma
ros.4.2.206 xmltag(tag)(ono�)Similar to htmltag, but used in the XML
onverter.4.3 Conversion-related topi
s4.3.1 A

ents4.3.2 Conversion-type spe
i�
 literal
ommandsA

ording to the format of the output �le, the ma
ro pa
kage de�nes a given symbol:
• latex when the output format is LaTeX,
• html when the output format is HTML,
• man when the output format is gro� in
onjun
tion with the man ma
ro pa
k-age,
• ms when the output format is gro� with the ms pa
kage,
• sgml when the output format is SGML,
• txt when the output format is plain ASCII.
• xml when the output format is XML.The de�ned symbol
an be tested in a do
ument to determine the
onversion type.Furthermore, the pa
kage de�nes the following ma
ros to send literal text (
om-mands in the output format) to the output �le:
• latex
ommand(
md): sends the LaTeX
ommand
md when in LaTeX
onver-sion mode. The
md is not further expanded.
• html
ommand(
md): sends the HTML
ommand
md when in HTML
onver-sion mode. The
md is not further expanded.
• htmltag(tag)(onoff): sends <tag> to the output when onoff is nonzero, orsends </tag> when onoff is zero. Only a
tive in HTML
onversions.
• man
ommand(
md): sends
md to the output when in man
onversion mode.The
md is not further expanded. 110

• ms
ommand(
md): sends
md to the output when in ms
onversion mode. The
md is not further expanded.
• roff
md(dot
md)(trailer)(se
ondline)(thirdline): sends a
ommandto the output when in man or ms
onversion mode. The dot
md is the typi
algroff
ommand that starts with a dot. All other arguments may be empty,but when given are interpreted as follows. The trailer follows the dot
mdon the same line. The se
ondline is sent on a separate line following thedot
md and trailer. The thirdline is sent after that. Of the four argu-ments, dot
md and thirdline are not subje
t to further expansion. All otherarguments are further expanded if ne
essary.The roff
mdma
ro illustrates the
omplexity of dot-
ommands for the diversgroff ma
ro pa
kages. E.g., a se
tion title for the man pa
kage should lookas .SH "Se
tion Title"while the same
ommand for the ms ma
ro pa
kage must be sent as.SHSe
tion Title.PPThe roff
md ma
ro
an be used to send these
ommands to the output �leas follows:COMMENT(For the man output format:)roff
md(.SH)("Se
tion Title")()()COMMENT(For the ms output format:)roff
md(.SH)()(Se
tion Title)(.PP)()
• sgml
ommand(
md): sends the SGML
ommand
md when in SGML
onver-sion mode. The
md is not further expanded.
• sgmltag(tag)(onoff): sends <tag> when onoff is nonzero, or sends </tag>when onoff is zero. Only a
tive in SGML
onversions.
• txt
ommand(
md): implemented for
ompatibility reasons, though a `
om-mand' in plain ASCII output doesn't make mu
h sense. The usefulness ofthis ma
ro is rather in the fa
t that it only produ
es output when in ASCII
onversion mode.The above
ommands
an be used to qui
kly implement a ma
ro. E.g., the ma
ropa
kage implements the it ma
ro (whi
h starts an item in a list) as:DEFINEMACRO(it)(0)(111

latex
ommand(\item)html
ommand()....)Depending on the output format, it() will lead to one of the above expansions.The above des
ribed format
ommand()ma
ros are implemented to send not furtherexpanded strings (i.e.,
ommands) to the output. The ma
ro pa
kage also imple-ments whenformat() ma
ros to send any text, whi
h is then subje
t to furtherexpansion. These when...() ma
ros are:
• whenlatex(text): sends text when in LaTeX
onversion mode,
• whenhtml(text): sends text when in HTML
onversion mode,
• whenman(text): sends text when in man
onversion mode,
• whenms(text): sends text when in ms
onversion mode,
• whentxt(text): sends text when in ASCII
onversion mode,
• whensgml(text): sends text when in SGML
onversion mode.On
e again, note that the di�eren
e between the whenformat() ma
ros and theformat
ommand() ma
ros is, that the former will expand their argument while thelatter will not. As an example,
onsider the following
ode fragment:You are now readingwhenlatex(a LaTeX-generatedfootnote(LaTeX is a greatdo
ument language!)do
ument)whenhtml(a HTML do
ument via yourfavorite browser)The whenformat() ma
ros are used here to make sure that the arguments to thema
ros are further expanded; this makes sure that the footnote ma
ro in thewhenlatex blo
k gets treated as a footnote.4.3.3 FiguresFigures in format-independent do
uments are a problem. You
annot avoid
onta
twith the �nal format (HTML, LaTeX or whatever) if you want to in
lude �gures ina text.Yodl approa
hes �gures as follows:
• Figures
an only be in
luded in LaTeX, HTML and XML do
uments.112

• For LaTeX, you must prepare a pi
ture in an external �le that is in
ludedin the do
ument as en en
apsulated PostS
ript �le. In
identally, that meansthat epsf must be stated as one of the LaTeX styles using the latexoptionsma
ro. The default, however,
an be modi�ed using the setlatexfigureext()ma
ro.The �le in question is stated in Yodl without an extension. Yodl provides adefault extension, .ps.
• For HTML and XML, you must prepare a pi
ture in an external �le that ispla
ed in the do
ument using the <img sr
=...> tag. The �le must have thedefault extension (.jpg) or the extension spe
i�ed with the sethtmlfigureext()ma
ro.
• All other output formats do not in
lude pi
tures in the do
ument, but typesetsomething like insert �gure .. here.The ma
ro to in
lude a �gure is
alled, appropriately, figure. It takes three argu-ments:
• The �rst argument is the �lename. This name may in
lude dire
tories, butmay not in
lude the �lename extension. The reason for this is, that Yodlsupplies the
orre
t extension on
e the output format is known.
• The se
ond argument is the �gure title, or the
aption. Yodl pre�xes this
aption with the text Figure xx:, where xx is a number.
• The last argument is a label, whi
h Yodl de�nes as a pla
eholder for the �gurenumber.For example, you might draw a pi
ture or s
an a photo and put it in a .jpg �le, forusage with HTML do
uments. The
onversion to PostS
ript
ould be automated,e.g., using a Yodl ma
ro:SYSTEM(xpmtoppm pi
ture.xpm | pnmtops > pi
ture.ps)See se
tion 3.1.67 for details about using the SYSTEM ma
ro.After this, you would be reasonably safe that the pi
ture is available for both HTMLand LaTeX output. The pi
ture would be typeset in a �gure using:figure(pi
ture)(A photo of me.)(photo)Note how the �rst argument, the �lename, does not
ontain an extension. The thirdargument, whi
h is a label,
an be used in, e.g.,See figure ref(photo) for a photograph showing me.113

Yodl has a several auxiliary ma
ros, whi
h are:
• fig(label): This ma
ro is a shorthand for getfigurestring() ref(label).It just makes typing shorter, and is used as e.g.: See fig(photo) for aphotograph. Note that the string figure that is generated by this ma
ro
an be (re)de�ned, see below.
• setfigurestring(name): This ma
ro is similar to set
hapterstring et
..It de�nes the string that is used to identify a �gure, and is (appropriately)figure by default. The ma
ro getfigurestring() expands to the string inquestion. See also se
tion 4.3.6 for a dis
ussion of national language support.
• sethtmlfigureext(.new): This ma
ro rede�nes the �lename extension forHTML
onversions from .gif to .new. Note that you must in
lude a leadingdot in the rede�nition.The new extension is used in the �rst following figure statement.
• sethtmlfigurealign(align): This rede�nes the alignment of �gures in HTML,whi
h is default bottom. Che
k your HTML handbook for possible options;top and
enter should be fairly standard.
• setlatexfigureext(.new): Rede�nes the extension from .ps to .new.4.3.4 Fonts and sizesYodl's standard ma
ro pa
kage supports the following ma
ros to
hange fonts:
• bf(text): sets text in boldfa
e.
• em(text): sets text emphasized, usually in itali
s.
• tt(text): sets text in teletype.Furthermore, the tt()ma
ro will not expand ma
ros o

urring inside its argument.That means that you
an safely write:In Yodl, you
an use tt(in
ludefile(somefile)) to in
lude a filein your do
ument.The tt() ma
ro should not be used for long listings of verbatim text; use verb()to set
ode samples et
..Yodl's standard ma
ro pa
kage has no
ommands to
hange font sizes, as the size is
hanged internally when appropriate (e.g., in se
tion titles), nor is there a defaultma
ro to de�ne other font-families.4.3.5 Labels, links, referen
es and URLsReferen
es su
h as see ... for more information are very
ommon in do
uments.Yodl supports three me
hanisms to a

omplish su
h referen
es:114

Labels and referen
es: Labels
an be de�ned in a do
ument as a pla
eholderfor the last number used in a se
tioning
ommand. At other points in thedo
ument, referen
es to those labels are used. The referen
e expands to thenumber, as in see se
tion 1.3.This me
hanism is available in all output formats. Furthermore, the numeri
referen
e (1.3 in the example of the previous paragraph) is in HTML a
li
kablereferen
e that leads to the mentioned se
tion.Labels and links: This me
hanism
an be used to set links in a do
ument withoutusing the number of a se
tioning
ommand, as in see the introdu
tion for moreinformation, with the introdu
tion being a
li
kable link to some label.This me
hanism of
ourse only leads to a
li
kable link in HTML: in otherformats the text see the et
. is just typeset as is.URLs: Universal Resour
e Lo
ators (URLs) are used to
reate links to otherHTML do
uments or servi
es, like HTML's method. The URLsof
ourse only result in
li
kable links in HTML output; in other output for-mats only some des
riptive text appears.The above me
hanism is implemented by the following ma
ros:
• The ma
ro label(name) de�nes a label named name. The name of the label
an be used in a ref or link ma
ro.
• The ma
ro ref(name) sets a referen
e to the label named name. The text ofthe referen
e is the number of the last se
tioning
ommand that was a
tiveduring the
reation of the label. When using referen
es it is therefore impor-tant to de�ne the
orresponding labels right after a se
tioning
ommand, asin se
tion(How to install my program) label(howtoinstall)This se
tion des
ribes......See se
tion ref(howtoinstall) for installation instru
tions.The ma
ro ref(howtoinstall) expands to the number of the se
tion namedHow to install my program.
• The ma
ro link(des
ription)(name) always expands to the des
ription.In HTML output, a
li
kable link is
reated pointing to a label
alled name.For example:label(megahard)COMMENT(sigh...)The Jodel pa
kage isn't shareware, it isn'tbeggarware, it isn't freeware, it'sbf(megahard-ware)....Who wants a link(pi
osoft)(megahard)?115

