Yodl 2.xx.yy

Frank B. Brokken (f.b.brokken@rug.nl)
initially by Karel Kubat
Computing Center, University of Groningen

1996-NOW

Abstract

Yodl is a package implementing a pre-document language and tools to process it.
The idea of Yodl is that you write up a document in a pre-language, then use the
tools (e.g. yodI2html) to convert it to some final document language. Current
converters are for HTML, man, LaTeX, a poor-man’s text converter and an experi-
mental XML converter. Main document types are ‘article’, ‘report’, ‘book’, ‘letter’
and ‘manpage’. The Yodl document language is designed to be easy to use and
extensible.

Contents

1 Introduction
1.1 What’s new in Yodl 2.007
1.2 Why use Yodl?
1.3 Copying Yodl
2 Yodl User Guide
2.1 Using the yodl program
2.2 The Yodl grammar o
2.2.1 Languageelements
2.2.2 Line continuation L Lo
2.2.3 The +identifier sequence L.
2.2.4 Preventing macros from being expanded
2.3 Character tables o
2.3.1 Defining a translation table
2.3.2 Using a translation table
2.3.3 Pushing and popping character tables
2.4 Sending literal text to the output
2.5 Counters.
2.5.1 Creating a counter
2.5.2 Usingcounters

3 All builtin functions
3.1 Yodl’s builtin commands L oo
3.1.1 ADDTOCOUNTER
3.1.2 ADDTOSYMBOL

14
15
18

19

20
20
23
24
28
29
29
30
30
31
32
32
33
33
34

36

36

3.1.3

3.14

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18
3.1.19
3.1.20
3.1.21
3.1.22
3.1.23
3.1.24
3.1.25
3.1.26
3.1.27
3.1.28
3.1.29
3.1.30
3.1.31
3.1.32

3.1.33

CHAR 38
CHDIR oo 38
COMMENTo 39
COUNTERVALUE o 39
DECWSLEVEL 39
DEFINECHARTABLE 40
DEFINECOUNTER oo oo 41
DEFINEMACRO o o oo 41
DEFINESYMBOL oo 46
DELETECHARTABLE 46
DELETECOUNTER o oo 46
DELETEMACROo 47
DELETENOUSERMACRO 47
DELETESYMBOL oo 47
DUMMY . o oo 47
ENDDEF oo 48
ERROR oo 48
EVAL 48
FILENAMEo 50
FPUTS . o oo e e 50
IFBUILTIN o oo 50
IFCHARTABLE i 51
IFDEF . . . oo 51
TFEMPTY . . o oo 52
IFEQUAL . . . o .o 53
IFGREATER oo 54
IFMACRO o o 54
TFSMALLER oo 55
IFSTREQUAL oo 56
IFSTRSUB oo 56

3.1.34
3.1.35
3.1.36
3.1.37
3.1.38
3.1.39
3.1.40
3.1.41
3.1.42
3.1.43
3.1.44
3.1.45
3.1.46
3.1.47
3.1.48
3.1.49
3.1.50
3.1.51
3.1.52
3.1.53
3.1.54
3.1.55
3.1.56
3.1.57
3.1.58
3.1.59
3.1.60
3.1.61
3.1.62
3.1.63

3.1.64

IFSYMBOL o 57

IFZERO e 57
INCLUDEFILE 58
INCLUDELIT, INCLUDELITERAL 59
INCWSLEVEL 59
INTERNALINDEX 59
NEWCOUNTER o .. 60
NOEXPAND 60
NOEXPANDINCLUDE 61
NOEXPANDPATHINCLUDE 62
NOTRANS . . . 63
NOUSERMACRO 63
OUTBASE 64
OUTDIR e 64
OUTFILENAME 64
PARAGRAPH 64
PIPETHROUGH 66
POPCHARTABLE 66
POPCOUNTER 66
POPMACRO 67
POPSYMBOL 67
POPWSLEVEL 68
PUSHCHARTABLE 68
PUSHCOUNTER 68
PUSHMACRO 69
PUSHSYMBOL 69
PUSHWSLEVEL 69
RENAMEMACRO oo o 70
SETCOUNTER 70
SETSYMBOL 71
STARTDEF 71

3.1.65 SUBST e 71
3.1.66 SYMBOLVALUE 72
3.1.67 SYSTEM 72
3.1.68 TYPEOUT 73
3.1.69 UNDEFINEMACRO 73
3.1.70 UPPERCASE 73
3.1.71 USECHARTABLE 74
3.1.72 USECOUNTER 74
3.1.73 VERBOSITY 74
3.1.74 WARNING 76
3.1.75 WRITEOUT 76
4 Macros and Document types 77
4.1 General structure of a Yodl document 78
4.1.1 Document types 79
4.1.2 The manpage document type 80
4.2 Predefined macroso 83
4.2.1 abstract(text) 84
4.2.2 addntosymbol(symbol)(n)(text) 84
4.2.3 affiliation(site) 84
424 AfourEnlarged() 84
425 appendix() 84
4.2.6 article(title)(author)(date) 84
427 BF(text) 84
428 bind(text) 84
4.2.9 book(title)(author)(date) oL 85
4.2.10 cell(contents) 85
4.2.11 cells(nColumns)(contents) 85
4.2.12 center(text) 85
4.2.13 chapter(title) Lo 85
4214 cindex() 85
4215 cite(1) . o o o 85

4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32
4.2.33
4.2.34
4.2.35
4.2.36
4.2.37
4.2.38
4.2.39
4.2.40
4.2.41
4.2.42
4.2.43
4.2.44
4.2.45

4.2.46

clearpage() 85

code(text) L 85
columnline(from)(to) Lo 86
def(macroname) (nrofargs) (redefinition) 86
description(list) 86
dit(itemname) 86
eit() . . 86
ellipsis() 86
em(text) 86
email(address)o o 86
endeenter() 87
enddit() 87
endeit() 87
endit() 87
endmenu() 87
endtable() 87
enumerate(list)o L 87
enumeration(list) Lo 87
euro()o 87
fig(label) L 88
figure(file)(caption)(label)o 88
file(text) 88
findex() 88
footnote(text) 88
gagmacrowarning(name name ...) 88
getaffilstring() Lo 88
getauthorstring() Lo Lo 88
getchapterstring() L L L 89
getdatestring() 89
getfigurestring() 89
getpartstring() 89

4.2.47 gettitlestring() 89
4.2.48 gettocstring() 89
4.2.49 htmlbodyopt(option)(value) 89
4.2.50 htmlcommand(cmd) 89
4.2.51 htmlheadopt(option) 90
4.2.52 htmlnewfile()o 90
4.2.53 htmlstylesheet(url) L Lo 90
4.2.54 htmltag(tagname)(start) 90
4.2.55 ifnewparagraph(truelist)(falselist) 90
4.2.56 includefile(file) o 90
4.2.57 includeverbatim(file) oL 90
D258 W() o oo 91
4.2.59 itemization(list) L 91
4.2.60 itemize(list) 91
4.2.61 kindex() 91
4.2.62 label(labelname) 91
4.2.63 langle() 91
4.2.64 languagedutch() oL 91
4.2.65 languageenglish() L. 91
4.2.66 languageportugese() 91
4267 TaTeX() . o oo 92
4.2.68 latexaddlayout(arg) L. 92
4.2.69 latexcommand(cmd) Lo 92
4.2.70 latexdocumentclass(class) 92
4.2.71 latexlayoutcmds(NOTRANSs) 92
4.2.72 latexoptions(options) 92
4.2.73 latexpackage(options)(name) 92
4.2.74 Ichapter(label)(title) oo 92
4.2.75 letter(language)(date)(subject)(opening)(salutation)(author) 93
4.2.76 letteraddenda(type)(value) 93
4.2.77 letteradmin(yourdate)(yourref)o 93

4.2.78 letterfootitem(name)(value) L. 93

4.2.79 letterreplyto(name)(address)(zip city) 93
4.2.80 letterto(element) Lo 93
4.2.81 link(description)(labelname) 93
4.2.82 lref(description)(labelname) 94
4.2.83 lsect(label)(title)o 94
4.2.84 lsubsect(label)(title) Lo 94
4.2.85 lsubsubsect(label)(title) 94
4.2.86 lsubsubsubsect(label)(title) 94
4.2.87 lurl(locator) 94
4.2.88 mailto(address) Lo 94
4.2.89 makeindex()o 94
4.2.90 mancommand(cmd)o 94
4.2.91 manpage(title)(section)(date)(source)(manual) 95
4.2.92 manpageauthor() Lo 95
4.2.93 manpagebugs() 95
4.2.94 manpagedescription() 95
4.2.95 manpagediagnostics()o 95
4.2.96 manpagefiles() Lo 95
4.2.97 manpagename(name)(short description) 95
4.2.98 manpageoptions() 95
4.2.99 manpagesection(SECTIONNAME) 96
4.2.100manpageseealso()o 96
4.2.101 manpagesynopsis() 96
4.2002mMb0X() .« o e 96
4.2103menu(list)o 96
4.2104metaCtext) 96
4.2.105metaCOMMENT (text) 96
A2006MIb() . . o o 96
4.2.107mscommand(cmd) 96
4.2.108nchapter(title) Lo 97

4.2.109nemail(name)(address) 97

A2000010) .. 97
4.2.111node(previous)(this) (next)(up) 97
4.2.112nodeprefix(text) 97
4.2.113nodeprefix(text) L 97
4.2.114nodetext(text)o 97
4.2.115n0p(text) 98
4.2116nosloppyhfuzz()o oL 98
4.2.117notableofcontents() 98
4.2.118notitleclearpage() Lo 98
4.2.119notocclearpage()o 98
4.2.120notransinclude(filename)o 98
42 121noxlatin() 98
4.2.122nparagraph(title) L Lo 99
4.2.123npart(title) 99
4.2 124nsect(title)o 99
4.2.125nsubsect(title) Lo 99
4.2.126 nsubsubsect(title) Lo 99
4.2.127nsubsubsect(title) Lo 99
4.2.128 paragraph(title) 99
4.2129part(title) L 99
4.2130pindex() 99
4.2.131plainhtml(title) o 100
4.2132printindex() 100
4.2.133quote(text) 100
4.2134rangle() 100
4.2.135redef(nrofargs) (redefinition) oL 100
4.2.136 redefinemacro(nrofargs) (redefinition) 100
4.2.137ref(labelname)o 100
4.2.138report(title)(author)(date) 100
4.2.139roffcmd(dotcmd) (sameline) (secondline) (thirdline) 101

4.2.140row(contents) 101

4214 rowline() 101
4.2.142sc(text) 101
4.2.143sect(title) 101
4.2 144 setaffilstring(name) 101
4.2.145setauthorstring(name)o 101
4.2.146 setchapterstring(name) L. 102
4.2.147setdatestring(name) 102
4.2.148setfigureext(name) 102
4.2.149 setfigurestring(name) L 102
4.2.150 sethtmlfigureext(ext) oL 102
4.2.151setincludepath(name) oL 102
4.2.152setlanguage(name) 102
4.2.153 setlatexalign(alignment)o 103
4.2 154 setlatexfigureext(ext) L 103
4.2.155setlatexverbchar(char)o 0oL 103
4.2.156 setmanalign(alignment) L. 103
4.2.157setpartstring(name) L 103
4.2.158setrofftab(x) 103
4.2.159setrofftableoptions(optionlist) 104
4.2.160settitlestring(name) 104
4.2.161settocstring(name) L 104
4.2.162sgmlcommand(cmd)o 104
4.2.163sgmltag(tag)(onoff)o oo oL 104
4.2.164sloppyhfuzz(points) 104
4.2.165standardlayout()o 105
4.2.166startcenter() 105
42067startdit() 105
4.2.168starteit() 105
A2069Startit() . . o 105
4.2170startmenu() 105

10

4.2 171starttable() 105

4.2172sups(text) 105
4.2.173subsect(title)o 105
4.2.174subsubsect(title)o 105
4.2.175subsubsubsect(title) 106
4.2176sups(text) 106
4.2.177table(nColumns)(alignment)(Contents) 106
42078 tcell(bext) . o o v oo 106
4.2.179telycommand(cmd) 106
42180TeX() o o 106
4.2.181texinfocommand(cmd)o oL 106
4.2182tindex() . . .t 106
4.2.183titleclearpage() 107
4.2.184tocclearpage() 107
A2A85t(EeXt) . o 107
4.2.186txtcommand(cmd) Lo 107
4.2.187url(description)(locator) L. 107
4.2.188verb(text) 107
4.2.189verbinclude(filename)o 107
4.2.190verbpipe(command)(text) 108
42091vindex() . . oo 108
4.2.192whenhtml(text) L Lo 108
4.2.193whenlatex(text) Lo 108
4.2.194whenman(text) 108
4.2.195whenms(text) 108
4.2.196 whensgml(text)o 108
4.2.197whentely(text) 108
4.2.198 whentexinfo(text) L L 109
42199 whentxt(text)o 109
4.2.200whenxml(text) L 109
4.2.201xit(itemname) Lo 109

11

4.2.202xmlcommand(cmd) 109

4.2.203xmlmenu(order)(title) (menulist) 109
4.2.204xmlnewfile() 109
4.2.205xmlsetdocumentbase(name)o 110
4.2.206 xmltag(tag)(onoff)o L 110
4.3 Conversion-related topicso 110
431 Accents 110
4.3.2 Conversion-type specific literal commands 110
4.3.3 Figures 112
434 Fontsandsizeso 114
4.3.5 Labels, links, references and URLs 114
4.3.6 Lists and environments 117
4.3.7 Sectioning 120
4.3.8 Typesetting modifiers L. 121
4.3.9 Miscellaneous commands 123
4.4 Locations of the macros 125
Conversions and convertors 126
5.1 Conversion script invocations 126
5.2 The HTML converter 127
5.3 The LaTeX converter. 128
5.4 The man converter 129
5.5 The txt converter 129
5.6 The experimental XML converter 130
5.7 The Yodl Post-processor ‘yodlpost’ 130
5.8 The support program ‘yodlverbinsert’ 131
581 Example. 132
Technical information 134
6.1 Obtaining Yodl 134
6.1.1 Installing Yodl 134
6.2 Organization of the software 136

12

6.3
6.4
6.5
6.6
6.7

6.2.1 Subdirectories and their meanings 136

Yodl’s component interrelations and component setup 138
The token-producer ‘lexer lex()’ 142
The Parser’s Finite State Automaton 144
Adding anew macroo 146
The Yodl post-processor 147

13

Chapter 1

Introduction

Yod1 stands for ‘Your Own Document Language’ (originally: Yet Oneother Document
Language) and is basically a pre-processor to convert document files in a special
macro language (the Yodl language) to any output format. The Yodl language is
not a ‘final’ language, in the sense that it can be viewed or printed directly. Rather,

a document in the Yodl language is a ‘pre-document’, that is converted with some
macro package to an output format, to be further processed.

Yodl was designed in 1996 by Karel Kubat when he needed a good document
preprocessor to convert output to either LaTeX (for printing) or to HTML for
publishing via a WWW site. Although SGML does this too, he wanted something
that is used ‘intuitively’ and with greater ease. This is reflected in the syntax of
the Yodl language, in the available macros of the Yodl macro package, and very
probably also in other aspects of Yodl. However, Yodl is designed to convert to
any output format; so it is possible to write a macro package that converts Yodl
documents to, say, the man format for manual pages.