This
ode fragment would always set the text pi
osoft, but under HTML a
li
kable link would appear pointing to link(the text)(megahard).
• The ma
ro url(des
ription)(lo
ation)always expands to the des
ription,but
reates a hyperlink pointing to lo
ation in HTML. For example,Take a look at myurl(homepage)(http://www.somwhere.nl/karel/karel.html).The text homepage1 always appears, but only in HTML it is a link. (Notethat the double quotes, whi
h are ne
essary in HTML around the lo
ation,are not required by Yodl.) To use a di�erent font in the des
ription part,surrond it inside the url parameter list, as in:The Yodl pa
kage
an be obtained at the site tt(ftp.rug.nl) in thedire
tory url(tt(/
ontrib/frank/software/yodl))(ftp://ftp.rug.nl/
ontrib/frank/software/yodl).
• The ma
ro email(address) is a spe
ial
ase of url: under HTML, theaddress appears as a
li
kable link in slanted font to mail address. Forexample:I
an be rea
hed atemail(f.b.brokken�rug.nl).I
an be rea
hed at f.b.brokken�rug.nl<f.b.brokken�rug.nl>.Always keep in mind that the name of a label must be exa
tly identi
al inboth the label ma
ro and in the ref or link ma
ro. Other than that, thename is irrelevant.Furthermore, note that in
ludefile is yet another ma
ro de�ning a lable: itin
ludes a �le and automati
ally
reates a label just before the in
luded �le'stext. That means that a Yodl �le like:
hapter(Introdu
tion)se
t(Wel
ome)in
ludefile(wel
ome)
hapter(Te
hni
al information)in
ludefile(te
hinfo)impli
itly
reates two labels: wel
ome and te
hinfo.Here are some �nal thoughts about using labels and referen
es:
• Don't put `weird'
hara
ters in label names. Generally, don't use spa
es andtabs.1http://www.somwhere.nl/karel/karel.html 116

• The name of the label is always only an internal symbol; it does not appearin the output. Therefore,
onstru
tions su
h as the following are not
orre
t:ref(em(labelname))The reason for the in
orre
tness is, what internal name should em(labelname)generate? Here probably an attempt is made to set a referen
e in itali
s. Theright
onstru
tion is of
ourse to set whatever ref() returns in itali
s, as in:em(ref(labelname))
• The label ma
ro should not appear nested inside another ma
ro. There isno stri
t reason for this as far as Yodl is
on
erned; however, the pro
essorsof Yodl's output might go haywire. E.g., beware of the
onstru
tionse
tion(Introdu
tion label(intro))The right form beingse
tion(Introdu
tion)label(intro)(linking to intro will usually not show Introdu
tion), or:label(intro)se
tion(Introdu
tion)(linking to intro will usually show Introdu
tion), or:4.3.6 Lists and environmentsYodl's default ma
ros support the following lists and environments:By default, the following lists are available:Des
ription lists: A des
ription list
onsists of a list of elements, where ea
helement starts with a short (usually bold fa
ed) des
ription. The des
riptionlist is generated by the des
ription() ma
ro. The elements of the list startwith dit(). The dit() ma
ro expe
ts a short des
ription of the item.Example:A des
ription list:des
ription(dit(First this:) One item.dit(Then this:) Another item.) 117

Enumeraton lists: An enumeration list
onsist of sequentially numbered elements.The list is generated by the enumeration() ma
ro. Its elements start withthe eit() ma
ro.Example:An enumerated list:enumeration(eit() One item.eit() Another item.)Itemized lists: An itemized lists
onsists of indented items, usually pre
eded bya bullet.An itemized list is produ
ed by the itemization() ma
ro, whi
h has oneargument: the items themselves. These items must start with it().Example:An itemized list:itemization(it() One item.it() Another item.)Spe
ialized environments are:Centered text: Centering text may not be available in all output formats. Whenunavailable, the text is typeset left-�ushed.Centered text is generated by the
enter() ma
ro. Line brakes within
en-tered text may be obtained using the nl() ma
ro.Example:
enter(Centered text. nl()Another line of
entered text.)Verbatim text: Verbatim text appears on the output exa
tly in the same layoutas it is in the input �le. Typesetting text in verbatim mode is useful for, e.g.,sour
e �les. Depending on the output format, the font of the verbatim text is
hanged to a teletype font.The text must either be inside the verb() ma
ro. For example:verb(This is totally verbatim text.It is not further pro
essed by Yodl.) 118

The verbatim text is of
ourse not subje
t to ma
ro expansion by Yodl. Note,however, that SUBST transformations will take pla
e, as these substitutionstake pla
e during the lexi
al s
anning phase of Yodl's input, and are not partof the ma
ro-expansion pro
ess. See also se
tion 3.1.65.Furthermore, if a
hara
ter translation table has been de�ned, the argu-ment of the verb() ma
ro will also be subje
t to
hara
ter table transfor-mations. By temporarily suppressing the a
tive
hara
ter table (see se
tionPUSHCHARTABLE 3.1.56) this
an be prevented.Quotations: Quotations are usually indented with respe
t to their surroundingtext. It is for the author to de
ided whether the quoted text should be typesetnormally, or that it should be bold-fa
ed or emphasized. To insert a quotationuse the quote() ma
ro:Shakespeare on
e wrote:quote(``To be or not to be, that's the question'')National language supportYodl in
ludes rudimentary national language support (NLS), in the sense that itallows you to rede�ne the strings identifying
hapters or parts, or the strings iden-tifying �gures. E.g., a
ommand
hapter(Introdu
tion) will by default result inthe text Chapter 1: Introdu
tion.Using the set
hapterstring(text) ma
ro, the Chapter text
an be rede�ned.E.g., in a Dut
h text you might putset
hapterstring(Hoofdstuk)somewhere near the beginning of your do
ument. Similar to set
hapterstring, ama
ro get
hapterstring exists returning the text identifying
hapters. (Internally,get
hapterstring is of
ourse used to a
tually set the text). To rede�ne the textto identify a part, use setpartstring(text); to rede�ne the text to identify a�gure, use setfigurestring(text).The set....string ma
ros only in�uen
e how Yodl names
hapters or parts inHTML, man, ms or txt output. LaTeX output is not a�e
ted, sin
e LaTeX does itsown NLS. Usually, NLS is present for LaTeX as a `style �le' named, e.g., dut
h.sty.Therefore, if you want a Dut
h do
ument, you need to:
• put latexpa
kage(dut
h)(babel)in the preamble of the do
ument. Thisensures that LaTeX uses Dut
h abbreviation rules.
• rede�ne the
hapter and part names for non-LaTeX output, using:setlanguage(dut
h) 119

• Finally, you should probably type your text in Dut
h.The setlanguage()ma
ro expe
ts one argument: the name of the language that isused. See se
tion 4.2 for details about this ma
ro. The setlanguage() ma
rorede�nes the language-dependent se
tion (and other) headers, and depends onthe availability of the
orresponding language<name>() ma
ro, where <name> isthe name of the language (by
onvention <name> states the english name of thelanguage). Currently, languagedut
h(), languageenglish() (the default), andlanguageportugese() are available. It's easy to expand this little set with ma
rosfor other languages. The setlanguage()ma
ro merely requires the spe
i�
ation ofthe language. For example:setlanguage(english)This ma
ro installs the following defaults (
orresponding translations should bede�ned for other languages):setto
string(Table of Contents)setaffilstring(Affiliation)setauthorstring(Author)set
hapterstring(Chapter)setdatestring(Date)setfigurestring(Figure)setpartstring(Part)settitlestring(Title)Pagebreaks after the title and table of
ontentsYodl inserts page-breaks in a limited number of
ases:
• A pagebreak is generated after the title information in book and report do
-uments.
• A pagebreak is generated after a table of
ontents in all do
uments.So, when a do
ument has both title information and a table of
ontents then what-ever follows next will normally be starting on a separate page. Furthermore, ifthe do
ument is a book or a report, the title and table of
ontents will also beseparated by a pagebreak.This behavior
an be modi�ed using the (no)title
learpage()and (no)to

learpage()dire
tives, further des
ribed in se
tion 4.3.8.4.3.7 Se
tioningThis se
tion des
ribes the se
tioning
ommands for arti
les, reports, books andfor plainhtml. The do
ument type manpage de�nes its own se
tioning
ommands(
f. se
tion 4.1.2: 120

• part(title): Starts a new part. Only available in book do
uments.
•
hapter(title): Starts a new
hapter. Only available in book or reportdo
uments.
• se
t(title): Starts a se
tion.
• subse
t(title): A subse
tion.
• subsubse
t(title): A sub-subse
tion.
• subsubsubse
t(title): An even smaller se
tioning
ommand.These ma
ros generate entries in the table of
ontents and use numbering, whi
hmeans that ea
h se
tion is pre�xed with a number (1, 1.1, 1.2, and so on). Thema
ros are also available with an n pre�x (npart, n
hapter, nse
t et
.) whi
hgenerate neither entries in the table of
ontents nor numbers. The n-versions
an beused in, e.g., an arti
le where the se
tioning
ommands should show their
aptions,but not any numbers generated by default.Se
tioning should always start at the top level se
tions of the available do
ument:
hapter for reports, se
t for arti
les, et
.. If you start a do
ument with a lowerse
tioning
ommand (e.g., when you start an arti
le with a subse
t), the number-ing of se
tions may go haywire. The only ex
eption to this rule is the part of abook do
ument: parts are optional, in books,
hapters may be the top se
tioning
ommands. Summarizing, books or reports should start with
hapter. Arti
lesshould start with se
tions.The se
tioning
ommands have a further fun
tion: when label statements appearafter the se
tioning
ommand, then a label name is used as a pla
eholder for thelast generated number. This is further des
ribed in se
tion 4.3.5.4.3.8 Typesetting modi�ersThis se
tion lists various ma
ros that
an be used to modify the looks of yourdo
ument. When used, these ma
ros must appear before stating the do
umenttype with arti
le, report, book, manpage or plainhtml.
• abstra
t(text): This ma
ro is relevant for all output formats. The textis added to the do
ument after the title, author and date information, butbefore the table of
ontents. The abstra
t is usually set as a quote, in itali
sfont (though this depends on the output format). Abstra
ts are supportedin arti
les and reports, but not in other do
ument types. I.e., if you needintrodu
tory text in a book, you should start with a non-numbered
hapterthat holds this text.
• affiliation(site): This ma
ro is relevant for arti
le, report and bookdo
uments. It de�nes the a�liation of the author. The site informationappears in the title, below the author's name.
• htmlbodyopt(option)(value): This ma
ro adds option="value" to the<body> tag that will be generated for HTML output. The HTML
onvertergenerates <body> tags ea
h time that a new �le is started; i.e., at the top121

of the do
ument and at ea
h
hapter-�le. Di�erent HTML browsers supportdi�erent <body> tag options, but useful ones may be e.g.:htmlbodyopt(fg
olor)(#000000)htmlbodyopt(bg
olor)(#FFFFFF)This de�nes the foreground
olor as pure white (red/green/blue all 0) and theba
kground
olor as bla
k (red/green/blue all hexade
imal FF, or 255). An-other useful option may be htmlbodyopt(ba
kground) (some.gif), de�ningsome.gif as the page ba
kground.See the do
umentation on HTML for more information.Note that value is automati
ally surrounded by double quotes when thisma
ro is used. They should not be used by authors using this ma
ro.
• latexdo
ument
lass(
lass): This ma
ro for
es the \do
ument
lass{...}setting in LaTeX output to
lass.
• latexlayout
mds(
ommands): This ma
ro
an be used to spe
ify your ownLaTeX layout
ommands. When present, the
ommands are pla
ed in LaTeXoutput following the \do
ument
lass de�nition.
• latexoptions(options): This ma
ro is only relevant for LaTeX output for-mats, it is not expanded in other formats. The options are used in LaTeX's\do
ument
lass de�nition; e.g., a useful option might be dina4. Multipleoptions should be separate by
ommas, a

ording to the LaTeX
onvention.
• latexpa
kage(options)(name): This ma
ro is only relevant for LaTeX out-put formats, it is not expanded in other formats. Ea
h pa
kage should haveits own latexpa
kage() statement. If there are no options, the optionsargument should remain empty. Here is an example using this ma
ro:latexpa
kage(dut
h)(babel)
• mailto(email): The mailtoma
ro is only expanded in HTML do
uments, itis ignored in other formats. It de�nes where mail about the do
ument shouldbe sent to.
• nosloppyhfuzz(): By default, the LaTeX output
ontains the text\hfuzz=4ptwhi
h is pla
ed there by the ma
ro pa
kage. This suppresses overfull hboxwarnings of LaTeX when the overfull-ness is less than 4pt. Use nosloppyhfuzz()to get the standard LaTeX warnings about overfull hboxes.
• notableof
ontents(): As the name suggests, this ma
ro suppresses the gen-eration of the table of
ontents. For HTML that means that no
li
kable indexof se
tions appears after the do
ument title.The table of
ontents is by default suppressed in plainhtml and manpagedo
uments. 122

• notitle
learpage(): Normally, Yodl inserts a
learpage() dire
tive aftertypesetting title information in book or report do
uments, but not in arti
ledo
uments. Use notitle
learpage to suppress this dire
tive.
• noto

learpage() (no table-of-
ontents
lear-page): In all do
ument types,Yodl inserts a
learpage() dire
tive following the table of
ontents. Usenoto

learpage() to suppress that.
• noxlatin(): The LaTeX output
ontains by default the
ommand to in
ludethe �le xlatin1.tex, distributed with Yodl. This �le maps Latin-1
hara
tersto LaTeX-understandable
odes and makes sure that you
an type
hara
terssu
h as ü, and still make them pro
essable by LaTeX. If you don't want this,put noxlatin() in the preamble.
• standardlayout(): This is another LaTeX option. Use standardlayout()to get `vanilla' LaTeX layout, possibly indenting paragraphs and using fairlylimited verti
al spa
ing between paragraphs. This ma
ro is ignored for other
onversion types.
• title
learpage(): For
es the insertion of a
learpage() dire
tive after thetitle information has been typeset. This behavior is the default in book andreport do
uments. See also notitle
learpage().
• to

learpage(): For
es the insertion of a
learpage() dire
tive followingthe table of
ontents. This behavior is default in all do
ument types; thema
ro is provided for
onsisten
y reasons with (no)title
learpage().Note again: these modi�ers must appear before the do
ument type de�nition.4.3.9 Mis
ellaneous
ommandsThe following is a list of
ommands that don't fall in one of the above
ategories.
•
learpage(): This ma
ro starts a new page in LaTeX. For HTML, a hori-zontal rule is shown. (Note that the ma
ro pa
kage sometimes inserts newpages by itself; e.g., following a table of
ontents. See also se
tion 4.3.8 for adis
ussion of (no)title
learpage() and (no)to

learpage().)
• def(ma
ro)(nrofarguments)(definition): This de�nes a new ma
ro ma
rohaving nrofarguments arguments, and expanding to definition. The mark-ers ARGx, where x is 1, 2, et
.,
an be used in the definition part to indi-
ate where arguments should be pasted in. This ma
ro is a shorthand forDEFINEMACRO, see se
tion 3.1.11.
• footnote(text): This ma
ro sets text as a footnote when the output formatallows it. When not, the text is set in parentheses.
• gagma
rowarning(name name ...): This ma
ro suppresses yodl's warnings
annot expand possible user ma
ro name, where name is a
andidate ma
roname. gagma
rowarning is a synonym for NOUSERMACRO, des
ribed in se
tion3.1.45.E.g., if your do
ument
ontains "as for manpages, see sed(1), tr(1) andawk(1)", and if you get tired of warnings about possible user ma
ros sed, trand awk, try the following: 123

gagma
rowarning(sed tr awk)...As for manpages, see sed(1), tr(1) and awk(1).
• htmlnewfile(): Starts a new sub�le in HTML output. This stanza is alsoautomati
ally generated when the HTML
onverter en
ounters a
hapterdire
tive. Using htmlnewfile, the output
an be split at any point. Howevermake sure that the sub�le is still rea
hable; e.g., by
reating a
li
kable linkwith label and ref, or label and link.
• in
ludefile(file): In
ludes file and de�nes a label (see the labelma
ro)with the same name. Furthermore, a message about the in
lusion is shownon the s
reen. The file is sear
hed for relative to the dire
tory where theyodl run was started and in the system-wide in
lude dire
tory. The defaultextension .yo is supplied if ne
essary.This ma
ro is handy in the following situation:
hapter(Introdu
tion)in
ludefile(intro)This fragment starts a
hapter and in
ludes a �le. The label name intro
analso be used to refer to the
hapter. The in
ludefile stanza should thereforeappear immediately following the
orresponding se
tioning
ommand.
• nl(): For
es a new line. Some output formats may produ
e an error uponthe usage of nl() in `unexpe
ted' pla
es; e.g., LaTeX won't allow new lines inthe footnote text (as de�ned in the footnote ma
ro). Using nl() in runningtext should however be ok. Example:This line is nl()broken in two.
• redefinema
ro(ma
ro)(nrofargs)(redef): This
ommand (re)de�nes a ma
ro,expe
ting nrofargs arguments, to redef. If a previous de�nition of the ma
roexisted, it is overruled. Example:redefinema
ro(
learpage)(0)(\em(---New page starts here---))Use ARGx in the redef part to indi
ate where all arguments should o

ur, asin the following imaginary ma
ro to typeset a literature referen
e:redefinema
ro(litref)(3)(Title: bf(ARG1) nl()Author(s): em(ARG2) nl()Published by: ARG3) 124

...litref(Java in a Nutshell)(David Flanagan)(O'Reilly & Asso
iates, In
.)The redefinema
ro statement also has a shorthand
alled redef.4.4 Lo
ations of the ma
rosThe �les de�ning the ma
ros are by default installed to the dire
tory /usr/lo
al/share/yodlduring Yodl's installation pro
ess (Note that this diverts from an earlier default:/usr/lo
al/lib/yodl; furthermore, some systems or some distributions may useother lo
ations).The �les in this dire
tory are organized as follows:
• The �les that should be read for a parti
ular
onversion are named aftertheir
onversion, e.g., latex.yo and html.yo. These �les must be pro
essedby Yodl before your do
ument
an be
onverted a

ordingly. The providedyodl2... s
ripts take
are of that automati
ally.
• All support
ounters, symbols and ma
ros are de�ned in �les named std.<
onversion>.yo,e.g., std.html.yo, std.latex.yo. These �les may be modi�ed without no-ti
e, and are an essential part of the Yodl ma
ros. They should not be modi�edby hand, as they are
reated by the ma
ro generating pro
ess.
• The prede�ned
hara
ter tables are found in �les names
hartables/<
onversion>.yo.The (binary) Yodl pa
kage
ontains the following programs and support �les:
• The yodl program itself, whi
h generates
onverted do
ument(s);
• The yodlpost postpro
essor, whi
h performs �xups for
onversion formats.Using yodlpost is required for formats whose do
uments
annot be
reatedin one pass by yodl itself;
• Auxiliary s
ripts su
h as yodl2tex, yodl2html;
• The ma
ros and
hara
ter tables for the various
onversion types;
• The raw ma
ros and the ma
ro-generating s
ripts;
• The do
umentation (html and manual pages)The sour
e Yodl pa
kage
ontains all the sour
es �les, installation guides,
hange-logs et
., that are required to
ompile the binary programs. Those who want to
ompile Yodl themselves, must have a C
ompiler (preferably the Gnu C
ompiler)available, and preferably the i
make program maintenan
e utility. Basi
 supportfor make is provided as well.