Some highlights of Yod1:

e Yodl allows the inclusion of files. This makes it easier to split up a document
into ‘logical’ parts, each kept in a separate file. Thus, a ‘main document’ file
can include all the sub-parts. (Imagine that you’re the editor of a journal.
Authors are likely to send in their submissions in separate files; inclusion can
then be very handy!)

e Files which are included are searched for either ‘as-is’, or in a given ‘system-
wide include’ directory, similar to the workings of the C preprocessor. There-
fore, it is possible to create a set of include files holding macros, and to place
them into one macro directory. (See also chapter 4, where a macro package
that is distributed with Yodl is described.)

e For all the handled files (either stated on the commandline or included), Yodl
supplies an extension if none is present. The default extension is .yo, but can
be defined to anything in the compilation of the Yodl program.

e Yodl supports conditional parsing of its input, controlled by defined symbols.
This resembles the #ifdef / #else / #endif preprocessor macros of the C
language. Yodl also supports other if clauses, e.g., to test for the presence of
an argument to a macro.

14

e Yodl offers hooks to define counters, to modify them, and to use them in a
document. Thereby Yodl offers the possibility for automatic numbering of
e.g., sections. Of course, some document languages (e.g., LaTeX) offer this
too; but some don’t. When converting a Yodl document to, say, HTML, this
feature is very handy.

e Yodl is designed to be easy to use: Yodl uses ‘normal’ characters to identify
commands in the text, instead of insisting weird-looking tags or escape char-
acters. Editing a document in the Yodl macro language is designed to be as
easy as possible.

e Similar to other document languages, Yodl supports ‘character conversion
tables’ which define how a character should appear in the output.

This document first describes Yodl from the point of the user: how can macros be
defined, how is the program used etc.. Next, my own macro package is presented and
the macros therein described. Finally, this document holds technical information
about the installation and the inner workings of Yod1.

1.1 What’s new in Yodl 2.00?

Compared to earlier versions, Yodl Version 2.00 is a complete rebuilt, and offers
many new features.

e Changed Yodl’s name expansion. From ‘Yet Oneother Document Language’
to:

Your Own Document Language

e The following commands are now obsolete and should/must be avoided. Al-
ternatives are always offered.
ENDDEF DECWSLEVEL should be used;
INCLUDELIT NOEXPANDINCLUDE should be used;
NEWCOUNTER DEFINECOUNTER should be used;
STARTDEF INCWSLEVEL should be used;
UNDEFINEMACRO DELETEMACRO should be used;
WRITEOUT FPUTS should be used;

e Several new commands were implemented:

ADDTOSYMBOL adds text to a symbol’s value;
DEFINESYMBOLVALUE defines a symbol and its initial value;

DELETECOUNTER . opposite from NEWCOUNTER: removes an existing
counter;

IFBUILTIN checks whether the argument is a builtin macro;
IFCOUNTER checks whether the argument is a defined counter;
IFEQUAL checks whether two numerical values are equal,;

IFGREATER checks whether the first numerical value exceeds the second
numerical value;

15

IFMACRO checks whether the argument is a defined macro;

IFSMALLER checks whether the first numerical value is smaller than the
second numerical value;

IFSYMBOL checks whether the argument is a defined symbol;

PATHINCLUDELIT includes literaly a file found in the XXincludepath
path;

POPCOUNTER . pops a previously pushed countervalue;
POPMACRO pops a previously pushed macrodefinition;
POPSYMBOL pops a previously pushed symbolvalue;

PUSHCOUNTER pushes the current value of a counter, initilaizes the
active counter to 0;

PUSHCOUNTERVALUE pushes the current value of a counter, initilaizes
the active counter to any value;

PUSHMACRO pushes the current definition of a macro, activates a local
redefinition;

PUSHSYMBOL pushes the current value of a symbol, initializing the active
value to an empty string;

SETSYMBOL assigns a new value to a symbol;
SYMBOLVALUE returns the value of a symbol as text.
e Several macros were deprecated. Alternatives are suggested in the ‘man yo-
dlmacros’ manpage:
— enddit();
— endeit();
— endit();
— endmenu();
— endtable();
— enumerate(list);
— itemize(list);
— menu(list);
—mit();
— node(previous) (this) (next) (up);
— startcenter();
— startdit();
— starteit();
— startitQ);
— startmenu();
— starttable(nColumns) (LaTexAllignment);

e XXincludePath: Symbol installed by Yodl itself, but modifiable by the user:
Tt holds the value of the current :-separated list of directories that are vis-
ited (sequentially) by the INCLUDEFILE command. XXincludePath may
contain $HOME, which will be replaced by the user’s home directory if the
‘home’ or ‘HOME’ environment variable is defined. It may also contain

t(8STD INCLUDE), which will be replaced by the compilation defined stan-
dard include path. The standard includepath may be overruled by either (in

16

that order) the command line switch -T or the tt(Yodl) _INCLUDE_PATH envi-
ronment variable. By default, the current directory is added to the standard
include path. When -I or tt(Yodl)_INCLUDE_PATH is used, the current di-
rectory must be mentioned explicitly. The individual directories need not be
terminated by a /-character. In the distributed .deb archive, the standard
directory is defined as the current working directory and /usr/share/yodl,
in that order.

Initial blank lines in the generated document are suppressed by default.

Command line argument -D also allows the assignment of an initial value to
a symbol

Command line argument -P is now -p, the previously defined -p argument is
now -n (—max-nested-files), defining the maximum number of nested files yodl
will process.

Command line argument -r (—max-replacements) defines the maximum num-
ber of macro and/or subst replacements accepted between consecutive char-
acters read from s.

All assignents to counters (SETCOUNTER, ADDTOCOUNTER, etc.) not

only accept numerical arguments, but also counter names.

Rewrote several awkwardly coded macros, using the new SYMBOL and COUNTER
facilities

Added experimental, very limited, xml support to help me generating xml for
the horrible ‘webplatform’ of the university of Groningen. But at least Yodl
now offers xml support as well.

The default extension for figures in the HTML and XML conversions is now
.jpg rather than .gif. The sethtmlfigureext() macro can be used the
change the default figure extension.

There is no limit to the number of conversion-options that can be specified:
macros like htmlbodyopt () and latexoption() can be specified as often as
required resulting in one concatenated specification.

Upgraded most of the documentation.

Separated yodl-macro files for the various formats. While this might not
strictly be necessary, I feel this is better than using big fat generic macro
definition files which are bloated with ‘, > macros. I introduced a generic
frame, mentioning the macros that must at least be defined by the individual
formats.

Internally, the software was VASTLY reorganized. I feel that generally pro-
grams written in C don’t benefit from approaches that have become quite
natural for C++ programmers. I had the choice to either rewrite Yodl to
a C++ program or to reprogram Yodl in the line of C++, but still using
C. I opted for the latter. So, now the src section contains ‘object-like’ func-
tion families, like ‘countermap ...()" handling all counte-related operations,
‘textvector _...()’, handling all text-vector like operations, and other. Other
functions reveived minor modifications. E.g., xrealloc() now requires you to
specify both the number of elements and the size of the elements. By doing
so, it is sheer impossible to overlook the fact that you have to specify the size
of the elements, thus preventing the allocation of chars when, e.g., ints are
required.

17

e An old inconvenience was removed: line number counting is now using natural
numbers, starting at 1, rather than line indices, starting at 0.

e My old @icce.rug.nl e-mail address has been changed into my current e-mail
address:

"Frank B. Brokken" <f.b.brokken@rug.nl>

e The post processing is now performed by the program ‘yodlpost’. This pro-
gram again used Design Patterns originally developed for object oriented con-
texts, resulting in an program that is easy to maintain. modify and expand.

e The post-processor doesn’t use .tt(Yodl) TAGSTART. and .YODTAGEND. any-
more.

e The basic conversion formats now supported are html, latex, man, and text.
Xml support is experimental, other formats are no longer supported, mainly
because my personal unfamiliarity with the format (texinfo), or because the
format appears to be somewhat obsolete (sgml).

e Added a Yodl document type ‘letter’, indended to be used with the ‘brief.cls’
LaTeX documentclass

e Yodl 2.00 converts documents much faster than earlier versions.

1.2 Why use Yodl?

Yodl is not a word processor, not even an editor. At first glance you might say,
yeah, why should I learn Your Own Document Language? The answer is exactly
that: because it can be Your own document language!

First of all, Yodl may lower the threshold of new users to start writing documents.
An example of an excellent, though not very user-friendly document language is
ITEX. Typing all the backslash and curly brace characters in IATEX and remember-
ing that an asterisk must be typed as $*$ may be hard at first. In such situations,
a properly configured Yodl macro set removes these obstacles and thereby helps
novices. Yodl is designed to be easy to learn. As the Yodl package is growing, so
is the manual. The ease of ‘learning Yodl’ may thus somewhat diminish, but just
keep in mind: as long as you need just plain texts, Yodl does OK. If you want
more functionality, e.g., the composition of manual pages for Unix, dig into the
documentation.

Second, Yodl permits to create more than one macro set, defining the same com-
mands, but leading to different output actions. Thereby, the same input file can be
converted to several output formats, depending on the loaded macro set. In this,
Yodl is a ‘general front’ document language, which converts a Yodl document to a
specialized language for further processing. This was of course one of my reasons
to write Yodl: I needed a good converter for either LaTeX or HTML.

Third, Yodl always allows an ‘escape route’ to the output format. Most situations
can be handled with Yodl macros, but sure enough, some users will want special
actions for a given output format. A typical example for the necessity of such an
escape route is the typesetting of mathematical formulas. Say you want to use Yodl
for a document that is converted either to LaTeX (being a very good mathematical

18

typesetter) or to HTML (a very poor mathematical typesetter). An approach might
be to decide inside the document how to typeset a mathematical formula. Yodl
provides conditional command processing to accomplish this. The decision would
be based on the output format: for LaTeX, you’d typeset the formula using all
the facilities that LaTeX offers, and for HTML you’d use poor-mans typesetting.
Typically, other pre-processors for documents don’t allow such escape routes. Well,
Yodl does.

1.3 Copying Yodl
Yodl is free software; it is distributed under the terms of the GNU General Public
Licence. For details, please refer to the file COPYING.

The original author and brainfather of Yodl Karel Kubat<karel@e-tunity.nl>
would very much like to to hear from you, if you use Yodl in a commercial setting
(beats me why).

Also, he likes to receive postcards, preferably from far-away places (i take it that’s
from outside, or near the edges of, Europe).

His snailmail address:

Karel Kubat

Zwolle
The Netherlands

19

Chapter 2

Yodl User Guide

This section describes the yodl program from the point of a meta-user, one who is
interested in how macro files work, or one who wants to write a new converter. If
you’re just interested in using Yodl with the pre-existing converters and macro files,
skip this chapter and continue with the macro package description (chapter 4).

The Yodl program the main converter of the Yodl package. The basic usage of
the yodl program, yodl’s built-in macros, and the syntax of the Yodl language is
described here.

2.1 Using the yodl program

Yodl1 reads one or more input, files, interprets the commands therein, and writes one
output file. The program is started as:

yodl options inputfile [inputfile...]

In this specification, the options are optional. Most options have ‘long variants’
also, which are mentioned in the following list. In this list, -x, -optionname are
two alternate ways to specify option x. If -x takes an argument, it may be specified
immediately following the -x, but separating blanks may also be used. Options
not taking arguments can be combined (e.g., -a -b -c may be combined to -abc).
Arguments specified with long options should be separated from the long option
using a = character.

The following options are currently available:

e -D, -define=NAME[=VALUE]: Defines name as a symbol. This option is acts
like DEFINESYMBOL (NAME) (). If =VALUE is added, NAME is initialized to VALUE
(identically to DEFINESYMBOL (NAME) (VALUE)).

e -d, -definemacro=NAME=EXPANSION: Defines NAME as macro expanding to
EXPANSION

e -h, -help: usage information is written to the standard error stream, de-
scribing all of Yodl’s options.

20

e -i, -index[=file]: ‘file’is the name of the index file. By default <outputbase>.idx
is used. No default when output is written to stdout. The index file is pro-
cessed by Yodl’s post-processor, yodlpost.

e -I, -include=DIR: This defines the system-wide include directory where
Yodl searches for its input files. E.g. a statement to include a given file,
like:

INCLUDEFILE (latex)

will cause Yodl to search for the file latex in the current directory, and when
that fails, in the system-wide include directory. The system-wide include
directory is typically the place where the maintainer of a system stores macro-
files for Yodl. This searching process applies to files that are included inside
a document but also applies to filenames on the command line when invoking
the Yodl program.

The name of the included file (1atex in the above example) is the bare name,
the Yodl program will supply a default extension (.yo), if necessary.

The -I option overrules Yodl’s built-in name for the system-wide include
directory. The built-in name is defined when compiling Yodl, and is, e.g.,
/usr/share/yodl. Furthermore, the definition may contain $HOME, which
will be replaced by the user’s home directory if the ‘home’ or ‘HOME’ en-
vironment variable is defined. It may also contain $STD INCLUDE, which
will be replaced by the compilation defined standard include path. The stan-
dard includepath may be overruled by either (in that order) the command
line switch -I or the tt(Yodl) _INCLUDE_PATH environment variable. By de-
fault, the current directory is added to the standard include path. Hewver,
when -I or tt(Yodl) _INCLUDE_PATH is used, the current directory must be
mentioned explicitly. The individual directories need not be terminated by a
/-character. In distributed .deb archives, the standard directory is defined as
/usr/share/yodl (prefixed by the current working directory).

e -k, -keep-ws: Since Yodl version 2.00 blanks at the begin and end of lines
are ignored, even without a trailing \, when the ‘white space level’ is non-zero.
Earlier versions kept these blanks. The legacy handling of white space at end
of lines can by obtained using the -k flag. Note that white space are always
kept when using verbatim copying, and when the white-space level is zero.

e -1, -live-data=HOW: This option controls the policy for executing SYSTEM
or PIPETHROUGH commands; HOW being none (0) by default. The HOW
argument can have the following values:

— none or 0: (the default): No macros calling system programs are allowed.

— confirm or 1: The macros can be executed, but only after user confir-
mation is obtained. The macros in question are shown while the Yodl
document, is processed, and the user must either accept or reject the call.

— report or 2: The macros are executed, but what is called is shown during
the Yodl run (if the WARNING message level is active).

— ok or 3: The macros are executed, and not shown during the run. Be
careful when using -1live-data ok. It should be used only when a doc-
ument is clearly ‘unharmful’.

21

e -m, -messages=SET: Set the so-called ‘message level’ to a combination of the
SET acdeinw. The letters of this set have the following meanings:

— a: alert. When an alert-error occurs, Yodl terminates. Here Yodl re-
quests something of the system (like a get_cwd()), but the system fails.

— c: critical. When a critical error occurs, Yodl terminates. The message
itself can be suppressed, but exiting can’t. A critical condition is, e.g.,
the omission of an open parenthesis at a location where a parameter list
should appear, or a non-existing file in an INCLUDEFILE specification (as
this file should be parsed). A non-existing file with a NOEXPANDINCLUDE
specification is a plain (non-critical) error.

— d: debug. Probably too much info, like getting information about each
character that was read by Yodl.

— e: error. An error (like doubly defined symbols). Error messages will
not stop the parsing of the input (up to a maximum number of errors),
but no output is generated.

— 1i: info. Not as detailed as ‘debug’, but still very much info, like infor-
mation about media switches.

— n: notice. Information about, e.g., calls to the builtin function calls.

— w: warning. Something you should know about, but probably not affect-
ing Yodl’s proper functioning

Non-configurable is the handling of an emergency message. These messages
can’t be suppressed, but shouldn’t happen, as they point to some internal er-
ror. It would be appreciated to receive information' about these messages

if they ever occur.

e -n, -max-nested-files=NR: This option causes Yodl to abort when the num-
ber of nested input files exceeds NR, which is 20 by default. Exceeding this
number usually means a circular definition somewhere in the document. This
is the case when, a file a.yo includes b.yo, while b.yo includes a.yo etc..
It does not prevent recursive macro- or subst-replacements. For that the -r
(-max-replacements) option is available.

e -0, -output=FILE: This option causes Yodl to write its output to FILE. By
default, the output goes to the standard output stream. E.g., you can use Yodl
to read a file input and to write to output with the following two commands:

yodl input > output
yodl -ooutput input

The difference being that in the latter case an index file is generated, but not
in the former case. Notice that writing an index file can be forced when the
-index option is specified.

e -p, -preload=CMD: This option ‘pre-loads’ the string cmd. It acts as though
cmd was the first command in the first input file that is processed by Yod1l.

More than one -preload=CMD options may be present on the command line.
Each of the commands is then processed in turn, before reading any file.

Imailto:f.b.brokken@rug.nl

22

e -r, -max-replacements=NR: This option causes Yodl to abort when the num-
ber of macro calls or subst-replacements exceeds NR * 10,000. By default,
NR equals 1. Setting -max-replacements=0 implies that no macro- or subst-
replacement checks are performed.

e -t, -trace: This option enables tracing: while parsing, Yodl writes its out-
put to the standard error stream. As is the case with the -k option, this
option is defined for debugging purposes only.

e -V, -version. This option will show Yod1l’s actual version.

e -v, -verbose: This option increases Yodl’s ‘verbosity level’ and may occur
more than once. By default yodl will show alerting, critical, emergency and
error messages. Each -verbose option will add a next message level. In order,
warning, notice, info and debug messages will be added to this set. It is also
possible to suppress messages. The VERBOSITY builtin can be used for that.

e -W, -warranty. This option will show a warranty disclaimer and a copyright
notice.

e -w, -warn: The presence of this option caused Yodl to warn when, e.g.,
symbols are redefined.

The inputfile elements on the command line specify which files Yodl should process.
All names are supplied with an extension?. The files are then searched for in the
directories mentioned in the include-path. Files may also be specified using absolute

pathnames.

Note that all filenames on the command line are input files. To define an output
file, either use the -output option or redirect the output.

2.2 The Yodl grammar

The grammar which is used by Yodl mixes ‘real’ text that should appear on the
output with markups: commands for Yodl. The markups must follow a certain
grammar, which is described in this section. Yodl therefore falls in the category of
‘markup languages’, in contrast to ‘WYSIWYG’-programs. As a consequence, Yodl
promotes concept-oriented writing.

Basically, Yodl only does ‘something special’ when it encounters the name of a
builtin function or the name of a user-defined macro, followed by a parameter list.
Sometimes a function or macro requires multiple arguments, which must then be
specified in sequence. All required parameter lists, however, must be specified within
the same input file. It is not allowed to split the activation of a builtin function or
macro over multiple input files. Plain text, on the other hand, may be split over
multiple files.

In this section the elements of Yodl’s grammar are briefly discussed.

2this extension is defined in the installation of Yodl and is usually .yo

23

2.2.1 Language elements

At the lowest level, Yod1l’s lexical scanner returns small pieces of information to
its parser. These pieces of information are called tokens, and consist of elements
like a blank space, a non-blank character, or an end-of-ile flag. These tokens are at
too small an aggregation level to be useful for the current user-guide, so here we
concentrate our discussion on the next aggregation level: compound elements and
conceptual elements.

Compound elements relate to the basic tokens as words in a sentence to the individ-
ual letters of the words. These compound elements are identifiers, names, numbers
and parameter lists.

Conceptual elements are found at the next higher aggregation levels: builtin func-
tions are the buildin blocks for all of Yodl’s functionality, symbols and counters
are Yodl’s variables, and (user defined) macros extend Yodl’s functionality beyond
those of the basic builtin functions.

In the coming sections these basic and conceptual elements are discussed in greater
detail.

Identifiers and Names

Identifiers are names that can have a special meaning in the Yodl language. E.g., the
sequence INCLUDEFILE is an identifier: when followed by a filename in parentheses,
Yodl will take some special action (in this case, read the file as a Yod1-source file).

Tdentifiers may consist of uppercase or lowercase characters. No other characters
may appear in them.

In particular, note that this diverts from the well known definition for identifiers
used in most programming languages: identifiers may not contain underscores, nor
digits. Yodl, therefore, won’t accept identifiers like run4 or under_score.

Names are sequences of characters, not containing white space characters. (i.e., any
series of characters not containing spaces, tabs or newlines). Names are allowed with
certain builtin functions, liek the INCLUDEFILE function, expecting the name of a
file as its argument.

Numbers

Numbers consist of digits and an optional minus sign. They are most often used for
so-called counters. In some contexts (e.g. with the builtin function VERBOSITY
3.1.73, hexadecimal numbers are allowed. Hexadecimal numbers have 16 ‘digits’:
the familiar 0-9, but also a-f (or A-F), representing the decimal values 10 until 15,
respectively. Hexadecimal values are usually prefixed by 0x, for example 0x4e.

In other contexts (in particular, with character tables 2.3), octal numbers or char-
acter constants are allowed too.

An octal number only consists of the digits 0-7. In Yodl, octal values must consist
of three digits, and must be preceded by a backslash.

Character constants may very well be considered numerical values. Character con-

24

stants consist of a character value between single quotes, for example ’a’.

Refer to section 2.3 for more detailed information about the use of octal values and
character constants.

Yod1 has no concept of floating point values nor does it have facilities for performing
floating point arithmetic.

Parameter lists

Parameter lists contain arguments to Yodl builtin functions or user-defined macros.
Each parameter list contains exactly one argument, and must be enclosed by paren-
theses.

A parameter list is recognized as such when encountered immediately following the
name of a builtin function or user-defined macro. Some functions or macros expect
multiple arguments. In those cases, the required number of arguments must be
provided, possibly separated from each other by white-space only.

For example, the following shows how to call the builtin function DEFINECOUNTER,
expecting two arguments:

DEFINECOUNTER (MyCounter) ()
DEFINECOUNTER (MyCounter) O
DEFINECOUNTER (MyCounter) (12)

Yodl recognizes the arguments to a macro as parameter lists, i.e., delimited by (
and). As long as the numbers of opening and closing parentheses match, Yodl
will correctly recognize the list. E.g., given a hypothetical macro somemacro, the
following code sample shows the macro followed by one parameter list:

somemacro(Here is a chunk of text.)
somemacro (Here is a some (more) text.)

A problem arises when the number of parentheses is unbalanced: i.e., when the
parameter list consists of more opening than closing parentheses or wvice versa To
handle such situations, Yodl offers a ‘literal-character’ mechanism (see the CHAR
macro in 3.1.4) and a ‘global substitution’ mechanism (see the SUBST macro in
3.1.65). For example, to send the text

here’s a ")" closing parenthesis

as an argument to our hypothetical macro somemacro, the following can be used:

COMMENT(-- Alternative 1: using CHAR --)
somemacro (here’s a "CHAR(41)" closing parenthesis)

25

COMMENT (-- Alternative 2: using SUBST --)
SUBST (closepar) (CHAR(41))
somemacro (here’s a "closepar" closing parenthesis)

Both methods have disadvantages: the CHAR method requires you to remember that
an ASCII 41 is a closing parenthesis. The SUBST method defines a string closepar
that is always expanded to a closing parenthesis, wherever it may occur in the text.
But whatever method is used, it should be clear by now that unbalanced parameter
lists can be handled by Yodl. Also, remember that unbalanced parenthesis pairs
are only relevant in argument lists. Yodl handles parentheses in normal text as
ordinary characters.

Builtin functions

The building blocks of Yod1’s functionality are its builtin functions. Builtin func-
tions exists to manipulate all of Yodl’s builtin types (character tables, counters,
macros and symbols) and to do basic bookkeeping and flow-control: it is possible to
test values of counters and symbols, to include other input files, to generate warning
and error messages, and to start child- or subprocesses. Each builtin function is
described in a separate subsection of section BUILTIN 3.1.

Character translation tables

Character translation tables exist to perform conversion specific transformations.
For example, in html, the \’e is written as é, but in LaTeX it’s written
as \’e. Rather than using a potentially long if-else ladder to determine how to set
a particular character, a character translation table can be used. The character
translation table of a particular conversion is then activated only for that type of
conversion.

Character table translations are used very late during the processing of Yodl’s input
s: it is the output generator that handles the character translations. Consequently,
macros or builtin function calls that might appear in a character’s redefinition in a
character table will not be expanded. In practice this never is a point of concern.
In section 2.3 the use of character translation tables is discussed in detail.

Counters

Some document languages (notably LaTeX) automatically prefix numbers when
typesetting sections, subsections, tables, figures etc.. Other document languages
(e.g. html) don’t.

Therefore, a macro package that converts a Yodl document to LaTeX doesn’t need
to provide the numbering of sections etc.. However, if you do want the numbering
and if you want to convert documents to, say, html, then you must take care of the
numbering yourself.

Counters exist to make this possible. Counters can be incremented, can be given a
particular value, can be given a new value temporarily and can be removed. They

26

always contain integral values, which may be negative.

Section 2.5 describes the use of counters in more detail.

Macros

Macros are comparable to builtin functions, but they can be defined in Yodl input
files. Macros add functionality to Yodl exceeding the basic functionality of the
builtin functions. Macros can have arguments, and they are used in exactly the
same way as builtin functions are used.

When Yodl encounters a macro, it acts as follows:

e Its arguments are obtained, by reading its argument lists. These arguments
are not interpreted in any way. They are simply removed from the input, and
stored for further processing;

e References to arguments in the macro’s definition (using the ARG# notation,
where # is the sequence number of a particular argument) are replaced by the
literal text of the corresponding macro’s arguments.

e The thus modified definition text is now pushed back into the input stream,
to be processed by Yodl’s lexical scanner.

Defining macros is described in section 3.1.11. Macros may be defined, deleted,
renamed, and temporarily given other definitions.

Nousermacros

When Yodl is started using the -w flag on the command line, then warnings are
generated when Yodl encounters a possible macro name, followed by a parameter
list, without finding a macro by that name. Yodl then prints something like cannot
expand possible user macro.

Examples of such sequences are, The necessary file(s) are here, or see the
manual page for sed(1). The candidate macros are file and sed, as these names
could very well have been ‘valid’ user macros followed by their parameter list.

A nousermacro can be defined to suppress these warnings, by informing Yod1 that
file and sed aren’t macros. Nousermacros may be defined and undefined. See
sections 3.1.45 and 3.1.16 for details).

Symbols

Yodl symbols contain text. They were introduced to allow the flexible expansion
of text, the length and/or content of which cannot be determined in advance. In
particular, symbols are useful to store a series of LaTeX document options, or a
series of html body options. In earlier versions of Yodl complex and confusing con-
structions using nested definitions of macros were used for this. These macros were
not only confusingly complex, but they also suffered from a hard-coded maximum.
Symbols solve these drawbacks, and now that they are available, they are used for
all natural situations in which an initially unknown piece of text must be stored.

27

National language specific strings are another useful area in which symbols can be
used. The symbol CONTENTSHEADING can be set to the name of the contents heading
(e.g., Contents in English, Inhoud in Dutch, Contenido in Spanish, and macros can
simply insert the value of the symbol CONTENTSHEADING at the appropriate location.

Symbols can be defined 3.1.12, removed 3.1.17, (temporarily 3.1.59 or permanently
3.1.63) be given another value; pushed symbol values can be restored 3.1.54 at a
later point. Of course, their values can also be inserted 3.1.66 into Yodl’s output
file.

2.2.2 Line continuation

To make the typing of input easier, Yodl allows you to end a line with a backslash
character \and to continue it on the next line. That way you can split long lines to
fit your screen. When processing its input, Yodl will treat these lines as one long
line, and will of course ignore the \character. This feature only works when the
\character is the last one on the line (no spaces may follow).

When the line following the one with the \character has leading spaces, then these
are omitted. This allows you to ‘indent’ a file as you wish, while the space characters
of the indentation are ignored by the Yodl program.

A trivial example is the following:

Grandpa and\
grandma are sitting on the sofa.

Due to the occurrence of the \character in the sequence and\, Yodl will combine
the lines to

Grandpa andgrandma are sitting on the sofa.

Note that the spaces before grandma are ignored, since this is the second line fol-
lowing a \character.

If you do want one or more spaces while joining lines with \, put the spaces before
the \character.
Summarizing:

e A Line ending in a backslash character is merged with the next line.

e This only happens if the \character is the last character of the line, no spaces
may appear behind the \.

e When merging lines, Yodl ignores leading spaces of the second line.

The question is of course, how do you accomplish that a line really ends with a \,
when you do not want Yodl to merge it with the following line? In such a case,

28

type a space character following your \: Yodl won’t combine the lines. Or set the
\character as CHAR(\) or CHAR(92) (see section 3.1.4 for the CHAR macro).

When Yod1 processes input files, and the white-space level exceeds zero (see section
3.1.38), then all lines are processed as if they terminated by a \. This behavior was
implemented first with Yodl version 2.00. It can be suppressed using Yodl’s -k flag.

2.2.3 The +identifier sequence

There may be situations in which you must type a macro name right after a sequence
of characters, while Yodl should recognize this. Imagine that someone wrote a great
macro footnote for you?, to typeset footnotes. If you’d type in a document:

The C Programming Languagefootnote(as defined by
Kernighan and Ritchie)

then of course Yodl would fail to see the start of a macro in the sequence Languagefootnote.
You could say

The C Programming Language footnote(as defined by
Kernighan and Ritchie)

but that would introduce a space between Language and the footnote. Probably
you don’t want that, since spaces between a word and a footnote number look awful
and because of the fact that the footnote number might be typeset on the following
line.

For these special situations, Yodl recognizes the +identifier sequence as the start
of a macro, while the + sign is effectively ignored. In the above example you could
therefore use

The C Programming Language+footnote(as defined by
Kernighan and Ritchie)

The +identifier recognition only works when the identifier following the + sign is
a macro. In all other situations, a + is just a plus-sign.

(The +identifier sequence furthermore plays an important role in macro pack-
ages. If you’re interested, see the file shared.yo which is by default installed to
/usr/local/lib/yodl.)

2.2.4 Preventing macros from being expanded

One more feature of the Yodl language remains to be described. In the previous
section it was described how a macro may be called immediately following alphabet-
ical characters. What about the opposite situation where we do not want a macro
to be expanded in a particular situation? The NOUSERMACRO builtin command (cf.
section 3.1.45) may be used to suppress the interpretation of a character sequence

3someone did, in fact, see the next chapter

29

(e.g., file(...)) as a macro, but what if a macro should not be expanded in the
occasional situation? For this case various solutions are available:

e First, the tt(...) and verb(...) macros may be used to suppress macro
expansion. These macros will also temporarily change the typesetting font,
though.

e Second, NOEXPAND () builtin command may be used: the macro name may be
passed to NOEXPAND (), immediately followed by the ‘argument list’:

Like this: NOEXPAND (NOEXPAND) (hello world)

e Third, the nop() macro may be used to separate a macro name from its
argument list:

Like this: NOEXPAND+nop() (hello world)

2.3 Character tables

The Yodl language provides a way to define character translation tables, to activate
them, and to deactivate them. A character translation table defines how a character
in the input will appear in the output.