125

Chapter 5Conversions and
onvertors
Ea
h ma
ro pa
kage handling a
onversion from Yodl to a given output format hasits pe
ularities. Although the various ma
ro pa
kages are very similar, they do showsome di�eren
es, due to the unique
hara
teristi
s of the output formats. Normally,these di�eren
es should not
ause di�
ulties in performing the
onversion(s). Inthis
hapter the
onversion of a Yodl do
ument is
overed. The
urrently supporteddo
ument types are dis
ussed. Furthermore, in this
hapter the new post pro
essoryodlpost is des
ribed as well as a little support program: yodlverbinsert.5.1 Conversion s
ript invo
ationsYodl is distributed with s
ripts named yodl2latex, yodl2html and other yodl2...drivers. Invo
ations likeyodl2latex file
auses Yodl to pro
ess file.yo and to write output to file.latex. The extensionof the input �le, .yo, is the default Yodl extension; the extension of the output �le,.latex, is given by the name of the shell s
ript. Analogously, yodl2html writes toa �le having the extension .html.The
onversion s
ripts auto-load the ma
ro �le appropriate for the
onversion:latex.yo for LaTeX
onversions, html.yo for HTML
onversions, et
.. The ma
ro�les are in Yodl's standard in
lude dire
tory (whi
h is mentioned in Yodl's usageinformation when Yodl is started without arguments). If the in
lude dire
tory isaltered in su
h a way that it doesn't
ontain a path to the default dire
tory any-more, then Yodl won't be able to auto-load the
onversion spe
i�
 ma
ro �les,produ
ing unexpe
ted results. This
an be prevented by spe
ifying the literal text$STD_INCLUDE in a user-de�ned path setting.When the
onversion s
ripts themselves are started without arguments, usage in-formation is shown about the
onversion s
ripts.Depending on the
onversion type, the following output is produ
ed:126

• For LaTeX
onversions, one output �le with the extension .latex is written.
• For HTML
onversions, several �les may be written; one �le per
hapter ofthe original do
ument. When the do
ument is not se
tioned by
hapters, onlyone output �le is produ
ed.The `main' output �le always has the name of the input �le but with extension.html. This �le holds the do
ument title and the table of
ontents. Whenmore than one output �les are
reated, then they are named name01.html,name02.html et
., where name is the original name of the input �le. E.g., ado
ument prog.yo might lead to prog.html, prog01.html et
..
• For man
onversions, one output �le with the extension .man is written.
• For text
onversions, the
onverter is named yodl2txt and one output �lewith the extension .txt is
reated.
• For XML
onversions, the
onverter is named yodl2xml and output �les areprodu
ed
omparably to the way they are produ
ed with the html
onversion:one �le per
hapter if
hapters are used, otherwise one single output �le, havingthe extension(s) .xml.The `se
ond-phase' s
ripts, distributed with earlier versions of Yodl, are no longerpart of Yodl's distribution, as they do not relate dire
tly to Yodl's a
tions. Theymay remain useful, though, as leftovers from earlier distributions.5.2 The HTML
onverterHTML doesn't support automati
 se
tion numbering or resolving of label/referen
epairs. The
onverter takes
are of this. Other target languages (e.g., XML, text)su�er from the same problems.Dire
t
ommands to HTMLSimilar to the LATEX
onverter, you
an use either NOTRANS or html
ommand tosend HTML
ommands to the output. Or, sin
e the only `di�
ult'
hara
ters areprobably only < and >, you
an also resort to CHAR for these two
hara
ters.Furthermore, the HTML
onverter de�nes the ma
ro htmltag, expe
ting two argu-ments: the tag to set, and an `on/o�' swit
h. E.g., htmltag(b)(1) sets whilehtmltag(b)(0) sets .E.g., the following
ode sends a HTML
ommand <hr> to the output �le when inHTML mode:COMMENT(-- alternative 1, using html
ommand --)html
ommand(<hr>)COMMENT(-- alternative 2, using NOTRANS --)IFDEF(html)(NOTRANS(<hr>))() 127

COMMENT(-- alternative 3, using CHAR --)IFDEF(html)(CHAR(<)hrCHAR(>))()COMMENT(-- alternative 4, using htmltag --)htmltag(hr)(1)Se
tion numberingThe HTML
onverter numbers its own se
tions. This is handled internally. How-ever, the
urrent
onverter only
an number se
tions as starting at 1, and outputsthe numbers in arabi
 numerals (you
an't number with A, B, et
..).5.3 The LaTeX
onverterThe LATEX
onverter is, from Yodl's viewpoint, an easy one: sin
e LATEX supportswide fun
tionality, a Yodl do
ument is basi
ally just re-mapped to LATEX
ommands.No post-pro
essing by yodlpost is required.Dire
t
ommands to LaTeXTo send LATEX
ommands dire
tly to the output, use the latex
ommand() ma
ro(see se
tion 4.3.2), or use NOTRANS (see se
tion 3.1.44). The advantage of thelatex
ommand ma
ro is that it only outputs its argument when in LATEX mode.The following two
ode fragments both output \pagestyle{plain} when in LATEXmode:COMMENT(-- First alternative: --)latex
ommand(\pagestyle{plain})COMMENT(-- Se
ond alternative: --)IFDEF(latex)(NOTRANS(\pagestyle{plain}))()Verbatim textThe Yodl ma
ro pa
kage de�nes two ma
ros that generate verbatim text (e.g., sour
e
ode listings). These ma
ros are verb() and tt().verb The verb() ma
ro and is meant for longer listings (whole �les); as in:128

verb(#in
lude <stdio.h>int main (int arg
,
har **argv){ printf ("Hello World!\n");return 0;})The verb() ma
ro will generate \begin{verbatim} and \end{verbatim}when used in LATEX
onversion mode. That means that (in that situation)the verb ma
ro has only one
aveat: you
annot put \end{verbatim} into it.tt The tt() ma
ro also inserts verbatim text. It is used for short in-line strings(e.g, **argv). The LATEX
onverter doesn't a
tually use a verbatim mode,but sets the
hara
ters in teletype font.5.4 The man
onverterManual pages
an be
onstru
ted using the spe
ial yodl2man
onverter. This
on-verter assumes that the manual page has been designed using the manpage()ma
ro.Yodl (and thus the yodl2man
onverter, when
onerting man-pages, will skip allleading white spa
e on lines. Paragraphs are supported, though. An empty lineseparates paragraphs.Dire
t
ommands to manEither NOTRANS or man
ommand
an be used to send man
ommands to the output.E.g., the following
ode sends a MAN
ommand <hr> to the output �le when inMAN mode:COMMENT(-- alternative 1, using man
ommand --)man
ommand(<hr>)COMMENT(-- alternative 2, using NOTRANS --)IFDEF(man)(NOTRANS(<hr>))()5.5 The txt
onverterPlain text do
uments
an be
onstru
ted using the yodl2txt
onverter. This
on-verter will resolve all referen
es into the do
ument itself, so postpro
essing is re-quired. 129

Dire
t
ommands to txtEither NOTRANS or txt
ommand
an be used to send txt
ommands to the output.E.g., the following
ode sends a TXT
ommand <hr> to the output �le when inTXT mode:COMMENT(-- alternative 1, using txt
ommand --)txt
ommand(<hr>)COMMENT(-- alternative 2, using NOTRANS --)IFDEF(txt)(NOTRANS(<hr>))()5.6 The experimental XML
onverterThe XML
onverter is experimental. It was added to Yodl to allow me to writedo
uments for the horrible `webplatform' of the university of Groningen. The XMLsupport �les (lo
ated in the xml dire
tory in the standard ma
ro's dire
tory)
learlyre�e
t this target. Although experimental, they were kept be
ause the XML ma
rossupport interesting
onstru
tions allowing Yodl to handle
losing tags somewhatmore stri
t than required for HTML.5.7 The Yodl Post-pro
essor `yodlpost'Following the
onversion of a Yodl text, most target-languages require an additionaloperation,
alled `post-pro
essing'. Post-pro
essing is required for various reasons:to split the output in separate �les (HTML, XML); to �xup the lo
ations of labels,that are referred to earlier than the labels are de�ned (virtually all target languageex
ept LaTeX); tables of
ontents are available only after the
onversion, but willhave to be inserted at the beginning of the do
ument; et
. et
..Starting with Yodl V. 2.00 there is only one post-pro
essor, handling all the
onver-sions for all target languages. Program maintenan
e of just one program is
ertainlyeasier than maintenan
e of as many programs as there are target-languages, at theexpense of only a slightly larger program: after all, the one post-pro
essor
on-tains the
onversion pro
edures for all target languages. It turns out that this is avery minimal drawba
k. See se
tion 6.7 for the te
hni
al details of post-pro
essorprogram maintenan
e.The post-pro
essor that is distributed sin
e YodlV. 2.00 does not use the .tt(Yodl)TAGSTART.and .tt(Yodl)TAGEND. tags anymore. Instead, the
onversion pro
ess produ
es aindex �le in whi
h
omparable information is written. The advantage of using anindex �le is that the postpro
essor doesn't have to parse the output �le generatedby Yodl twi
e (on
e to determine the tags, on
e to pro
ess the tags), whi
h byitself a

elerates the
onversion pro
ess; and (albeit of a somewhat limited pra
-ti
al importan
e) that the tags are no longer reserved words : authors may put.tt(Yodl)TAGSTART. and .tt(Yodl)TAGEND. into their texts as often as they want.130