There are two main reasons for the need of character translation tables. First,
a document language becomes much easier to use when you can type an asterisk
as * instead of $*$ or \verb/*/ (these are sequences from the LaTeX document
language). Hence, a mechanism that expands a * in the input to to \verb/*/ on
the output, saves the users a lot of typing.

Second, forcing users to type weird sequences won’t work if you’re planning on
converting the same Yodl document to a different output format. If the user types
\verb/*/ in the input to typeset an asterisk in the output, how should he or she
arrive at a single * in the output in another output format?

The solution is of course to define the translation for an input character like * given
the output format.

2.3.1 Defining a translation table

The built-in macro DEFINECHARTABLE defines a character translation table. It takes
two parameter lists: the name of the table and the character translations. Hence,
each table is defined by its own name.

As an example of a table, consider the following fragment. It defines a table that
translates the upper case characters A to E to their lower case equivalents:

DEFINECHARTABLE (tolower) (

A ngn
YB? = "p"
10 = nen
DY = "g"
IEY = "M

30

Each DEFINECHARTABLE statement must have a non-empty second parameter. "Empty"
character tables cannot be defined, though one non-translation table is built-in.

The syntaxis of the second parameter list is as follows:

e On separate lines, input characters are mapped to a sequence to appear on
the output.

e Per line, the input character is specified as ’c’, c being any character. Escape-
sequences from the C programming language can be used in this specification;
Yodl supports the sequences \a (alert), \b (beep), \f (formfeed), \n (newline),
\r (carriage return), \t (tab), and \v (vertical tab). Any other character
following a \defines itself: \\ defines one backslash character.

e Following the character specification, a = must appear.

e Following that, a sequence of one or more characters appears, enclosed in
double quotes, defining the translation. Again, escape sequences can be used,
as in:

’\n’ = "End of line\n"

Such a mapping adds the text End of line to each line, since each newline
character in the input is replaced by the text End of line, followed by the
newline itself.

Translations which are not specified in the table are left to the default, which is to
output the character as-is.

Note that the character table translation is something that the yodl program does
as one of its last actions, just before sending text to the output file. The expansion
text is not further processed by yodl, except for the conversion of C-type escape
sequences to ordinary characters. The expansion text should therefore not be pro-
tected by, e.g., NOTRANS (unless of course you want some character to generate the
text NOTRANS on the output).

2.3.2 Using a translation table

A defined translation table is activated by the macro USECHARTABLE. This macro
takes one parameter list, which may be:

e empty, in which case the default mapping is restored,

e a name of a previously defined character table.

The default mapping, selected when an empty parameter list is given, means that
Yodl enters its ‘zero translation state’, meaning no character translation at all.

31

2.3.3 Pushing and popping character tables

Besides the previously described macro USECHARTABLE (), Yodl has one other mech-
anism of activating and deactivating character translation tables. This mechanism
uses a stack, and hence, the related macros are appropriately named PUSHCHARTABLE ()
and POPCHARTABLE().

e PUSHCHARTABLE (name) pushes the currently active translation table onto a
stack, and activates the table identified by name. The argument may be
emtpy; in that case, the zero-translation table is activated (analogously to
USECHARTABLE()).

e POPCHARTABLE() activates the translation table that was last pushed. There
is no argument to this macro.

Using the push/pop mechanism is handy when a table must be temporarily acti-
vated, but when it is not known which table exacty is active prior to the temporary
activation. E.g., imagine that you need to use a character table called listing to
typeset a listing, but that you do not know the current table. The pushing and
popping mechanism is then used as follows:

COMMENT(First, we save the current table on the stack and
we activate our "listing" table.)
PUSHCHARTABLE (1isting)

COMMENT (Now the text is question is typeset.)

COMMENT (The previously active table is re-activated, whatever its name.)
POPCHARTABLE ()

2.4 Sending literal text to the output

The Yodl program has three built-in macros to send literal text to the output file.
The macros are listed in the above section 3.1 and are furthermore described here.

e The CHAR macro takes one argument: the ASCII number of a character or
the character itself. The character is sent to the output file without being
translated with the currently active character translation table.

e The NOTRANS macro takes one argument: the text in question. The text is
neither parsed (i.e., macros in it are not expanded), nor translated with the
current character translation table.

The NOTRANS macro is conceptually like a series of CHAR macros.

e The NOEXPAND macro takes one argument: the text in question. The text is
not parsed, but it is translated with the current character translation table.

To illustrate the need for the distinction between NOTRANS and NOEXPAND, consider
the following. The HTML converter (described in chapter 4) must be able to send

32

HTML commands to the output file, but must also be able to send literal text (e.g.,
a source file listing). The HTML commands of course must be neither translated
with any character table, nor must they be expanded in regard to macros. In
contrast, a source file listing must be subject to character translations: the &, < and
> characters can cause difficulties. Two possible macros for a HTML converter are:

COMMENT (--- htmlcommand(cmd) sends its argument as a HTML command
to the output ---)
DEFINEMACRO (htmlcommand) (1) (NOTRANS (ARG1))

COMMENT(--- verb(listing) sends the listing to the output ---)
DEFINECHARTABLE (1list) (

& = "& "

1) = "&1t;"

15 = ">"

DEFINEMACRO (verb) (1) (
USECHARTABLE(1list)
NOTRANS(<listing>)
NOEXPAND (ARG1)
NOTRANS(</1listing>)
USECHARTABLE (standard)

In this example it is assumed that a character translation table standard exists,
defining the ‘normal’ translations. This table is re-activated in the verb macro.

2.5 Counters

Some document languages (notably LaTeX) automatically prefix numbers when
typesetting sections, subsections, tables, figures etc.. Other document languages
(e.g. HTML) unfortunately don’t.

Therefore, a macro package that converts a Yodl document to LaTeX doesn’t need
to provide the numbering of sections etc.. However, if you do want the numbering
and if you want to convert documents to, say, HIML, then you must take care of
the numbering yourself.

This section describes the counters in Yodl: how to create counters, how to use
them, etc..

2.5.1 Creating a counter

Before a counter can be used, it must be created with the function DEFINECOUNTER
or PUSHCOUNTER. These functions expects two parameter lists: the name of the
counter and an optional value.

The counter’s value, named number below, may be set as follows:

33

e If left unspecified, the counter is set to 0;
e number may be a postive or negative integral value;

e number may be the name of an existing counter, in which case that counter’s
value is used.

For example, let’s say that our macro package should provide two sectioning com-
mands: section and subsection. The sections should be numbered 0, 1, 2, etc.,
and the subsections 1.1, 1.2, 1.3 etc.. Hence we’d need two counters:

DEFINECOUNTER (sectcounter) ()
DEFINECOUNTER (subsectcounter) (1)

The function NEWCOUNTER, as defined in earlier releases of Yodl, is still available,
but is deprecated.

2.5.2 Using counters

The builtin function COUNTERVALUE (somecounter) expands to the value of somecounter.
E.g., if the current value is 2, then the value 2 is inserted into the output object.

It is an error to use COUNTERVALUE on a non-existing counter or on a counter not
having a defined value (see below).

Yodl has several functions to modify and/or to set the values of counters. The
counter’s value, named number below, may be set as follows:

e If left unspecified, the counter is set to 0;
e number may be a postive or negative integral value;

e number may be the name of an existing counter, in which case that counter’s
value is used.

The functions modifying values of counters are:

e POPCOUNTER (somecounter): This function pops the most recently pushed
value off the counter’s stack, assigning it to somecounter. An error oc-
curs when somecounter doesn’t exist. If the counter was never pushed,
it will still exist following POPCOUNTER, but its value is undefined: using
COUNTERVALUE (somecounter) in that case generates an error.

e PUSHCOUNTER (somecounter) (number): This function pushes the current value
of the counter somecounter on the counter’s stack, making number its new
value. number may be left unspecified, in which case the counter will be set
to 0. When somecounter doesn’t exist yet, it is created with an initial value
of number.

e SETCOUNTER (somecounter) (number): This function sets the value of somecounter
to the value of number. The second parameter list must be an integer number
(i.e., consisting of the characters 0 to 9, optionally prefixed by a - sign). The
function does not expand to anything; i.e., it does not write to the output file.

34

e ADDTOCOUNTER (somecounter) (number): This function adds the value of number
to somecounter. The number may be negative.

e USECOUNTER (somecounter): This function first increases the value of somecounter
by 1, and then writes the value of the counter to the output file.

This function is particularly useful in combination with DEFINECOUNTER: since
DEFINECOUNTER initializes a counter to zero, USECOUNTER can be used to in-
crease the value and to output it. The first time that USECOUNTER is used
on a new counter, the number 1 appears on the output file. The next time,
number 2 appears on the output file etc..

Given the numbering requirements of the hypothetical commands section and
subsection (see the previous section), we can now complete the definitions:

DEFINECOUNTER (sectcounter)
DEFINECOUNTER (subsectcounter)

DEFINEMACRO(section) (1) (\
SETCOUNTER (subsectcounter) (0)\
USECOUNTER (sectcounter) ARG1)

DEFINEMACRO (subsection) (1) (\
COUNTERVALUE (sectcounter) .USECOUNTER (subsectcounter) ARG1)

35

Chapter 3

All builtin functions

3.1 Yodl’s builtin commands

As mentioned previously, Yod1’s input, consists of text and of commands. Yodl sup-
ports a number of built-in commands which may either be used in a Yod1l document,
or which can be used to create a macro package.

Don’t despair if you find that the description of this section is too technical. Exactly
for this reason, Yodl supports the macro packages to make the life of a documen-
tation writer easier. E.g., see chapter 4 that describes a macro package for Yodl.

Most built-in functions and macros expand the information they receive the way
they receive the information. I.e., the information itself is only evaluated by the
time it is eventually inserted into an output medium (usually a file). However, some
builtin functions will evaluate their argument(s) once the argument is processed.
They are:

e The ERROR() built-in function (see section 3.1.20);

The EVAL() built-in function (see section 3.1.21);

The FPUTS () built-in function (see section 3.1.23);

The INTERNALINDEX () built-in function (see section 3.1.39);
e The TYPEQOUT() built-in function (see section 3.1.68);

The UPPERCASE () built-in function (see section 3.1.70);

The WARNING() built-in function (see section 3.1.74);

All other built-in functions will not evaluate their arguments. See the mentioned
functions for details, and in particular EVAL() for a description of this evaluation
process.

3.1.1 ADDTOCOUNTER

The ADDTOCOUNTER function adds a given value to a counter. It expects two param-
eter lists: the counter name, and the value to add. The counter must be previously

36

created with DEFINECOUNTER.

The value to add can be negative; in that case, a value is of course subtracted from
the counter.

See further section 2.5.

3.1.2 ADDTOSYMBOL

Since Yodl version 2.00 symbols can be manipulated. To add text to an existing
symbol the builtin ADDTOSYMBOL is available. It expects two parameter lists: the
symbol’s name, and the text to add to the symbol. The symbol must have been
created earlier using DEFINECOUNTER (see section 3.1.10). The macro’s second
argument is not evaluated while ADDTOSYMBOL is processed. Therefore, it is easy to
add the text of another symbol or the expansion of a macro to a symbol value. E.g.,

ADDTOSYMBOL (one) (SYMBOLVALUE (two)XXnl1())

This will add the text of symbol two, followed by a new line, to the contents of
symbol one only when symbol one is evaluated, not when ADDTOSYMBOL is evaluated.

Example:

ADDTOSYMBOL (LOCATION) (this is appended to LOCATION)

3.1.3 ATEXIT

ATEXIT takes one parameter list as argument. The text of the parameter list is
appended to the output file. Note that this text is subject to character table trans-
lations etc..

An example using this function is the following. A document in the LaTeX type-
setting language requires \end{document} to occur at the end of the document. To
automatically append this string to the output file, the following specification can
be used:

ATEXIT (NOEXPAND (\end{document}))

Several ATEXIT lists can be defined. They are appended to the output file in the
reverse order of specification; i.e., the first ATEXIT list is appended to the output
file last. That means that in general the ATEXIT text should be specified when a
‘matching’ starting command is sent to the output file; as in:

37

COMMENT (Start the LaTeX document.)
NOEXPAND (\begin{document})

COMMENT (Ensure its proper ending.)
ATEXIT (NOEXPAND (\end{document}))

3.1.4 CHAR

The command CHAR takes one argument, a number or a character, and outputs its
corresponding ASCII character to the final output file. This command is built for
‘emergency situations’, where you need to typeset a character despite the fact that
it may be redefined in the current character table (for a discussion of character
tables, see 2.3). Also, the CHAR function can be used to circumvent Yodl’s way of
matching parentheses in a parameter list.

The following arguments may be specified with CHAR (attempted in this order):
e A decimal number indicating the number of the character in the ascii-table
(for example CHAR(41));
e A plain, single character (for example CHAR(#)).
So, when you’re sure that you want to send a printable character that is not a closing
parenthesis to the output file, you can use the form CHAR(c), c being the character
(as in, CHAR(;)). To send a non-printable character or a closing parenthesis to the

output file, look up the ASCII number of the character, and supply that number as
argument to the CHAR command.

Example: The following two statements send an A to the output file.

CHAR(65)
CHAR(A)

The following statement sends a closing parenthesis:

CHAR(41)

Another way to send a string to the output file without expansion by character
tables or by macro interpretation, is by using the function NOTRANS (see section
3.1.44). If you want to send a string to the output without macro interpretation,
but with character table translation, use NOEXPAND (see section 3.1.41).

3.1.5 CHDIR

The command CHDIR takes one argument, a directory to change to. This command
is implemented to simplify the working with includefile (see includefile in
yodlmacros(7)). As a demonstration by example, consider the following fragment:

38

includefile(subdir/onefile)
includefile(subdir/anotherfile)
includefile(subdir/yetanotherfile)

This fragment can be changed to:

CHDIR(subdir)
includefile(onefile)
includefile(anotherfile)
includefile(yetanotherfile)
CHDIR(..)

The current directory, as given to CHDIR, only affects how includefile will search
for its files.

Note that this example assumes that the current working directory is a member of
Yodl’s include-path specification (cf., Yodl’s -include option).

3.1.6 COMMENT

The COMMENT function takes one parameter list. The text in the list is treated as
comment. Le.; it is ignored. The text is not copied to the final output file.

3.1.7 COUNTERVALUE

COUNTERVALUE expands to the value of a counter. Its single parameter list must
contain the name of a counter. The counter must have been created earlier using
the builtin DEFINECOUNTER.

Example:

The counter has value COUNTERVALUE(MYCOUNTER) .

See also section 2.5.

3.1.8 DECWSLEVEL

DECWSLEVEL requires one (empty) parameter list. It reduces the current white-
space level. The white-space level typically is used in files that only define Yodl
macros. When no output should be generated while processing these files, the white-
space level can be used to check for this. If the white-space level exceeds zero, a
warning will be generated if the file produces non-whitespace output. The builtin
function DECWSLEVEL is used to reduce the whitespace level following a previous call
of INCWSLEVEL.

39

Once the white space level exceeds zero, no output will be generated. White space,
therefore will effectively be ignored. The white space level cannot be reduced to
negative values. A warning is issued if that would have happened if it were allowed.

Example:

INCWSLEVEL ()
DEFINESYMBOL(....)
DEFINEMACRO(...)(...)(...)
DECWSLEVEL ()

Without the INCWSLEVEL and DECWSLEVEL, calls, the above definition would generate
four empty lines to the output stream.

The INCWSLEVEL and DECWSLEVEL calls may be nested. The best approach is to
put an INCWSLEVEL at the first line of a macro-defining Yodl-file, and a matching
DECWSLEVEL call at the very last line.

3.1.9 DEFINECHARTABLE

DEFINECHARTABLE is used to define a character translation table. The function
expects two parameterlists, containing the name of the character table and character
table translations on separate lines. These character table translations are of the
form

character = quoted-string

Here, character is always a value within single quotes. It may be a single character,
an octal character value or a hexadecimal character value. The single character may
be prefixed by a \-character (e.g., 2\\?). The octal character value must start with
a backslash, followed by three octal digits (e.g., >\045°. The hexadecimal character
value starts with 0x, followed by two hexadecimal characters. E.g., >0xbe’. The
double quoted string may contain anything (but the string must be on one line),
possibly containing escape-sequences too.

Example:

DEFINECHARTABLE (demotable) (

& = "&"

AN = "\\backslash"
’\045° = "oct(45)"
’0xad’ = "hex(a4)"

The builtin function DEFINECHARTABLE does not activate the table. The table is
merely defined. To activate the character translation table, use USECHARTABLE. The
discussion of character tables is postponed to section 2.3.

40

3.1.10 DEFINECOUNTER

DEFINECOUNTER creates a new counter, to be subsequently used by, e.g, the USECOUNTER
function. DEFINECOUNTER expects two parameter list: the name of the counter to
create and an optional initial value. By default the counter will be initialized to
Ze10.

Examples:

DEFINECOUNTER (YEAR) (1950)
DEFINECOUNTER (NTIMES) ()

See also section 2.5.

3.1.11 DEFINEMACRO

DEFINEMACRO is used to define new macros. This function requires three parameter
lists:

e An identifier, being the name of the macro to define. This identifier may only
consist of uppercase or lowercase characters. Note that it can not contain
numbers, nor underscore characters.

e A number, stating the number of arguments that the macro will require once
used. The number must be in the range 0 to 61.

e The text that the macro will expand to, once used. This text may contain the
strings ARGz, z being 1, 2, etc.. At these places the arguments to the macro
will be pasted in. The numbers that identify the arguments are 1 to 9, then A
to Z and finally a to z. This gives a range of 61 expandable arguments, which
is enough for all real-life applications.

For example, the following fragment defines a macro bookref, which can be used
to typeset a reference to a book. It requires three arguments; say, an author, a title
and the name of a publisher:

DEFINEMACRO (bookref) (3) (

Author(s): ARG1
Book title: ARG2
Published by: ARG3

Such a macro could be used as follows:

bookref (Sobotta/Becher)
(Atlas der Anatomie des Menschen)

41

(Urban und Schwarzenberg, Berlin, 1972)

When called, it would produce the following output:

Author(s): Sobotta/Becher
Book title: Atlas der Anatomie des Menschen
Published by: Urban und Schwarzenberg, Berlin, 1972

While applying a macro, the three parameter lists are pasted to the places where
ARG1, ARG2 etc. occur in the definition.

Note the following when defining new macros:

e The parameter list containing the name of the new macro, (bookref) in the
above example, must occur right after DEFINEMACRO. No spaces are allowed
in between. Space characters and newlines may however occur following this
first parameter list.

This behavior of the yodl program is similar to the usage of the defined macro:
the author information must, enclosed in parentheses, follow right after the
bookref identifier. T implemented this feature to improve the distinguishing
between macros and real text. E.g., a macro me might be defined, but the
text

I like me (but so do you)

still is simple text; the macro me only is activated when a parenthesis imme-
diately follows it.

e Be careful when placing newlines or spaces in the definition of a new macro.
E.g., the definition, as given:

DEFINEMACRO (bookref) (3) (

Author(s): ARG1
Book title: ARG2
Published by: ARG3

introduces extra newlines at the beginning and ending of the macro, which will
be copied to the output each time the macro is used. The extra newline occurs,
of course, right before the sequence Author (s): and following the evaluation
of ARG3. A simple backslash character at the end of the DEFINEMACRO line
would prevent the insertion of extra newline characters:

DEFINEMACRO (bookref) (3) (\
Author(s): ARG1

42

Book title: ARG2
Published by: ARG3

e Note that when a macro is used which requires no arguments at all, one empty
parameter list still must be specified. E.g., my macro package (see chapter
4) defines a macro it that starts a bullet item in a list. The macro takes no
arguments, but still must be typed as it ().

This behavior is consistent: it helps distinguish which identifiers are macros
and which are simple text.

e Macro arguments may evaluate to text. When a \is appended to the macro-
argument, or in the default input handling within a non-zero white-space
level (see section 3.1.38) this may invalidate a subsequent macro call. E.g.,
the macro

DEFINEMACRO (oops) (1) (
ARG1
XXnl()

will, when called as oops(hello world), produce the output:

hello worldXXnl()

To prevent this gluing to arguments to subsequent macros, a single + should
be prepended to the macro call:

DEFINEMACRO (oops) (1) (
ARG1
+XXnl ()

See also section 2.2.3 obout the ‘+identifier’-sequence.

e Note the preferred layout of macro definitions and macro calls. Adhere to this
form, to prevent drowning in too many parentheses. In particular:

— Put all elements of the macro definition on one line, except for the macro-
expansion itself. Each expansion element should be on a line by itself.

— When calling macros put the macro parameter lists underneath each
other. If the macrolists themselves contain macro-calls, put each call
again on a line of its own, indenting one tab-position beyond the location
of the opening parenthesis of the argument.

— No continnuation backslashes are required between parameter lists. So,
do not use them there to prevent unnecessary clutter.

43

— With complex calls, indent just the arguments, and put the parentheses
in their required of logical locations.

Example of a complex call:

complex(
first(
ARG1
) (
ARG2
+XXnl1 ()
)
ARG3
+nop ()
ARG4
+XXnl()

e Macro expansion proceeds as follows:

— The parameter lists are read from the input

— The contents of the parameters then replace their ARGx references in
the macro’s definition (in some exceptional cases, clearly indicated as
such when applicable, the arguments will themselves be evaluated first,
and then these evaluated arguments are used as replacements for their
corresponding ARGx references).

— The now modified macro is read by Yodl’s lexical scanner. This may
result in yet another macro expansion, which will then be evaluated
recursively.

— Eventually, all expansion is completed (well, should complete, since Yodl
doesn’t test for eternal recursion) and scanning of the input continues
beyond the original macro call.

For example, assume we have the following two macros:

DEFINEMACRO (First) (1) (

Hello ARG1
+XXnl()
)
DEFINEMACRO(Second) (1) (
First (ARG1)
First (ARG1)
)

and the following call is issued:

Second(Yodl)

44

then the following will happen:

Second(Yodl) is read as encountered.

ARG1 in Second is replaced by Yodl, and the resulting macro body is sent
to the lexical scanner for evaluation: It will see:

First(Yodl)First(Yodl)

The first call to First () is now evaluated. This will put (after replacing
ARG1 by Yodl) the following on the scanner’s input:

Hello Yodl+XXnl ()First(Yodl)

Hello Yodl contains no macro call, so it is written to the output stream.
Remains:

+XXnl1()First(Yodl)

Assume XXnl() merely contains a newline (represented by \n, here), so
+XXnl() is now replaced by \n. This results in the following input for
the lexical scanner:

\nFirst(Yodl)

The \n is now written to the output stream, and the scanner sees:

First(Yodl)

The second call to First () is now evaluated. This will put the following
on the scanner’s input:

Hello Yodl+XXnl()

Hello Yodl is written to the output stream. Remains:

+XXnl ()

+XXnl () is now replaced by \n. The lexical scanner sees:

\n

The newline is printed and we’re done.

45

3.1.12 DEFINESYMBOL

NOTE: this function has changed at the release of Yodl 2.00. It now
expects two parameter lists, rather than one

DEFINESYMBOL expects two arguments. An identifier, which is the name of the
symbol to define, and the textual value of the symbol. If the second argument is
empty, the symbol is defined, but has an empty value.

The earlier interpretation of a Yodl symbol as a logical flag can still be used, but
allowing it to obtain textual values greatly simplifies various Yodl macros.

Example:

DEFINESYMBOL(Yodl) (Your own document language)
DEFINESYMBOL (Options) ()

3.1.13 DELETECHARTABLE

DELETECHARTABLE removes a definition of a character table that was defined by
DEFINECHARTABLE. This function expects one argument: the name of the character
table remove.

It’s an error to attempt to delete a character table that is currently in use or to
attempt to delete a non-existing character table.

Example:

DELETECHARTABLE (mytable)

3.1.14 DELETECOUNTER

DELETECOUNTER removes a definition of a counter that was defined by DEFINECOUNTER.
This function expects one argument: the name of the counter to remove.

If the counter does not exist, a warning is issued. It is not considered an error to
try to delete a counter that has not been defined earlier.

Example:

DELETECOUNTER (mycounter)

46

3.1.15 DELETEMACRO

DELETEMACRO removes a definition of a macro that was defined by DEFINEMACRO.
This function takes one argument: the macro name to remove.

There is no error condition (except for syntax errors): when no macro with a match-
ing name was previously defined, no action is taken.

For example, the safe way to define a macro is by first undefining it. This ensures
that possible previous definitions are removed first:

Example:

DELETEMACRO (mymacro)

3.1.16 DELETENOUSERMACRO

DELETENOUSERMACRO removes a ‘nousermacro’ definition. The function expects
one argument: the name of the ‘nousermacro’ identifier to be removed from the
nousermacro-set.

There is no error condition (except for syntax errors): when the identifier wasn’t
stored as a ‘nousermacro’ no action is taken.

Example:

DELETENOUSERMACRO (mymacro)

3.1.17 DELETESYMBOL

DELETESYMBOL removes the definition of a symbol variable. It expects one parameter
list, holding the name of the variable to deleted.

This macro has no error condition (except for syntax errors): the symbol in question
may be previously defined, but that is not necessary.

Example:

DELETESYMBOL (Options)

3.1.18 DUMMY

This function is obsolete. It does nothing, and may be removed in future versions
of Yodl.

47

3.1.19 ENDDEF

ENDDEF is obsolete, and should be replaced by DECWSLEVEL. It may be removed in
future versions of Yodl.

3.1.20 ERROR

The ERROR function takes one argument: text to display to the standard error
stream. The current input file and line number are also displayed. After displaying
the text, the yodl program aborts with an exit status of 1.

The text passed to the function is expanded first. See the example.

The ERROR function is an example of a function that evaluates its parameter list
itself.

This command can be used, e.g., in a macro package when an incorrect macro is
expanded. In my macro package (see chapter 4) the ERROR function is used when the
sectioning command chapter () is used in an article document (in the package,
chapter’s are only available in books or reports).

An analogous builtin function is WARNING, which also prints a message but does not
exit (see section 3.1.74).

Example: In the following call, COUNTERVALUE (NTRIES) is replaced by its actual
value:

ERROR(Stopping after COUNTERVALUE(NTRIES) attempts)

3.1.21 EVAL

The EVAL function takes one argument: the text to be evaluated. This function
allows you to perform an indirect evaluation of Yodl commands. Assume that there
is a symbol varnam containing the name of a counter variable, then the following
will display the value of the counter, incrementing it first:

EVAL (NOTRANS (USECOUNTER) (SYMBOLVALUE (varnam)))

The actions of the EVAL function can be described as follows:

e First, the NOTRANS (USECOUNTER) is evaluated, producing USECOUNTER.
e Next, the open parentheses is processed, producing the open parenthesis itself

e Then, SYMBOLVALUE (varnam) is evaluated, producing the name of a counter,
e.g. ‘counter’.

e Eventually the closing parentheis is processed, producing the closing paren-
thesis itself.

48

e All this results in the text

USECOUNTER (counter)

e This text is now presented to Yodl’s lexical scanner, resulting in incrementing
the counter, and displaying its incremented value.

It should be realized that macro arguments themselves are usually not evaluated.
So, a construction like

USECOUNTER (EVAL (SYMBOLVALUE (varnam)))

will fail, since EVAL (SYMBOLVALUE (varnam)) is not a legal name for a counter: the
EVAL() call is used here as an argument, which is not expanded. The distinction
is subtle, and is caused by the fact that builtin functions receive unprocessed argu-
ments, and may impose certain requirements on them (like USECOUNTER requiring
the name of a counter).

Summarizing: EVAL acts as follows:

e Its argument is presented to Yodl’s lexical scanner
e The output produced by the processing of the argument is then inserted into

the input stream in lieu of the original EVAL call.

Mosy built-in functions will not evaluate their arguments. In fact, only ERROR,
EVAL, FPUTS, INTERNALINDEX, TYPEOUT, UPPERCASE and WARNING() will evalu-
ate their arguments.

Postponing evaluations allows you to write:

DEFINESYMBOL (later) (SYMBOLVALUE (earlier))

Eventually, and not when later is defined, a statement like

SYMBOLVALUE (later)

will produce the value of earlier at the moment SYMBOLVALUE (later) is processed.
This is, in all its complex consequences, what would be expected in most cases. It
allows us to write general macros producing output that is only evaluated when the
text of symbols and values of arguments become eventually, rather than when the
macro is defined, available.

Decisions like these invariably result in questions like ‘what if I have to keep original
values in some situation?’ In those situations EVAL() must be used. The following

49

example shows the definition of three symbols: one receives an initial value, two will
return one’s actual value when two’s value is displayed, three will, using EVAL (),
store one’s initial value. The example also shows yet another way to suppress macro
calls. It uses the macro nop() which is defined in the all standard conversion types.

DEFINESYMBOL (one) (This is one, before)
DEFINESYMBOL (two) (SYMBOLVALUE (one))

EVAL (DEFINESYMBOL+nop () (three) (SYMBOLVALUE (one)))
SETSYMBOL (one) (this is one, after)

SYMBOLVALUE (two)

SYMBOLVALUE (three)

3.1.22 FILENAME

The function FILENAME () produces an absolute path to the currently processed Yodl
file. This is not necessarily the canonical path name, as it may contain current-
and parent-path directories.

3.1.23 FPUTS

The function FPUTS expects two arguments: the first argment is information to
be appended to a file, whose name is given as the second argument. The first
argument is processed by Yodl before it is appended to the requested filename, so
it may contain macro calls.

For example, the following statement will append a countervalue to the mentioned
file:

FPUTS (There have been COUNTERVALUE(attempts) attempts) (/tmp/logfile)

The second argument (name of the file) is not evaluated, but is used as received.

3.1.24 IFBUILTIN

The IFBUILTIN function tests whether its first argument is the name of a builtin
function. If so, the second parameter list is evaluated, else, the third parameter list
is evaluated. All three parameter lists (the variable, the true-list and the false-list)
must be present; though the true-list and/or the false-list may be empty parameter
lists.

Example:

IFBUILTIN(IFBUILTIN) (\
‘BUILTIN’ is a builtin - function

50

) A\
‘BUILTIN’ is NOT a builtin - function

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.25 IFCHARTABLE

The IFCHARTABLE function tests whether its first argument is the name of a char-
acter table. The character table needs not be active. If the name is the name of
a character table, the second parameter list is evaluated, else, the third parameter
list is evaluated. All three parameter lists (the name, the true list and the false list)
must be present; though the true list and/or the false list may be empty parameter
lists.