Authors should be aware of some
aveats with respe
t to some target languages:man- and ms-
onversions all dots are
onverted by the a
tive
hara
ter
on-version table to \&.. Commands in these languages always start with a dot asthe �rst
hara
ter on a line. In order to insert these
ommands the roff
md()(see se
tion MACROLIST) should be used.plain text
onversions As stated before, the ASCII
onverter basi
ally only stripsma
ronames from its input. This
onverter is so basi
, that it should only beused as a last resort, when no other target language is available for the job.With the plain text
onverer, the layout of the input �le is very important, asthe output is basi
ally the same as the input. The only ex
eption to this ruleare multiple empty lines, whi
h normally are
onsumed by the post-pro
essor,to be repla
ed by one single empty line.sgml
onversions the SGML
onverter was implemented for histori
 reasons. Itis by no means
omplete, and
an at best be
onsidered an `initial startingpoint'. Currently, the SGML
onverter only supports the arti
le do
umenttype, having se
t as its top-level se
tioning
ommand.xml
onversions The XML
onverter was implemented to allow me (Frank) toprodu
e XML text as de�ned by the so-
alled `webplatform' of the Universityof Groningen. A
ompletely pathologi
al implementation of XML,
ripplingits users to the level of the `double
li
k brigade'. Well, so be it. The netresult of this is that Yodl now o�ers some sort of XML
onversion, whi
h willsurely require modi�
ations in the near future. Mu
h XML handling is basedon frame-�les whi
h are literally inserted into the
onverted text. Hopefullythat will be useful when
onstru
ting XML
onversions for other environmentsthan the `webplatform'.5.8 The support program `yodlverbinsert'The program yodlverbinsert is a simple C support program that
an be used togenerate verb()-se
tions in Yodl �les from se
tions of existing �les. The �les fromwhi
h se
tions are in
luded are usually C or Cpp sour
e �les, a

epting either //or /*-style
omment.Yodlverbinsert o�ers the possibility to indent both the initial verb-statement andthe inserted �le
ontents. Furthermore, an additional empty line may be insertedbefore the �rst line that is a
tually inserted. The program is invoked a

ording tothe following synopsis:yodlverbinsert [OPTIONS℄ marker fileThe arguments have the following meanings;
• markerThe argument marker must start in file's �rst
olumn en must either startas a standard C or C++
omment: // or /* must be used. Following that,the remainder of the argument is used as a label, e.g., //label, /*LABEL*/.The label may
ontain non-alpha
hara
ters as well. Ex
ept for the �rst two131

hara
ters and their lo
ations no spe
ial restri
tions imposed upon the labeltexts. A labeled se
tion ends at the next //= (when the label started with//) or at the next /**/ (when the label started with /*). Like the labels, theend-markers must also start in the �le's �rst
olumn.
• fileThe argument file must be an existing �le. Yodlverbinsert was designedwith C or C++ sour
es in minde, from whi
h labeled se
tions must be in-serted into a Yodl do
ument, but file
ould also refer to another type of(text) �le.The default values of options are listed below, with ea
h of the options betweensquare bra
kets. The defaults were
hosen so that yodlverbinsert performs thebehavior of an earlier version of this program, whi
h was not distributed with Yodl.
• -NDo not write a newline immediately following verb-statement's open-parenthesis.By default it is written,
ausing an additional line to be inserted before the�rst line that's a
tually inserted from a �le.
• -s spa
es [0℄start ea
h line that is written into the verb-se
tion with spa
es additionalblanks.
• -S spa
es [8℄pre�x the verb of the verb-se
tion by spa
es additional blanks.
• -t tabs [0℄start ea
h line that is written into the verb-se
tion with tabs additional tab
hara
ters. If both -s and -t are spe
i�ed, the tabs are inserted �rst.
• -T tabs [0℄pre�x the verb of the verb-se
tion by tabs additional tab
hara
ters. If both-S and -T are spe
i�ed, the tabs are inserted �rst.Yodlverbinsert writes its sele
ted se
tion to its standard output stream.5.8.1 ExampleAssume the �le demo
ontains the following text:pre
eding text//oneone 1//=/*two*/two 132

/**/trailing textThen the following
ommands write the shown output to the program's standardoutput:
• verbin
lude //one demoverb(one 1)
• verbin
lude -N //one demoverb(one 1)
• verbin
lude -s4 '/*two*/' demoverb(two)To
all yodlverbinsert from a Yodl do
ument, use PIPETHROUGH. E.g.,PIPETHROUGH(yodlverbinsert //one demo)Alternatively, de�ne a simple ma
ro like the ma
ro verbinsert:DEFINEMACRO(verbinsert)(2)(PIPETHROUGH(yodlverbinsert //ARG1 ARG2)()\)whi
h may be a useful ma
ro if all or most of your labeled se
tions start with //,and if yodlverbinsert's arguments don't vary mu
h. Variants to this ma
ro
aneasily be
on
eived of.Note, however, that by default the PIPETHROUGH built-in will not be exe
uted. Besure to
all yodl using the �live-data option, e.g., yodl -l3133

Chapter 6Te
hni
al information
This
hapter
onsists of various se
tions. The �rst se
tion des
ribes Yodl fromthe point of view of the systems administrator. Issues su
h as the installationof the pa
kage are addressed here. The se
ond se
tion des
ribes Yodl's te
hni
alimplementation in some detail. Apart from the do
umentation about Yodl givenhere, mu
h
an be found in the individual sour
e �les. However, se
tion 6.2 des
ribes`the broad pi
ture'. Having read se
tion 6.2, it should be relatively easy to determinewhat happens where inside the Yodl program and the yodl-post post pro
essor.6.1 Obtaining YodlYodl and the distributed ma
ro pa
kage
an be obtained at the ftp site ftp.rug.nl1in the dire
tory
ontrib/frank/software/linux/yodl2.The pa
kage is found in various yodl-X.Y.Z �les, where X is the highest versionnumber. This is a gzipped ar
hive
ontaining all sour
es, do
umentation and ma
ro�les. In the yodl dire
tory ar
hives having the .deb extension
an also be found:these are Debian3 �les,
ontaining all information that is required to install binaryversions using Debian's dpkg �install
ommand.6.1.1 Installing YodlThe binary pa
kage, distributed in yodl-X.Y.Z_a.b.
.deb
an be installed usingdpkg -install yodl-X.Y.Z. It will install:

• Yodl's binaries in /usr/bin;
• Yodl's ma
ros in /usr/share/yodl
• Yodl's do
umentation in /usr/share/do
/yodl;
• Yodl's manpages in /usr/share/man/man{1,7};1ftp://ftp.rug.nl/2ftp://ftp.rug.nl/
ontrib/frank/software/linux/yodl3http://www.debian.org 134

Lo
al installations, not using the Debian installation pro
ess,
an be obtained usingthe provided i
make build-s
ript see below. An alternative is to use make.If a lo
al installation is preferred or required, unpa
k the �le yodl-X.Y.Z.tar.gz.Next,
hdir to the dire
tory yodl-X.Y.Z, and optionally tweak the �le
onfig toyour needs. Next, issue the
ommand:build pa
kageFollowed bybuild install /usror build install /usr/lo
alThe installation pro
ess will install the binaries, manual pages, other do
umentationand ma
ro �les under the indi
ated dire
tory. For ea
h part of the Yodl pa
kagea separate build s
ript is available (repse
tively in the sr
, ma
ros, man andmanual subdire
tories under the
ommon .../yodl-root where the main builds
ript is found). Ea
h of these build s
ripts
an be
alled using build install xxxas well, allowing you to store Yodl's various parts in
ompletely di�erent dire
tories.However, by far the easiest way to install a binary distribution is to use the Debiandpkg �install yodl*.deb
ommand. Dpkg will install the various parts a

ordingto Debian's
onventions under usr/.Installation from sour
e requires you to have the following programs installed onyour system:
• A C
ompiler and run-time environment. A POSIX-
ompliant
ompiler, li-braries and set of header �les should work without problems. The GNU g

ompiler 3.3.4 and higher should work �awlessly.
• I
make: I
make is part of the standard Debian distribution, and
an also beobtained from ftp://ftp.rug.nl/4.
• Standard tools, like sed, grep, perl, et
..
• /bin/sh: a POSIX-
ompliant shell interpreter. The GNU shell interpreterbash
an be used instead.4ftp://ftp.rug.nl/
ontrib/frank/software/linux/i
make

135

6.2 Organization of the softwareThis se
tion des
ribes the organization of the sour
e �les. Its
ontents are notne
essarily relevant for the binary distribution. The se
tion is probably most usefulto those readers who want to be able to extend or who want to do maintenan
eon Yodl's sour
es, or who want simply to understand what's happening inside theYodl program.Mu
h of the do
umentation is provided in the individual sour
e �les themselves.This se
tion, however, should o�er the `broad pi
ture', allowing you to understandthe logi
 behind Yodl relatively fast.6.2.1 Subdire
tories and their meaningsAfter unpa
king Yodl's sour
e ar
hive, the following dire
tories are available:
• yodl: the root-dire
tory of the Yodl tree. All sour
es and program mainte-nan
e s
ripts are found in or below this dire
tory.
• debian: an auxiliary dire
tory
ontaining all �les and dire
tories required to
reate a new Debian distribution.
• debian/tmp: a temporary dire
tory used by the Debian installation pro
essto store the �les belonging to a parti
ular .deb distribution.
• yodl/ma
ros: This dire
tory
ontains all the ma
ro de�nitions of the standardma
ro pa
kage. It
ontains the following subdire
tories:� yodl/ma
ros/in: This dire
tory
ontains generi
 ma
ro �les. Thesema
ro �les
ontain the words �STD_INCLUDE�, whi
h will be repla
ed bythe standard in
lude dire
tory used in a parti
ular distribution.� yodl/ma
ros/rawma
ros: This dire
tory
ontains the raw ma
ro de�-nition �les themselves. One �le per raw ma
ro. A raw ma
ro
ontainsthe implementations of that ma
ro for all supported
onversion types,and has the extension .raw. Furthermore, this dire
tory
ontains somesupport s
ripts:
reate, separator.pl, startdo
.pl.� yodl/ma
ros/yodl: this is the dire
tory to
ontain Yodl's standardma
ros. The (re
ursive)
ontents of this dire
tory will eventual be
opiedby the installation pro
edure to the .../share/yodl dire
tory, whi
hwill then be
ome Yodl's standard in
lude dire
tory.� yodl/ma
ros/yodl/
hartables: This dire
tory
ontains
hara
ter-translationtables for various target languages.� yodl/ma
ros/yodl/xml: This dire
tory
ontains the XML frame �les,used to
onvert Yodl do
uments to XML, as implemented by the `web-platform' of the University of Groningen. All these frame �les have theextensions .xml.
• yodl/man: The raw sour
e �les of all man-pages: manpages of the Yodlprogram itself, of the yodl post-pro
essor, of the
onversion s
ripts, of thebuiltin-fun
tions, of the standard ma
ros and of Yodl's manpage and letterdo
ument types. These raw sour
e �les have the extensions .in, indi
ating136