Example:

IFCHARTABLE (standard) (\
‘standard’ is a character tablebuiltin - function

DEQ

‘standard’ is NOT a character tablebuiltin - function

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.26 IFDEF

The IFDEF function tests for the definition status of the argument in its first pa-
rameter list. If it is a defined entity, the second parameter list is evaluated, else, the
third parameter list is evaluated. All three parameter lists (the entity, the true list
and the false list) must be present; though the true list and/or the false list may be
empty parameter lists.

The true list is evaluated if the first argument is the name of:

e a built-in function, or

a character table, or

a counter, or

e a no-user-macro symbol, or

o1

e a symbol, or

e a user-defined macro, or

Example:

IFDEF (someName) (\
‘someName’ is a defined entity

) A\

‘someName is not defined.

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.27 IFEMPTY

IFEMPTY expects three arguments: a symbol, a true-list and a false-list. IFEMPTY
evaluates to the true-list if the symbol is an empty string; otherwise, it evaluates to
the false-list.

The function does not further evaluate its argument. Its use is primarily to test
whether a macro has received an argument or not. If the intent is to check whether
a symbol’s value is empty or not, IFSTREQUAL 3.1.32 should be used, where the
first argument is the name of a symbol, and the second argument is empty.

Example:

IFEMPTY (something) (\
‘something’ is empty...
)\

‘something’ is not an empty string

In the same way, IFEMPTY can be used to test whether an argument expands to a
non-empty string. A more elaborate example follows below. Say you want to define
a bookref macro to typeset information about an author, a book title and about
the publisher. The publisher information may be absent, the macro then typesets
unknown:

\
DEFINEMACRO (bookref) (3) (\
Author(s): ARG1
Title: ARG2

Published by: \

52

IFEMPTY (ARG3)

A\

Unknown\
) A\

ARG3\
)

Using the macro, as in:

bookref (Helmut Leonhardt)
(Histologie, Zytologie und Microanatomie des Menschen)

0O

would now result in the text Unknown behind the Published by: line.

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.28 IFEQUAL

IFEQUAL expects four argument lists. It tests whether its first argument is equal to
its second argument. If so, the third parameter list is evaluated, else, the fourth
parameter list is evaluated. All four argument lists must be present, though all can
be empty lists.

The first two arguments of IFEQUAL should be integral numerical arguments. In
order to determine whether the first two arguments are equal, their values are
determined:

e If the argument starts with an integral numerical value, that value is the value
of the argument.

e If the argument is the name of a counter, the counter’s value is the value of
the argument

e If the values of the first two arguments van be determined accordingly, their
equality will determine whether the true list (when the values are equal) or
the false list (when the values are unequal) will be evaluated.

e Otherwise, IFEQUAL will evaluate the false list.

Example:

IFEQUAL(0) OO (\
0 and an empty string are equal

53

) A\

0 and an empty string are not equal

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.29 TIFGREATER

IFGREATER expects four argument lists. It tests whether its first argument is greater
to its second argument. If so, the third parameter list is evaluated, else, the fourth
parameter list is evaluated. All four argument lists must be present, though all can
be empty lists.

The first two arguments of IFGREATER should be integral numerical arguments.
In order to determine whether the first two arguments are equal, their values are
determined:

e If the argument starts with an integral numerical value, that value is the value
of the argument.

e If the argument is the name of a counter, the counter’s value is the value of
the argument

e If the values of the first two arguments van be determined accordingly, their
order relation will determine whether the true list (when the first value is
greater than the second value) or the false list (when the first value is smaller
or equal than the second value) will be evaluated.

e Otherwise, IFGREATER will evaluate the false list.

Example:

IFGREATER (counter) (5) (\
counter exceeds the value 5

) A\

counter does not exceeds the value 5, or counter is no Yodl-counter.

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.30 IFMACRO

The IFMACRO function tests whether its first argument is the name of a macro. If
the name is the name of a macro, the second parameter list is evaluated, else, the

54

third parameter list is evaluated. All three parameter lists (the name, the true list
and the false list) must be present; though the true list and/or the false list may be
empty parameter lists.

Example:

IFMACRO (nested) (\
‘nested’ is the name of a macro

) A\

There is no macro named ‘nested’

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.31 IFSMALLER

IFSMALLER expects four argument lists. It tests whether its first argument is smaller
to its second argument. If so, the third parameter list is evaluated, else, the fourth
parameter list is evaluated. All four argument lists must be present, though all can
be empty lists.

The first two arguments of IFSMALLER should be integral numerical arguments.
In order to determine whether the first two arguments are equal, their values are
determined:

e If the argument starts with an integral numerical value, that value is the value
of the argument.

e If the argument is the name of a counter, the counter’s value is the value of
the argument

e If the values of the first two arguments van be determined accordingly, their
order relation will determine whether the true list (when the first value is
smaller than the second value) or the false list (when the first value is greater
than or equal to the second value) will be evaluated.

e Otherwise, IFSMALLER will evaluate the false list.

Example:

IFSMALLER (counter) (5) (\
counter is smaller than the value 5, or counter is no Yodl-counter

) A\

counter exceeds the value 5

35

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.32 TFSTREQUAL

IFSTREQUAL tests for the equality of two strings. It expects four arguments: two
strings to match, a true list and a false list. The true list is only evaluated when
the contents of the two string arguments exactly match.

The first two arguments of IFSTREQUAL are partially evaluated:

e If the argument is the name of a symbol, the symbol’s value is the value of
the argument

e Otherwise, the argument, itself is used.

In the degenerate case where the string to be compared is actually the name of a
SYMBOL, use a temporary SYMBOL variable containing the name of that symbol, and
compare it to whatever you want to compare it with. Alternatively, write a blank
space behind the arguments, since the arguments are then interpreted ‘as is’. In
practice, the need for these constructions seem to arise seldomly, however.

Example:

IFSTREQUAL (MYSYMBOL) (Hello world) (
The symbol ‘MYSYMBOL’ holds the value ‘Hello world’

) (
The symbol ‘MYSYMBOL’ doesn’t hold the value ‘Hello world’

3.1.33 IFSTRSUB
IFSTRSUB tests whether a string is a sub-string of another string. It acts similar to
IFSTREQUAL, but it tests whether the second string is part of the first one.
The first two arguments of IFSTREQULA are partially evaluated:

e If the argument is the name of a symbol, the symbol’s value is the value of

the argument

e Otherwise, the argument, itself is used.
In the degenerate case where the string to be compared is actually the name of a
SYMBOL, use a temporary SYMBOL variable containing the name of that symbol, and
compare it to whatever you want to compare it with. Alternatively, write a blank

space behind the arguments, since the arguments are then interpreted ‘as is’. In
practice, the need for these constructions seem to arise seldomly, however.

56

Example:

IFSTRSUB (haystack) (needle) (
‘needle’ was found in ‘haystack’

) (

‘needle’ was not found in ‘haystack’

Note that both ‘haystack’ and ‘needle’ may be the names of symbols. If they are,
their contents are is compared, rather than the literal names ‘haystack’ and ‘needle’

3.1.34 IFSYMBOL

The IFSYMBOL function tests whether its first argument is the name of a symbol. If
it is the name of a symbol, the second parameter list is evaluated, else, the third
parameter list is evaluated. All three parameter lists (the name, the true list and
the false list) must be present; though the true list and/or the false list may be
empty parameter lists.

Example:

IFSYMBOL (nested) (\
‘nested’ is the name of a symbol

) A\

There is no symbol named ‘nested’

Please note the preferred layout: The first argument immediately follows the func-
tion name, then the second argument (the true list) is indented, as is the false
list. The layout closely follows the preferred layout of if-else statements of many
programming languages.

3.1.35 IFZERO
IFZERD expects three parameter lists. The first argument defines whether the whole
function expands to the true list or to the false list.
The first argument of IFZERO should be an integral numerical value. Its value is
determined as follows:
e If the argument starts with an integral numerical value, that value is the value
of the argument.

e If the argument is the name of a counter, the counter’s value is the value of
the argument

e Otherwise, IFZERQ will evaluate the false list.

57

Note that, starting with Yodl version 2.00 the first argument is not evaluated any
further. So, COUNTERVALUE (somecounter) will always be evaluated as 0. If the
value of a counter is required, simply provide its name as the first argument of the
IFZERO function.

Example:

DEFINEMACRO (environment) (2) (\
IFZERO (ARG2) (\
NOEXPAND (\end{ARG1})\
)\
NOEXPAND (\begin{ARG13})\
N

Such a macro may be used as follows:

environment (center) (1)
Now comes centered text.
environment (center) (0)

which would of course lead to \begin and \end{center}. The numeric second
argument is used here as a on/off switch.

3.1.36 INCLUDEFILE

INCLUDEFILE takes one argument, a filename. The file is processed by Yodl. If a file
should be inserted without processing the builtin function NOEXPANDINCLUDE
3.1.42 or NOEXPANDPATHINCLUDE 3.1.43 should be used.

The yodl program supplies, when necessary, an extension to the filename. The
supplied extension is .yo, unless defined otherwise during the compilation of the
program.

Furthermore, Yodl tries to locate the file in the Yodl’s include path (which may be
set using the -include option). The actual value of the include path is shown in
the usage information, displayed when Yodl is started without arguments.

Example:

INCLUDEFILE (latex)

will try to include the file 1atex or latex.yo from the current include parth. When
the file is not found, Yodl aborts.

58

3.1.37 INCLUDELIT, INCLUDELITERAL

INCLUDELIT and INCLUDELITERAL are obsolete. NOEXPANDINCLUDE 3.1.42 or
NOEXPANDPATHINCLUDE 3.1.43 should be used instead.

3.1.38 INCWSLEVEL

INCWSLEVEL requires one (empty) parameter list. It increases the current white-
space level. The white-space level typically is used in files that only define Yodl
macros. When no output should be generated while processing these files, the white-
space level can be used to check for this. If the white-space level exceeds zero, a
warning will be generated if the file produces non-whitespace output. The builtin
function DECWSLEVEL is used to reduce the whitespace level following a previous call
of INCWSLEVEL.

Once the white space level exceeds zero, no output will be generated. White space,
therefore will effectively be ignored. The white space level cannot be reduced to
negative values. A warning is issued if that would have happened if it were allowed.

Example:

INCWSLEVEL ()
DEFINESYMBOL(....)
DEFINEMACRO(...)(...)(...)
DECWSLEVEL ()

Without the INCWSLEVEL and DECWSLEVEL, calls, the above definition would generate
four empty lines to the output stream.

The INCWSLEVEL and DECWSLEVEL calls may be nested. The best approach is to
put an INCWSLEVEL at the first line of a macro-defining Yodl-file, and a matching
DECWSLEVEL call at the very last line.

3.1.39 INTERNALINDEX

INTERNALINDEX expects one argument list. The argument list is evaluated and
written to the index file.

The index file is defined since Yodl version 2.00, and contains the fixup information
which was previously written to Yodl’s output as the .tt(Yodl) TAGSTART.
.tt(Yod1) TAGEND. sequence.

The index file allows for greated processing speed, at the expense of an additional
file. The associated yodlpost postprocessing program will read and process the
index file, and will fixup the corresponding yodl-output accordingly.

The index file is not created when output is written to the standard output name,
since Yodl is unable to request the system for the current file offset.

The entries of the index file always fit on one line. INTERNALINDEX will alter newline
characters in its argument into single blank spaces. Each line starts with the current

39

offset of Yodl’s output file, thus indicating the exact location where a fixup is
requested. An example of a produced fixup line could be

3004 ref MACROPACKAGE

indicating that at offset 3004 in the produced output file a reference to the label
MACROPACKAGE is requested. Assuming a html conversion, The postprocessor will
thereupon write something like

4.3.2.

into the actual output file while processing Yodl’s output up to offset location 3004.

Consequently, producing Yodl-output normally consists of two steps:

e First, Yodl itself is started, producing, e.g., out.idx (the index file) and
out.yodl (Yodl’s raw output).

e Then, Yodl’s post-processor processes out.idx and out.yodl, producing one
or more final output files, in which the elements of the index file have been
properly handled. This may result in multiple output file, like report.html,
report0l.html, report02.html etc.

3.1.40 NEWCOUNTER

NEWCOUNTER is obsolete. DEFINECOUNTER 3.1.10 should be used instead.

3.1.41 NOEXPAND

NOEXPAND is used to send text to the final output file without being expanded by
Yodl (the other methods are the CHAR macro, see section 3.1.4, and the NOTRANS
macro, see section 3.1.44). NOEXPAND takes one parameter list, the text in question.
Whatever occurs in the argument is not subject to parsing or expansion by Yodl,
but is simply copied to the output file (except for CHAR functions in the argument,
which are expanded. If CHAR-expansion is not required either NOTRANS 3.1.44
can be used).

Furthermore, the contents of the parameter list are also subject to character table
translations, using the currently active table. This should come as no surprise.
Ignoring character tables would make both the processing of CHAR calls and the
NOTRANS function superfluous.

So, the following situations are recognized:

60

support chartables

and CHAR
Macro expansion yes no
Yes (standard) Push chartable
(standard)
Pop chartable
No NOEXPAND NOTRANS

E.g., let’s assume that you need to write in your document the following text:

INCLUDEFILE (something or the other)
IFDEF (onething) (

) (

)
NOEXPAND (whatever)

The way to accomplish this is by prefixing the text by NOEXPAND followed by an
open parenthesis, and by postfixing it by a closing parenthesis. Otherwise, the text
would be expanded by Yodl while processing it (and would lead to syntax errors,
since the text isn’t correct in the sence of the Yodl language).

For this function, keep the following caveats in mind:
e There is only one thing that a NOEXPAND cannot protect from expansion: an

ARGz in a macro definition. The argument specifier is always processed. E.g.,
after

DEFINEMACRO (thatsit) (1) (
That is --> NOEXPAND(ARG1) <-- it!

)
thatsit(after all)

the ARG1 inside the NOEXPAND statement is replaced with after all.

e The NOEXPAND function must, as all functions, be followed by a parameter list.
The parentheses of the list must therefore be ‘balanced’. For unbalanced lists,
use CHAR(40) to set an open parenthesis, or CHAR(41) to typeset a closing
parenthesis.

3.1.42 NOEXPANDINCLUDE

NOEXPANDINCLUDE takes one argument, a filename. The file is included.
The filename is uses ‘as is’. The include path is not used when locating this file.

The argument to NOEXPANDINCLUDE is partially evaluated:

61

e If the argument is the name of a symbol, the symbol’s value is the value of
the argument

e Otherwise, the argument itself is used.
The thus obtained file name is not further evaluated: in particular, it will not be
subject to character translations.

The contents of the file are included literally, not subject to macro expansion.
Character translations are performed, though. If character translations are not ap-
propriate, PUSHCHARTABLE can be used to suppress character table translations
temporarily.

The purpose of NOEXPANDINCLUDE is to include source code literally in the
document, as in:

NOEXPANDINCLUDE(literal.c)

The function NOEXPANDPATHINCLUDE can be used to insert a file which is
located in one of the directories specified in Yodl’s include path.

3.1.43 NOEXPANDPATHINCLUDE
NOEXPANDPATHINCLUDE takes one argument, a filename. The file is included. The
file is searched for in the directories specified in Yodl’s includepath.
The argument to NOEXPANDPATHINCLUDE is partially evaluated:

e If the argument is the name of a symbol, the symbol’s value is the value of

the argument

e Otherwise, the argument, itself is used.
The thus obtained file name is not further evaluated: in particular, it will not be
subject to character translations.

Like the NOEXPANDINCLUDE function, the contents of the file are included literally,
not subject to macro expansion. Character translations are performed, though. If
character translations are not appropriate, PUSHCHARTABLE 3.1.56 can be used
to suppress character table translations temporarily.

The purpose of NOEXPANDPATHINCLUDE is to include source code as defined
in a macro package literally into the document, as in:

NOEXPANDPATHINCLUDE (rug-menubegin.xml)

62

3.1.44 NOTRANS

NOTRANS copies its one argument literally to the output file, without expanding
macros in it and without translating the characters with the current translation
table. The NOTRANS function is typically used to send commands for the output
format to the output file.

For example, consider the following code fragment:

COMMENT (--- Define character translations for \, { and } in LaTeX. ---)
DEFINECHARTABLE (standard) (
AN = "$\\backslash$"
1 = "\\verb+{+"
'} = "\\verb+}+"
)
COMMENT (--- Activate the translation table. ---)

USECHARTABLE (standard)
COMMENT (--- Now two tests: ---)

NOEXPAND (\input{epsf.tex})
NOTRANS (\input{epsf.tex})

NOEXPAND will send

\backslashinput\verb+{+epsf.tex\verb+}+

since the characters in its argument are translated with the standard translation
table. In contrast, NOTRANS will send \input{epsf.tex}.

The parameter list of NOTRANS must be balanced with respect to its parentheses.
When using an unbalanced set of parentheses, use CHAR(40) to send a literal (, or
CHAR(41) to send a).

The NOEXPAND description summarizes all combinations of character translations
and/or macro expansion, and how they are handled and realized by YodL

3.1.45 NOUSERMACRO

NOUSERMACRO controls yodl’s warnings in the following way: When Yodl is started
with the -w flag on the command line, then warnings are generated when Yodl
encounters a possible macro name, followed by a parameter list, without finding a
macro by that name. Yodl then prints something like cannot expand possible
user macro.

Examples of such sequences are, The necessary file(s) are in /usr/local/lib/yodl,
or see the manual page for sed(1). The candidate macros are file and sed;

63

these names could just as well be ‘valid’ user macros followed by their parameter
list.

When a corresponding NOUSERMACRO statement appears before yodl encounters the
candidate macros, no warning is generated. A fragment might therefore be:

NOUSERMACRO(file sed)
The necessary file(s) are in ...
See the manual page for sed(1).

The NOUSERMACRO accepts one or more names in its argument, separated by white
space, commas, colons, or semi-colons.

3.1.46 OUTBASE

OUTBASE inserts the current basename of the output file into the output file. The
basename is the name of the file of which the directory components and extension
were stripped.

If the output file is the standard output file, - is inserted.

3.1.47 OUTDIR

OUTDIR inserts the current path name of the output file into the output file. The
path name is a, not necessarily absolute, designator of the directory in which the
output file is located. If the output file is indicated as, e.g., -o out, then OUTDIR
simply inserts a dot.

If the output file is the standard output file, a dot is inserted too.

3.1.48 OUTFILENAME

OUTFILENAME inserts the current filename of the output file into the output file. The
filename is the name of the file of which the directory components were stripped.

If the output file is the standard output file, - is inserted.

3.1.49 PARAGRAPH

PARAGRAPH isn’t really a builtin function, but as it is handled especially by Yodl,
it is described here nonetheless. Starting with Yodl 2.00 PARAGRAPH operates as
follows:

If the macro is not defined, new paragraphs, defined as series of consecutive empty
lines written to the output stream, are not handled different from any other series
of characters sent to the output stream. IL.e., they are inserted into that stream.

64

However, if the macro has been defined, Yodl will call it whenever a new paragraph
(defined as a series of at least two blank lines) was recognized.

The empty lines that were actually recognized may be obtained inside the PARAGRAPH
macro from the XXparagraph symbol, if this symbol has been be defined by that
time. If defined, it will contain the white space that caused Yodl to call the
PARAGRAPH macro.

Note that, in order to inspect XXparagraph it must have been defined first. Yodl
itself will not define this symbol itself.

The PARAGRAPH macro should be defined as a macro not expecting arguments. The
macro is thus given a chance to process the paragraph in a way that’s fitting for
the particular conversion type. If the PARAGRAPH macro produces series of empty
lines itself, then those empty lines will not cause Yodl to activate PARAGRAPH. So,
Yodl itself will not recursively call PARAGRAPH, although the macro could call itself
recursively. Of course, such recursive activcation of PARAGRAPH is then the sole
responsibility of the macro’s author, and not Yodl’s.

Some document languages do not need paragraph starts; e.g., LaTeX handles its
own paragraphs. Other document languages do need it: typically, PARAGRAPH is
then defined in a macro file to trigger some special action. E.g., a HTML converter
might define a paragraph as:

DEFINEMACRO (PARAGRAPH) (0) (
XXn1 ()
NOTRANS (<p>)

A sytem like xm1 has more strict requirements. Paragraphs here must be opened
and closed using pairs of <p> and </p> tags. In those cases an auxiliary counter
can be used to indicate whether there is an open paragraph or not. The PARAGRAPH
macro could check for this as follows, assuming the availability of a counter XXp:

DEFINEMACRO (PARAGRAPH) (0) (
XXnl1()
IFZERO (XXp) (
) (
NOTRANS (</p>)
)
NOTRANS (<p>)
SETCOUNTER (XXp) (1)

Note that the above fragment exemplifies an approach, not necessarily the imple-
mentation of the PARAGRAPH macro for an xml-convertor.

65

3.1.50 PIPETHROUGH

The builtin function PIPETHROUGH is, besides SYSTEM, the second function with
which a Yodl document can affect its environment. Therefore, the danger of ‘live
data’ exists which is also described in the section about SYSTEM (see section 3.1.67).
Nevertheless, PIPETHROUGH can be very useful. It is intended to use external pro-
grams to accomplish special features. The idea is that an external command is
started, to which a block of text from within a Yodl document is ‘piped’. The
output of that child program is piped back into the Yodl document; hence, a block
of text is ‘piped through’ an external program. Whatever is received again in the
Yodl run, is further processed.

The PIPETHROUGH function takes two arguments:

e the command to run, and

e the text to send to that command.

Functionally, the occurrence of the PTPETHROUGH function and of its two arguments
is replaced by whatever the child program produces on its standard output.

An example might be the inclusion of the current date, as in:

The current date is:
PIPETHROUGH (date) ()

In this example the command is date and the text to send to that program is empty.

The main purpose of this function is to provide a way by which external programs
can be used to create, e.g., tables or figures for a given output format. Further
releases of Yodl may contain such dedicated programs for the output formats.

3.1.51 POPCHARTABLE

Character tables which are pushed onto the table stack using PUSHCHARTABLE ()
are restored (popped) using POPCHARTABLE(). For a description of this mechanism
please refer to section 2.3.3.

3.1.52 POPCOUNTER

POPCOUNTER is used to remove the topmost counter from the counter stack. The
values of counters may be pushed on a stack using PUSHCOUNTER 3.1.57. To re-
move the topmost element of a counter’s stack POPCOUNTER is available. POPCOUNTER
expects one argument: the name of the counter to pop. The previously pushed value
then becomes the new value of the counter. A counter’s value may be popped after
defining it, whereafter the stack will be empty, but the counter will still be defined.
In that case, using the counter’s value is considered an error.

Examples:

66

DEFINECOUNTER(YEAR) (1950)
POPCOUNTER (YEAR)
COMMENT (YEAR now has an undefined value)

See also section 2.5.

3.1.53 POPMACRO

POPMACRO is used to remove the actual macro definition, restoring a previously
pushed definition. The values of macros may be pushed on a stack using PUSHMACRO.
To remove the topmost element of a macro’s stack POPMACRO is available. POPMACRO
expects one argument: the name of the macro to pop. The previously pushed value
then becomes the new value of the macro.

A macro’s value may be popped after defining it, whereafter the stack will be empty,
but the macro will still be defined. In that case, using the macro is considered an
error.

Example:

DEFINEMACRO(Hello) (1) (Hello, ARG1, this is a macro definition)

Hello(Karel)

PUSHMACRO(Hello) (1) (Hello, ARG1, this is the new definition)

Hello(Karel)

POPMACRO(Hello)

Hello(Karel)

COMMENT (The third activation of Hello() produces the same output
as the first activation)

3.1.54 POPSYMBOL

POPSYMBOL is used to remove the topmost symbol from the symbol stack. The values
of symbols may be pushed on a stack using PUSHSYMBOL 3.1.59. To remove the
topmost element of a symbol’s stack POPSYMBOL is available.

POPSYMBOL expects one argument: the name of the symbol to pop. The previously
pushed value then becomes the new value of the symbol. A symbol’s value may be
popped after defining it, whereafter the stack will be empty, but the symbol will
still be defined. In that case, using the symbol’s value is considered an error.

Example:

DEFINESYMBOL(YEAR) (This happened in 1950)
POPSYMBOL (YEAR)
COMMENT (YEAR now has an undefined value)

67

3.1.55 POPWSLEVEL

POPWSLEVEL is used to remove the topmost wslevel from the wslevel stack. The
values of wslevels may be pushed on a stack using PUSHWSLEVEL 3.1.60. See
also section DECWSLEVEL 3.1.8

To remove the topmost element of a wslevel’s stack POPWSLEVEL is available. POPWSLEVEL
expects one argument: the name of the wslevel to pop. The previously pushed value
then becomes the new value of the wslevel. A wslevel’s value may be popped after
defining it, whereafter the stack will be empty, but the wslevel will still be defined.

In that case, using the wslevel’s value is considered an error.

Example:

COMMENT (Assume WS level is zero)

PUSHWSLEVEL (1)
COMMENT (WS level now equals 1)

POPWSLEVEL ()
COMMENT (WS level now equals 0 again)

3.1.56 PUSHCHARTABLE

Once a character table has been defined, it can be pushed onto a stack using
PUSHCHARTABLE. The pushed chartable may be popped later. PUSHCHARTABLE is
described in more detail in section 2.3.3.

3.1.57 PUSHCOUNTER

PUSHCOUNTER is used to start another lifetime for a counter, pushing its current
value on a stack. A stack is available for each individual counter.

PUSHCOUNTER expects two arguments: the name of the counter to push and its new
value after pushing. When the second argument is an empty parameter list, the
new value will be zero. The new value may be specified as a numerical value, or as
the name of an existing counter. Specify the name of the counter twice to merely
push its value, without modifying its current value.

Examples:

DEFINECOUNTER(YEAR) (1950)
PUSHCOUNTER (YEAR) (1962)
COMMENT (YEAR now has the value 1962, and a pushed value of 1950)

See also section 2.5.

68

3.1.58 PUSHMACRO

PUSHMACRO is used to start another lifetime for a macro, pushing its current defini-
tion on a stack. A stack is available for each individual macro.

PUSHMACRO expects three arguments: the name of the macro to push, the number of
its arguments after pushing (which may be different from the number of arguments
interpreted by the pushed macro) and its new definition.

So, PUSHMACRO is used exactly like DEFINEMACRO, but will redefine a current macro
(or define a new macro if no macro was defined by the name specified as its first
argument.

Example:

DEFINEMACRO(Hello) (1) (Hello, ARG1, this is a macro definition)

Hello(Karel)

PUSHMACRO(Hello) (1) (Hello, ARG1, this is the new definition)

Hello(Karel)

POPMACRO(Hello)

Hello(Karel)

COMMENT (The third activation of Hello() produces the same output
as the first activation)

3.1.59 PUSHSYMBOL

PUSHSYMBOL is used to start another lifetime for a symbol, pushing its current value
on a stack. A stack is available for each individual symbol.

PUSHSYMBOL expects two arguments: the name of the symbol to push and its new
value after pushing. When the second argument is an empty parameter list, the
new value will be zero. The new value may be specified as a numerical value, or as
the name of an existing symbol. Specify the name of the symbol twice to merely
push its value, without modifying its current value.

Examples:

DEFINESYMBOL (YEAR) (This happened in 1950)

PUSHSYMBOL (YEAR) (This happended in 1962)

COMMENT (YEAR now has the value ‘This happended in 1962’ and a
pushed value of ‘This happened in 1950°)

3.1.60 PUSHWSLEVEL

PUSHWSLEVEL is used to start another lifetime of the white-space level pushing the
level’s current value on a stack. See also section INCWSLEVEL 3.1.38

PUSHWSLEVEL expects one argument, the new value of the white-space level. This

69

value may be specified as a numerical value or as the name of a counter. The
argument may be empty, in which the new value will be zero.

Example:

COMMENT (Assume WS level is zero)

PUSHWSLEVEL (1)
COMMENT (WS level now equals 1)

POPWSLEVEL ()
COMMENT (WS level now equals 0 again)

3.1.61 RENAMEMACRO

RENAMEMACRO takes two arguments: the name of a built-in macro (such as INCLUDEFILE)
and its new name.

E.g., after

RENAMEMACRO (INCLUDEFILE) (include)

a file must be included by include(file). INCLUDEFILE can no longer be used
for this: following the RENAMEMACRO action, the old name can no longer be used; it
becomes an undefined symbol.

If you want to make an alias for a built-in command, do it with DEFINEMACRO. E.g.,
after:

DEFINEMACRO(include) (1) (INCLUDEFILE (ARG1))

both INCLUDEFILE and include can be used to include a file.

3.1.62 SETCOUNTER

SETCOUNTER expects two parameter lists: the name of a counter, and a numeric
value or the name of another counter.

The corresponding counter (which must be previously created with NEWCOUNTER) is
set to, respectively, the numeric value or the value of the other counter.

See also section 2.5.

70

3.1.63 SETSYMBOL

SETSYMBOL expects two parameter lists: the name of a symbol, and the text to
assign to the named symbol.

3.1.64 STARTDEF

STARTDEF is obsolete. Instead, INCWSLEVEL 3.1.38 should be used.

3.1.65 SUBST

SUBST is a general-purpose substitution mechanism for strings in the input. SUBST
takes two arguments: a search string and a substitution string. E.g., after

SUBST (VERSION) (1.00)

Yod1 will transorm all occurrences of VERSION in its input into 1.00.

SUBST is also useful in situations where multi-character sequences should be con-
verted to accent characters. E.g., a IATEX converter might define:

SUBST(’e) (NOTRANS (\’{e}))

Each ’e in the input will then be converted to +1latexcommand (\’{e}).

SUBST may be useed in combination with the command line flag -P, as in a invoca-
tion

yod12html -P’SUBST(VERSION) (1.00)’ myfile.yo

Another useful substitution might be:

SUBST(_0P_) (CHAR (40))
SUBST(_CP_) (CHAR(41))

which defines an opening parenthesis (_0P_) and a closing parenthesis (_CP_) as
mapped to the CHAR function. The strings _0P_ and _CP_ might then be used to
produce unbalanced parameter lists.

Note that:

e The first argument of the SUBST command, the search string, is taken literally.
Yodl does not expand it; the string must be literally matched in the input.

71

e The second argument, the replacement, is further processed by Yodl. Protect
this text by NOTRANS or NOEXPAND where appropriate.