that they may
ontain �STD_INCLUDE� words, whi
h will be repla
ed by theeventually used standard in
lude path.� yodl/man/1: The destination for Yodl's manual pages in se
tion 1 (pro-grams).� yodl/man/7: The destination for Yodl's manual pages in se
tion 7 (ma
ropa
kages and
onventions).
• yodl/manual: The sour
e �les of the
omplete Yodl manual, as well as thedire
tories for the various
onverted formats. The s
ript build, found in thisdire
tory,
onstru
ts the manual in the subdire
tories:� yodl/manual/html: the HTML-
onverted manual;� yodl/manual/latex: the LATEX-version of the manual;� yodl/manual/pdf: the pdf-version of the manual;� yodl/manual/ps: the PostS
ript-version of the manual;� yodl/manual/txt: the plain text-version of the manual;
• yodl/manual/yo: The sour
e �les of the
omplete The Yodl do
ument �lesthemselves are lo
ated in subdire
tories of this dire
tory. They are:� yodl/manual/yo/
onverters� yodl/manual/yo/intro� yodl/manual/yo/ma
ros� yodl/manual/yo/te
hni
al� yodl/manual/userguide (and various subdire
tories)
• yodl/s
ripts: support s
ripts used by the building pro
ess:
onfigrepla
ementsrepla
es �XXX� words by their a
tual values as found in yodl/sr
/
onfig.h;yodl2whatever.in is the generi
 yodl-
onverter,
alling ma
ros spe
i�
 for aparti
ular
onversion type. This generi

onverter will be installed in .../bin/,together with spe
i�

onverters, installed as soft-links to this generi

on-verter.
• yodl/sr
: This dire
tory
ontains the sour
e-�les of theC programs Yodl andyodl-post, as well as all auxiliary dire
tories
ontaining sour
es of the (logi-
al)
omponents of these programs. Most of these
omponents are like C++
lasses in that they de�ne a building blo
k of the Yodl and/or yodl-postprogram. Their organization, intera
tion and relationship is des
ribed below.They are:� yodl/sr
/args: the
omponent handling the
ommand-line arguments;� yodl/sr
/builtin: the
omponent handling Yodl's builtin fun
tions;� yodl/sr
/
hartab: the
omponent handling Yodl's
hara
ter table type;� yodl/sr
/
ounter: the
omponent handling Yodl's
ounter type;� yodl/sr
/file: the
omponent handling all �le operations (lo
ating,opening, et
.);� yodl/sr
/hashitem: key/value
ombinations stored in Yodl's hashtable;� yodl/sr
/hashmap: Yodl's hashtable;� yodl/sr
/lexer: Yodl's lexi
al s
anner: this
omponent
onsumes the.yo �le, and produ
es a
ontinuous stream of tokens to be handled byanother
omponent: the parser.137

� yodl/sr
/lines: the
omponent storing lines of text, used by yodl-post.� yodl/sr
/ma
ro: the
omponent handling Yodl's ma
ro type;� yodl/sr
/message: the
omponent handling all messages (warnings, er-rors, verbosity settings, et
.).� yodl/sr
/new: the
omponent handling all memory allo
ations (ex
eptfor dupli
ating strings, whi
h is handled by the root-
omponent).� yodl/sr
/ostream: the
omponent handling all Yodl's output to itsoutput-�le (Yodl may also output to strings, whi
h is not handled by theostream
omponent).� yodl/sr
/parser: the
omponent handling the tokens produ
ed by thelexer-
omponent. This
omponent governs all a
tions to be taken duringa
onversion. Its a
tions all derive from its fun
tion parser_pro
ess().� yodl/sr
/postqueue: the
omponent handling the postpro
essing re-quired by most
onversions.� yodl/sr
/pro
ess: the
omponent handling the exe
ution of
hild- orsystem-pro
esses.� yodl/sr
/queue: the
omponent allowing the lexi
al s
anner to queueits input, awaiting further pro
essing.� yodl/sr
/root: the
omponent de�ning some basi
 typedefs and enu-merations, as well as the new_str() fun
tion dupli
ating a string, andthe out_of_memory() fun
tion handling memory allo
ation failures.� yodl/sr
/sta
k: the
omponent implementing a sta
k data stru
ture.� yodl/sr
/string: the
omponent implementing a text-storage datastru
ture and its fun
tionality.� yodl/sr
/subst: the
omponent handling Yodl's SUBST de�nitions;� yodl/sr
/symbol: the
omponent handling Yodl's symbol type;� yodl/sr
/yodl: the sour
es of the Yodl program itself. This dire
-tory also
ontains the implementations of all builtin fun
tions, whose�lenames all start with gram_ (E.g., gramaddto
ounter.
).� yodl/sr
/yodlpost: the sour
es of the yodl-post program.The s
ript build, found in this dire
tory,
onstru
ts the programs Yodl andyodl-post in the subdire
tory:� yodl/sr
/bin6.3 Yodl's
omponent interrelations and
omponentsetupYodl's
omponents show a stri
t hierar
hi
al ordering. This allows the testingand development of
omponents pla
ed nearer to the
omponent's tree without
onsidering anything that's pla
ed farther away.The following pie
e of `as
ii-art' shows the relationships for the Yodl program. Theroot of the tree starts at the top, at the root
omponent. The tree
an be readfrom the top to the bottom, where ea
h horizontal line starts a level of
omponentsmentioned immediately below it, and ea
h verti
al route through the �gure a series138

of
omponents whose fun
tioning depend on at least the
omponents mentionedearlier.However, a more natural way to look at it is to start somewhere in the tree, andsee what's envountered going up. Doing so, all
omponents that are required arevisited. On
e the �gure shows a|--- | ---|
onstru
tion. This means that the horizontal line is not related to the verti
aldependen
y
rossing (but not tou
hing) it.root|message|new|+-------+---+-------+| | |string queue sta
k| | |+-------+-------+ | hashitem| | | | || args subst | hashmap| | | | || | +-------+ +---+-------+| | | | || | | symbol +---+----+-------+-------+| | | | | | | || +-------+------ | ------+
hartab
ounter ma
ro builtin| | | | | | || file | +---+----+-------+-------+| | | || +---+---+ || | || +---+---+ || | | |pro
ess lexer ostream || | | || +-------+-------+-----------+| || parser| |+-------------------------------+|(yodl)139

A similar, albeit mu
h simpler, tree
an be drawn for yodl-pst. Here is the orga-nization of the
omponents for the yodl-post program:root|message|new|+-----+---+---+| | || | |lines string hashitem| | || args hashmap| | || +-------+| || file| |+-----+|postqueue|yodl2html-postThe sour
e �les of ea
h
omponent are organized as follows:
• All the �les of a
omponent are stored in a dire
tory, named after the
ompo-nent. For example, the
ounter
omponent is found in the dire
toryyodl/sr
/
ounter
ontaining all the (sour
e) �les that de�ne that
omponent.
• Ea
h fun
tion is stored in a �le of its own inside its
omponent-dire
tory.For example, the fun
tion
ounter_value() is de�ned in the sour
e �le
ountervalue.
.
• The �le names are identi
al to the names of the fun
tions, ex
ept for the fa
tthat only lower
ase letters are used for the �le names, and that the �le namesnever use unders
ore
hara
ters.
• The .h header �les de
lare the fun
tions that
an be used by other
ompo-nents. These fun
tions are
omparable to C++'s publi
 members. Further-more, these .h �les de�ne all stru
ts and typedefs that are required for other
omponents to use a parti
ular
omponent. For example, the
omponent.hheader �le may
ontain 140

#ifndef _INCLUDED_COUNTER_H_#define _INCLUDED_COUNTER_H_#in
lude "../root/root.h"#in
lude "../hashmap/hashmap.h"void
ounter_add(HashItem *item, int add); /* err if no
ounter */bool
ounter_has_value(int *valuePtr, HashItem *item);Result
ounter_insert(HashMap *symtab,
har
onst *key, int value);void
ounter_set(HashItem *item, int value); /* err if no
ounter */
har
onst *
ounter_text(HashItem *item); /* returns stati
 buffer */int
ounter_value(HashItem *item); /* err if no sta
k/item */#endif
• All fun
tions de
lared in .h �le start with the name of the
omponent, andoften
ontain an initial pointer to some stru
t
ontaining the essential �eldsthat are asso
iated with that parti
ular
omponent. For example, most
ounter_fun
tions have a HashItem * as their �rst argument, as a HashItem is nor-mally used to store the details about a
ounter.
• The modi�er
onst is used with pointers to indi
ate that the informationpointed to by the pointer is `owned' by the provider of that information. Withparameters it indi
ates that the
aller owns the information, and the fun
tionwill not modify the provided info; with return types it indi
ates that the fun
-tion `owns' the returned information, whi
h therefore may not be modi�ed (orfreed) by the
aller of that fun
tion (e.g.,
har
onst *
ounter_text). Theabsen
e of
onst in
ombination with pointers indi
ates that the informationpointed to by the pointer
ould, in prin
iple, be modi�ed by the
ode re
eivingthe pointer value.
• Most
omponents also show a .ih �le, a so-
alled internal header �le. Theinternal header de
lares `internal support fun
tions', not to be used by otherparts of the software, and de�nes internal typedefs. Sin
e they are an essentialingredient of the
omponent, all these internal headers start to in
lude the
omponent's .h �le, followed by the de
larations of the `private' fun
tions.All these private fun
tions start with abbreviated
omponent names, like
o_in the
ase of
ounters. Here is a possible implementation of the
ounter.ihinternal header �le:#in
lude "
ounter.h"#in
lude <stdio.h>#in
lude "../sta
k/sta
k.h"#in
lude "../message/message.h"#in
lude "../new/new.h"Sta
k *
o_
onstru
t(int value);Sta
k *
o_sp(HashItem *item, bool errOnFailure);
• The
ombination of .h and .ih �les de�ne the dependen
ies of the
omponentin the
omponent hierar
hy. As
an be seen,
ounter depends on sta
k,141

message, new, hashmap and root. The a
tual dependen
y listing may be abit more
omplex, as some .h �les themselves depend on other .h �les. Thisis
learly visible in the
ounter.h �le. The
lass hierar
hy given earlier showsthe �nal
omponent dependen
ies.
• A .h �le of a
omponent X will never in
lude a .ih �le of
omponent Y, butonly the .h �les of other
omponents.6.4 The token-produ
er `lexer_lex()'Tokens are produ
ed by the lexi
al s
anner. The fun
tion lexer_lex() produ
esthe next token, whi
h is always an element of the following set:TOKEN_UNKNOWN, /* should never be returned */TOKEN_SYMBOL,TOKEN_TEXT,TOKEN_PLAINCHAR, /* formerly: any
har */TOKEN_OPENPAR,TOKEN_CLOSEPAR,TOKEN_PLUS, /* it's semanti
s what we do with a +, not *//* something for the lexer to worry about */TOKEN_SPACE, /* Blanks should be at the end */TOKEN_NEWLINE,TOKEN_EOR, /* end of re
ord: ends pushed strings */TOKEN_EOF, /* at the end of nested evaluations/eof */In parti
ular note the existen
e of a TOKEN_EOR token: this token indi
ates the endof a pie
e of text, a string, inserted into the input stream by the parser 's a
tions,when it
alls lexer_push_str(). Su
h a situation o

urs in parti
ular when ama
ro is evaluated: having read a ma
ro, and repla
ing its parameters ARG1, ARG2,... ARGn by their respe
tive argumentes, the resulting string is pushed ba
k intothe input stream by lexer_push_str(). This happens, e.g., inside the fun
tionp_expand_ma
ro(). An ex
erpt from this fun
tion shows this
all:void p_expand_ma
ro(register Parser *pp, register HashItem *item){ ... if (arg
) /* ma
ro with arguments */p_ma
ro_args(pp, &expansion, arg
);...lexer_push_str(&pp->d_lexer, string_str(&expansion));...} 142

The parser repeatedly
alls the lexer's fun
tion lexer_lex(). This happens mostdramati
ally inside the fun
tion p_parse(), de�ned by a mere single statement:void p_parse(register Parser *pp){ while ((*pp->d_handler[lexer_lex(&pp->d_lexer)℄)(pp));}Here, in a loop
ontinuing until the handler indi
ates that the loop should terminate,lexer_lex() is
alled to produ
e the next token. The �nite state automaton (FSA)implemented here is des
ribed in more detail in se
tion 6.5.Apart from here, lexer_lex() is
alled from four other lo
ations inside the parser
omponent:
• parser_parlist() repeatedly
alls lexer_lex() to obtain all the tokens as-so
iated with a parameter list;
• p_handle_default_newline() repeatedly
alls lexer_lex() to obtain all thetokens until all
onse
utive spa
es and newlines are read. This is one of thehandlers of the parser FSA 6.5;
• p_no_user_ma
ro()
alls lexer_lex() to determine whether a `no user ma
ro'has been dete
ted;
• p_plus_series()
alls lexer_lex() to determine whether a +symbol hasbeen en
ountered.So, lexer_lex() is the parser's `window to the outside world'. The lexer_lex()fun
tion, however, is a fairly
omplex animal:
• lexer_lex(): returns next token. It
alls l_lex() to retrieve the next
har-a
ter from the info waiting to be read;
• l_lex():
alls l_next
har() to obtain the next token, and appends all
har-tokens to the lexer's mat
hed text bu�er. Potential
ompound symbols(words, numbers) are
ombined by l_
ompound() and are then returned asTOKEN_PLAINCHAR or as a
ompound token like TOKEN_IDENT;
• l_next
har():
alls l_get() to get the next
hara
ter, and handles es
ape
hars, in
luding \at eoln;
• l_get(): if there are no media left, EOF is returned. If there are media left,then l_subst_get()will retrieve the next
hara
ter, handling possible SUBSTde�nitions. At the end of the
urrent input bu�er (memory bu�er or �le)l_pop() attempts to rea
tivate the previous bu�er. If this su

eeds, EOR isreturned, otherwise EOF is returned. So, the lexer is not able to swit
h betweentruly nested media, as in EVAL()
alls, but is able to swit
h between nestedbu�ers resulting from repla
ing ma
ro
alls by their de�nitions;
• l_subst_get():
alls l_media_get() to get the next
har from the media.The next
har is passed to subst_�nd() whi
h is a FSA trying to mat
h the143

longest SUBST. This may be done repeatedly, and eventually subst_text()will either return a substitution text, or the next plain
hara
ter. A substitu-tion text is pushed onto the lexer's media bu�er. The next
hara
ter returnedis then the next one to appear at the lexer's media bu�er;
• l_media_get(): If the
urrent a
tive sour
e of information is a �le, it returnsthe next
hara
ter from that �le or EOF if no su
h
har is available anymore.If the
urrent a
tive sour
e is a memory bu�er then the next
har from thebu�er is returned. If the bu�er is empty EOF is returned. The media bu�er isa
ir
ular, self-expanding Queue.6.5 The Parser's Finite State AutomatonThe parsing of the input �les is performed by the fun
tion parser_pro
ess(),whi
h is
alled by Yodl's main() fun
tion.This pro
essor will push all �les that were spe
i�ed on the input in reverse order onthe input sta
k, and will then
all the support fun
tion p_parse() to pro
ess ea
hof them in turn.p_parse() is an very short fun
tion: it
ontains one while statement, repeatedly
alling a handler appropriate with the next token returned by the lexi
al s
anner.Therefore, the parser
an be
onsidered as a table driven �nite state automaton(FSA).The table itself is initialized in parser/psetuphandlerset.
, by the fun
tion p_setup_handlerSet().It �lls the two dimensional array ps_handlerSet with the address of the fun
-tion that must be
alled for ea
h
ombination of parser-state (as de�ned in theHANDLER_SET_ELEMENTS enum) in parser/parser.h and token that may be pro-du
ed by the lexi
al s
anner (as de�ned in the LEXER_TOKEN enum in lexer/lexer.h).Depending on the situation the parser en
ounters, it may point its pointer d_handlerto a parti
ular row in this table. Sin
e the rows represent the parser's states, states
an be swit
hed easily by reassigning this pointer. This happens all the time. For ex-ample, when in parsernameparlist.
 a name must be retrieved from a parameterlist, it
alls parser_parlist(pp, COLLECT_SET), whi
h fun
tion will temporarilyswit
h the parser's state to COLLECT_SET, returning the parameter list's
ontents.to its
aller.The fun
tions whose addresses are stored in the various
olumn-elements of the arrayps_handlerSet are
alled handler. Most handlers are named p_handle_<state>_<lextoken>(),where <state> is the name of the asso
iated parser state, and <lextoken> is thename of the appropriate lexi
al s
anner token. For example, p_handle_default_symbol()is the handler that was designed for the situation where the parser is in its initial,or default, state, and the lexi
al s
anner returns a TOKEN_SYMBOL token. Some han-dlers have more generi
 names, like p_handle_unknown(), whi
h is some sort ofemergengy exit,
alled when the parser doesn't know what to do with the re
eivedlexi
al s
anner token (a situation whi
h should, of
ourse, not happen).In versin 2.00, the following handler fun
tions are available:
• p_handle_insert(Parser *pp): insert mat
hed text
• p_handle_default_eof(Parser *pp): return false144

• p_handle_default_newline(Parser *pp): series of \n's
• p_handle_default_plus(Parser *pp): handle + series
• p_handle_default_symbol(Parser *pp): handle all symbols
• p_handle_ignore(Parser *pp): ignores token
• p_handle_ignore_
losepar(Parser *pp): handle openpar
• p_handle_ignore_openpar(Parser *pp): handle openpar
• p_handle_noexpand_plus(Parser *pp): handle + series
• p_handle_noexpand_symbol(Parser *pp): handle exe
uted symbols in NO-EXPAND
• p_handle_parlist_
losepar(Parser *pp): handle
losepar
• p_handle_parlist_openpar(Parser *pp): handle openpar
• p_handle_skipws_unget(Parser *pp): unget re
eived text
• p_handle_unexpe
ted_eof(Parser *pp): EMERG exit
• p_handle_unknown(Parser *pp): emergen
y exitThe parser has the following states:COLLECT_SET retrieves parameter lists as they are en
ountered on the in-put. The parameter list is not pro
essed in any way, and will omit thesurrounding parentheses. So, when entering this state (e.g., in the fun
tionparser_parlist()), a parameter list is
ompletely
onsumed, but only its
ontents (and not its surrounding parentheses) be
ome available. In fa
t,when entering a state, p_parse()
an be
alled again to pro
ess the infor-mation in this state. Eventually a state will en
ounter some stopping sig-nal (e.g., a non-nested
lose parenthesis in the
olle
t-state will result inp_handle_parlist_
losepar() to return false, thus terminating p_parse()),terminating that parti
ular state. The fun
tion parser_parlist() shows thispro
ess in further detail.DEFAULT_SET In this state ma
ros, builtins et
. are pro
essed. For most ofthe tokens that
an be returned by the lexi
al s
anner p_handle_insert() is
alled.

• When re
eiving EOF it will try to swit
h to the next �le on the sta
k(or stop),
• When re
eiving a symbol, it will either handle them as plain symbols oras ma
ros,
• When re
eiving newlines they will be handled (maybe merging them by
alling a paragraph handler (if de�ned)),
• Series of +
hara
ters will be handled
• All other tokens will be inserted into the
urrent output medium (whi
hmay be a �le, but it may also be a memory bu�er).IGNORE_SET In this state a parameter list is
ompletely skipped. This stateis used, for example, when pro
essing COMMENT().145

NOEXPAND_SET The
ontents of a parameter list is not expanded, but CHARbuiltins are pro
essed. In Yodl version 2.00 there is only one situation wherthis state (and its
ompanion state NOTRANS_SET) is a
tively used: Yodl'sfun
tion gram_NOEXPAND() uses these states to retrieve the
ontents of a no-expanded or no-transed parameter list.NOTRANS_SET When the parser is in this state, a parameter list will be in-serted using the
urrently a
tive insertion fun
tion (inserting to �le or mem-ory) It is identi
al to the NOEXPAND_SET state, but the
hara
ter trans-lation table is not used in the NOTRANS_STATE, whereas it is used in theNOEXPAND_STATE.SKIPWS_SET In this state all white-spa
e
hara
ters are
onsumed. The lexi
als
anner will only return the next non-whitespa
e
hara
ter. This state is used,e.g., to skip the white spa
e between multiple parameter lists when they arede�ned for ma
ros.6.6 Adding a new ma
roWith the advent of Yodl V 2.00, raw ma
ros �les are introdu
ed. A raw ma
ro �lede�nes one ma
ro, and all of its
onversions. The raw ma
ro �les must be organizedas follows:<STARTDOC>ma
ro(name(arg1)(arg2)(et
))(Des
ription of the ma
ro `name', having arguments `arg1', `arg2',`et
', ea
h argument is given its own parameter list. The names of thearguments in this des
ription should be
hosen in su
h a way that theysuggest their fun
tion or purpose. All ma
ro des
riptions startingwith tt(<STARTDOC>) will be in
luded in both the `man yodlma
ros'manpage and the des
ription of the ma
ro in the user guide. If this isnot
onsidered appropriate (e.g., tt(XX...()) ma
ros are not des
ribedin these do
uments) then use tt(<COMMENT>) rather thantt(<STARTDOC>).)<>DEFINEMACRO(name)(#)(statements of ma
ro `name' expe
ting `#' arguments used by all
onversions. This se
tion is optional<html>statements that should be exe
uted by the HTML
onvertor<man ms>statements that should be exe
uted by two
onverters. In this
ase,the `man' and `ms'
onverters<else>statements that should be exe
uted by all
onverters not expli
itlymentioned above<> statements of ma
ro `name' expe
ting `#' arguments used by all146

onversions, having pro
essed their spe
ifi
 statements.This se
tion is also optional)When setting up these ma
ro de�nitions, the <> tags must appear with the initialdo
umentation se
tion. It must also appear when at least one spe
i�

onvertor tagis used. For a ma
ro whi
h is
onverter independent, the ma
ro de�nition doesn't
ontain these pointed-arrow tags.When writing standard Yodlma
ros, ea
h ma
ro should be stored in a �le `name'.raw,where `name' is the lower-
ase name of the ma
ro. This �le should then be keptin the ma
ros/rawma
ros dire
tory. The ma
ros/build std
all will then add thema
ro (�ltering only the required statements per
onversion) to ea
h of the standard
onversion formats.If the ma
ro requires a
ounter or symbol,
onsider de�ning the
ounter or symbol in,respe
tively, �
ounters and �symbols. Furthermore,
onsider pushing and poppingthese `variables', rather than plain assigning them, to allow other ma
ros to use thevariables as well. A
ase in point is the
ounter XXone whi
h was added to the setof
ounters representing a lo
al
ounter. Ma
ros may always push XXone and popXxone, but should never reassign XXone before its value has been pushed. For Yodlversion 2.00 only XXone was required, but other lo
al
ounters might be
onsidereduseful in the future. In that
ase, XXtwo, XXthree et
. will be used. For lo
alsymbold XXs pre�xes will be used: XXsone, XXstwo, et
.6.7 The Yodl post-pro
essorWith Yodl version 2.00 the old-style post-pro
essor has
eased to exist. Also, the.tt(Yodl)TAGSTART. and .tt(Yodl)TAGEND. symbols no longer appear in yodl'soutput.Instead, a system using an index �le was adopted. When
onverting information,yodl will produ
e an output �le and an asso
iated index �le. The index �le de�neso�sets in the output �le up to where
ertain a
tions are to be performed. Ea
h linein the index �le
ontains the required information of one dire
tive for yodlpost.For example:0 set extension man53 ignorews2112 verb on2166 verb off80007 ignorews80065
opy80065 mandoneEntries
an be written into the index �le using the INTERNALINDEX builtin fun
-tion. This fun
tion has one argument: the information following the o�set whereit is
alled. So, there will be a INTERNALINDEX(set extension man) in the ma
rode�nitions for this parti
ular
onversion (obviously it is a man
onversion. The147

parti
ular INTERNALINDEX
all is found in the standard man.yo ma
ro de�nition�le).When yodlma
ros is
alled, it pro
esses the dire
tives on the idx �le in two steps:
• First, it reads all dire
tives, and
onstru
ts a queue of a
tions to perform.During this phase it will solve all referen
es to, e.g., labels de�ned in the spro
essed by yodl. This queue is
onstru
ted by a PostQueue obje
t, duringits
onstru
tion phase.Postpro
essing is realized by a template-method design pattern-like
onstru
-tion in C.The algorithm pro
eeds as follows:Ea
h element of the index �le is read, and its keyword (the word followingthe o�fset) is determined. Then the '
onstru
t' fun
tion asso
iated with thatkeyword is
alled. The `
onstru
t' fun
tions return pointers to HashItemelements, whi
h arepro
essed by storing them either into the the symbol tableor into the work-queue. The
onstru
t fun
tions
an use all PostQueue, New,Message String Args and File fun
tions. Whi
h fun
tion is a
tually
alledis determined in the �le yodlpost/data.
, where the array Task tast[℄ isinitialized. Task stru
ts have three elements:�
har
onst *d_key points to the name of the keyword that will triggerthe
orresponding Task stru
t;� HashItem *(*d_
onstru
tor)(
har
onst *key,
har *rest) pointsto the fun
tion that will be
alled when the task stru
t is
reated.� void (*d_handler)(long offset, HashItem *item) points to the fun
-tion that will be
alled when the queue is pro
essed.
• Then, when all
ommands are available, the queued
ommands are pro
essed.For this, the appropriate 'handle' fun
tions are
alled.For example, when the INTERNALINDEX(htmllabel ...) is spe
i�ed, the fun
tion
onstru
t_label() is
alled. This fun
tion re
eives a line line432 label Overviewmeaning that this label has been de�ned in o�set 432 in the �le generated by yodl.The
onstru
t_label() fun
tion will now:
• Store the
urrent se
tion number, the �le
ount and the se
tionnumber in aHashItem.
• Store the hashitem inside its hash-table.Then, when the queue is pro
essed, a referen
e to this label may be en
oun-tered. This is signalled by an INTERNALINDEX(ref Overview)
all. In this
asethe
onstru
t_ref() fun
tion doesn't have to do mu
h. Here it is the handlerthat's doing all the work:
• First it looks up the label in the symbol table. The label should be there, as aresult of the earlier
onstru
tion of the symbol table during the postqueue_
onstru
t()
all. 148

• Then it
opies the �le written by yodl up to the o�set mentioned in the theref
ommand.
• Then (sin
e we're talking about an html-spe
i�
 referen
e) the appropriate<a href=...
ommand is inserted into the
urrent output �le.When referen
es are solved in text-�les, the INTERNALINDEX(txtref ...)
om-mand is used. Here,
onstru
t_ref()
an still be used, but a spe
i�
 handle_txt_ref()fun
tion is required.New postpro
essing labels
an be
onstru
ted easily:
• Add an element to the array Task task[℄ in sr
/yodlpost/data.
. Forexample, add a line like:{"verb",
onstru
t_verb, handle_verb},
• De
lare the fun
tions in yodlpost.h:HashItem *
onstru
t_verb(
har
onst *key,
har *rest);void handle_verb(long offset, HashItem *item);
• The
onstru
t_verb() fun
tion re
eives the key (e.g., verb) and any infor-mation that may be available beyond the key as a trimmed line (not beginningor ending in white spa
e). The
onstru
t fun
tion should return a pointer toa hashitem, whi
h
an be
onstru
ted by hashitem_
onstru
t(). This fun
-tion should be
alled with the following arguments:� VOIDPTR;� a pointer to some text to be stored as the hashitem's key (use an emptystring if nothing needs to be stored in a hashtable);� A pointer to the information asso
iated with the key (use 0 if no infor-mation is used; use (void *)intValue to store an int value. Note thatthis is not (void *)&intValue: it is the value of the variable that isinterpreted as a pointer here).� The fun
tion that will handle the destru
tion of the value-information.Use free if some information was a
tually allo
ated and must be freed.E.g.,hashitem_
onstru
t(VOIDPTR, "", new_str(rest), free);Use root_nop if no allo
ation took pla
e. E.g.,hashitem_
onstru
t(VOIDPTR, "", (void *)s_lastLabelNr, root_nop);149

Often the
onstru
tor doesn't have to do anything at all. In that
ase, initializethe Task element with the existing
onstru
t_nop fun
tion. E.g.,{"drainws",
onstru
t_nop, handle_drain_ws},
• The handle_verb() fun
tion is
alled when the �le produ
ed by yodl is pro-
essed by postqueue_pro
ess(). This happens immediately after postqueue_
onstru
t().The handler is
alled with two arguments:� Its �rst argument is the o�set where the INTERNALINDEX
all was gener-ated. The handler should make sure that yodl's output �le is pro
essedup to this o�set. Not any further. If a simple
opy is required thefun
tion file_
opy2offset() is available. E.g.,file_
opy2offset(global.d_out, postqueue_istream(), offset);Note its arguments: the output and input �le pointers are availablethrough, respe
tively, global.d_out and postqueue_istream().� Its se
ond argument is a pointer to the hashitem stru
t originally
reatedby the mat
hing
onstru
t...() fun
tion. The handler should not freethe information it re
eives. The fun
tion postqueue_pro
ess() takes
are of that.Examples of a
tual
onstru
t...() and handle...() fun
tions
an be foundin sr
/yodlpost.

150