Substitutions occur extremely early while Yodl processes its input files. In order to
processs its input files, Yodl takes the following basic steps:

1. Tt requests input from its lexical scanner (so-called tokens)
2. Its parser processes the tokens produced by the lexical scanner

3. Its parser may send text to an output ‘object’, which will eventually appear
in the output file generated by Yodl.

Yod1 will perform all macro substitutions in step 2, and all character table conver-
sions in step 3. However, the lexical scanner has access to the SUBST definitions: as
soon as its lexical analyzer detects a series of characters matching the defining se-
quence of a SUBST definition, it will replace that defining sequence by its definition.
That definition is then again read by the lexical scanner. Of course, this definition
may, in turn, contain defining sequences of other SUBST definitions: these will then
be replaced by their definitions as well. This implies:

e Circular definitions may cause the lexical scanner to get stuck in a replacement
loop. It is the responsibility of the author defining SUBST definitions to make
sure that this doesn’t happen.

e Neither the parser, nor the output object ever sees the SUBST defining char-
acter sequences: they will only see their definitions.

3.1.66 SYMBOLVALUE

SYMBOLVALUE expands to the value of a symbol. Its single parameter list must
contain the name of a symbol. The symbol must have been created earlier using
the builtin DEFINESYMBOL.

Example:

The symbol has value SYMBOLVALUE(MYSYMBOL).

3.1.67 SYSTEM

SYSTEM takes one argument: a command to execute. The command is run via
the standard C function system. The presence of this function in the Yodl lan-
guage introduces the danger of live data. Imagine someone sending you a document
containing

SYSTEM(rm *)

72

To avoid such malevolent side effects, Yodl has a flag -1 to define the ‘live data
policy’. By default, -10 is implied which suppresses the SYSTEM function and the
related PIPETHROUGH function. See also section 2.3.2.

Despite the potential danger, SYSTEM can be useful in many ways. E.g., you might
want to log when someone processes your document, as in:

SYSTEM(echo Document processed! | mail myself@my.host)

Note that SYSTEM merely performs an system-related task. It’s a process that is
separated from the Yodl process itself. One of the consequences of this is that
any output generated by SYSTEM will not normally appear into Yodl’s output file.
If the output of a subprocess should be inserted into Yodl’s output file, either
use PIPETHROUGH 3.1.50, or insert a temporary file as shown in the following
example:

SYSTEM(date > datefile)
The current date is:
INCLUDEFILE(datefile)
SYSTEM(rm datefile)

3.1.68 TYPEOUT

TYPEOUT requires one parameter list. The text of the list is sent to the standard error
stream, followed by a newline. This feature can be handy to show, e.g., messages
such as version numbers in macro package files.

Example: The following macro includes a file and writes to the screen that this file
is currently processed.

DEFINEMACRO (includefile) (1) (
TYPEQUT (About to process document: ARG1)
INCLUDEFILE (ARG1)

3.1.69 UNDEFINEMACRO

UNDEFINEMACRO is deprecated. Use DELETEMACRO 3.1.15 instead.

3.1.70 UPPERCASE

UPPERCASE converts a string or a part of it to upper case. It has two arguments:

e The string to convert;

73

e A length, indicating how many characters (starting from the beginning of the
string) should be converted.

The length indicator can be smaller than one or larger than the length of the string;
in that case, the whole string is convertered.

Example:

UPPERCASE (hello world) (1)
UPPERCASE (hello world) (5)
UPPERCASE (hello world) (0)

This code sample expands to:

Hello world
HELLO world
HELLO WORLD

3.1.71 USECHARTABLE

USECHARTABLE takes one parameter list: the name of a translation table to activate.
The table must previously have been defined using DEFINECHARTABLE. See section
2.3 for a description of character translation tables.

Alternatively, the name may be empty in which case the default character mapping
is restored.

3.1.72 USECOUNTER

USECOUNTER is a combination of ADDTOCOUNTER and COUNTERVALUE. It expects one
parameter list: the name of an defined counter (see DEFINECOUNTER 3.1.10).

The counter is first incremented by 1. Then the function expands to the counter’s
value.

See also section 2.5.

3.1.73 VERBOSITY

VERBOSITY expects two arguments, and may be used to change the verbosity level
inside Yod1 files. The function may be used profitably for debugging purposes, to
debug the expansion of a macro or the processing of a Yodl input file.

The first argument indicates the procesing mode of the second argument, and it
may be:

74

e Empty, in which case the message-level is set to the value specified in the
second argument;

e + in which case the value specified in the second argument augments the
current message level;

e -, in which case the value specified in the second argument augments is re-
moved from the current message level

The second argument specifies one or more, separated by blanks, message level
names or it may be set to a hexadecimal value (starting with 0x), using hexadecimal
values to represent message levels. Also, NONE may be used, to specify no message
level, or ALL can be used to specify all message levels.

The following message levels are defined:

e ALERT (0x40). When an alert-error occurs, Yodl terminates. Here Yodl
requests something of the system (like a get_cwd()), but the system fails.

e CRITICAL (0x20). When a critical error occurs, Yodl terminates. The mes-
sage itself can be suppressed, but exiting can’t. A critical condition is, e.g., the
omission of an open parenthesis at a location where a parameter list should
appear, or a non-existing file in an INCLUDEFILE specification (as this file
should be parsed). A non-existing file with a NOEXPANDINCLUDE specification
is a plain (non-critical) error.

e DEBUG (0x01). Probably too much info, like getting information about each
character that was read by Yodl.

e ERROR (0x10). An error (like doubly defined symbols). Error messages will
not stop the parsing of the input (up to a maximum number of errors), but
no output is generated.

e INFO (0x02). Not as detailed as ‘debug’, but still very much info, like infor-
mation about media switches.

e NOTICE (0x04). Information about, e.g., calls to the builtin function calls.
e WARNING (0x08). Something you should know about, but probably not
affecting Yodl’s proper functioning
There also exists a level EMERG (0x80) which cannot be suppressed.
The value 0x00 represents NONE, the value Oxff represents ALL.

When specifying multiple message levels using the hexadecimal form, their hexadec-
imal values should be binary-or-ed: adding them is ok, as long as you don’t specify
ALL:

VERBOSITY () (0x06)
COMMENT (this specifies ‘INFO’ and ‘NOTICE’)

When specifying message levels by their names, the names may be truncated at a
unique point. However, the message level names are interpreted case sensitively, so

75

INF for INFO is recognized as such, but info for INFO isn’t. The following examples
all specify verbosity levels INFO and NOTICE:

VERBOSITY() (I N)
VERBOSITY() (N I)
VERBOSITY() (NOT IN)
VERBOSITY () (INFO NOTICE)

3.1.74 WARNING

WARNING takes one argument: text to display as a warning. The yod1 program makes
sure that before showing the text, the current file and line number are printed. Other
than this, WARNING works just as TYPEQUT (see section 3.1.68).

Note that an analogous function ERROR exists, which prints a message and then
terminates the program (see section 3.1.20).

3.1.75 WRITEOUT

WRITEOUT is deprecated, use FPUTS 3.1.23 instead.

76

Chapter 4

Macros and Document types

The macro package distributed with Yodl is described in this chapter. The macro
package consists of a number of definition files, which convert a Yodl document that
follows a certain syntax to an output format. The main output formats, currently
supported, are:

e HTML;

e LaTeX (plain LaTeX, no latex2e);

e The groff ‘man’ format which is used for man pages;

e The groff ‘ms’ format which is more expressive;

e Basic, plain text
The following conversion format is in an experimental stage:

e XML, as used by the University of Groningen’s so-called ‘webplatform’.
Currently discontinued conversion formats are:

e SGML, although the basic macros are available. SGML can probably be
reactivated fairly quickly. Contact the maintainer if support for SGML should
be reinstated

e texinfo, mainly due to the fact that the current maintainer doesn’t know what
the required post-processing actions are.

e tely, since this conversion format is unknown to the current maintainer.

Other formats may be available, but maybe in an unstable state. Contact the the
maintainer if you have a new format to add, or want to reanimate formates that
were previously available.

7

4.1 General structure of a Yodl document

This section describes the general format of a Yodl document.

First of all, a Yodl document needs a preamble. This part of the document must be
at the top, and must define the modifiers and the document type. Modifiers, when
present, must appear first.

Modifiers are often specific for a particular target document type (e.g., latexoptions
or mailto), but may also have a general nature (e.g., affiliation or abstract).
All modifiers are used to modify parameters of document types. Therefore, they
must be specified before the document type is defined.

All modifiers are listed in section 4.3.8. In general, you should use as many modifiers
as appropriate. E.g., you should define a mailto even when you’re not planning
to convert your document to HTML. The reason is twofold: first, you might later
decide that a HTML version isn’t a bad idea after all. Second, later versions of the
converters might use mailto even for non-HTML output formats.

Following the modifiers, the document type is defined. The document type is either
article, report, book, plainhtml or manpage. Except for the manpage document
type, which is a highly specialized document type, described in section 4.1.2, the
following rules apply:

A decision about the document type to use should be based on its complexity. If
the document’s organization becomes too complex, it is probably a good idea to use
a document type supporting a more complex organization. E.g., a complex article
might be written as an accessible report, combining related sections into chapters.
Similarly, the structure of a report having 30 chapters might improve when it’s re-
organized as a book having parts. To offer a rule of thumb: a document should have
no more than approximately ten top-level sections, and each top-level sectioning
should have no more than approximately ten subsections, etc..

The document type influences the way Yodl formats the output. An article (or
plainhtml) results in one output file. E.g., one final document when converting to
HTML. If your article is way too long, then the loading of the HTML document
will also take much time. When converting to HTML, Yodl splits reports and
books into files each holding a chapter. These can be accessed through the table
of contents. So, the document length can also be relevant when you contemplate
switching to a report or book.

Documents using special macros, must have defined these macros before they are
used. An appropriate location for these macros is immediately beyond the pream-
ble. E.g., see the file Documentation/manual/manual.yo distributed with the Yodl
package. This is the main file of this manual, showing the preferred organization of
Yodl files.

To answer yes-but-what-if oriented minds, here are two results of the wrong order
of text, preamble and modifiers:

e If you put text before the preamble, i.e., before stating the document type,
chances are that Yodl will happily translate the file, but subsequent states will
probably fail. E.g., the <html> tag would come too late in a HTML conversion,
causing the HTML browser to become confused. Or, the \documentstyle
definition would be seen too late by the LaTeX typesetter.

78

e If you put modifiers, such as latexoptions, beyond the document type, then
the modifiers will have no effect; though Yodl won’t complain either. The
reason for this is the definition of such modifiers will be seen following the
stage where they are needed..

4.1.1 Document types

As distributed, Yodl supports four document types: article, report, book and the
manual page. Note that document types have nothing in common with output
formats; a book can be converted to each of the output formats, and a manual
page can be converted to a .dvi file. Nevertheless, some formats are particularly
usefule for some document types. A book converted to the man output format to be
processed later with groff won’t look too good. Its looks would greatly improve
when the document would be converted to ASCII using the ms output format.

Following the preamble and the definition of specialized macros symbols and coun-
ters, documents start by specifying the document type. The available macros are:

e article(title) (author) (date): The article document type should be
used for short documents. Its arguments specify the document’s title, author
and date.

In articles, the title page is numbered and the table of contents is on the title
page. The sectioning commands sect, subsect etc. are available.

e report(title) (author) (date): The report document type differs from an
article in that it has a separate unnumbered title page, a table of contents
on a page of its own, and it supports the sectioning command chapter in
addition to the ones supported by articles. A report should be used fir
larger documents.

e book(title) (author) (date): The book type is for even larger documents.
In addition to the sectioning commands supported by report it supports the
sectioning command part.

e plainhtml(title): This document type is typically used in HTML output.
It’s implemented for situations where you only need to create a HTML file,
but want to use Yodl to help you by providing useful macros. This document
type is similar to article, but does not require you to specify author and
date arguments (In fact, you can emulate plainhtml by using an article,
using empty author and date arguments).

e manpage (title) (section) (date) (source) (manual): The manpage docu-
ment type should only be used to write Unix-style manual pages. It uses
its own sectioning commands to reflect the necessary sections in a manual
page. This document format is described separately in 4.1.2.

These macros provide, globally, three functions: First, the macros generate any
commands that need to appear before ‘real’ text is sent to the output file. E.g.,
the LaTeX output needs a \documentstyle preamble, HTML output needs <html>
and <body> tags.

Second, the macros define appropriate document-dependent settings. E.g., the La-
TeX converter defines the title, author and date using \title etc..

79

Third, the actual document is started. E.g., for LaTeX this means a \begin{type},
followed by the appropriate commands to generate a the document title and the
table of contents. The title setting in the above macros defines the document, title
which always appears on the front page of the document. For HTML output, this
is also the title of the HTML file (or files), as appearing in the HTML <title> tag.

The fact that the macros defining the document type perform many functions means
that once the macro is started, nothing ‘extra’ can be inserted between, e.g., the
generated title and the table of contents. Sometimes this is not what you’d like;
as is the case with an abstract. Yodl therefore uses modifiers, appearing before
the document type macros, to insert information between the various elements of a
document, definition.

4.1.2 The manpage document type

The manpage document, type was implemented to simplify the construction of Unix-
style manual pages. A manpage document must be organized as follows:

1. The manual page itself is defined, using the macro

manpage (short title)
(section)
(date)
(source)
(manual)

Its arguments are:

Short title: This should be the program name or something similar; i.e.,
whatever the manpage is describing.

Section: A number, stating the manpage section. The Linux man (7) page
recognizes the following manpage sections:

e Section 1 is for commands, like 1s;

e Section 2 is for system calls, like fork();

e Section 3 is for library calls, like strdup();

e Section 4 is for special files (like devices);

e Section 5 is for file formats, (like syslog.conf);

e Section 6 is for games;

e Section 7 is for macro packages and conventions;

e Section 8 is for system management commands;

e Section 9 is for other types of manpages, such as kernel commands.
Date: The date of release.

Source: The package where the manpage belongs to.

Manual: The manual to which the package belongs.

The arguments of the manpage macro define, e.g., the headers and footers of
the manual page. The date, source and manual arguments can be empty.

80

. The subject of the manpage is defined using

manpagename (name) (short description)

The name argument should be a short name (e.g., the program name), and
the short description should state the function. The descriptive argument
is used by, e.g., the whatis database.

. The synopsis starts after:

manpagesynopsis()

Following this, an abbreviated usage information is presented. This informa-
tion should show, e.g., the possible program flags and required arguments;
but no more.

. The description is given after:

manpagedescription()

This is followed by some descriptive text. The descriptive text can e.g. show
what the program (function, file, game, etc.) is supposed to do.

. Options are expected after:

manpageoptions ()

The options are typically a descriptive list of possible flags and their meaning.
This section lists the information of the synopsis, but also gives an in-depth
description. The manpageoptions () section is optional.

. Necessary files are listed after:

manpagefiles()

. The ‘see also’ entry is defined by:

manpageseealso ()

This is then followed by a list of related manual pages. Here, use the format
bf (topic) (sectionnr), e.g., Yod1l(1).

81

8. Diagnostics are described after:

manpagediagnostics()

Diagnostics can state, e.g., what error messages are produced by the program
and what the cure is.

9. Known bugs should be mentioned after:

manpagebugs ()

This section is optional.

10. Finally, the author is stated after:

manpageauthor ()

The manpage document type requires you to follow the above order of commands
strictly and to state all the necessary sections (and optionally, to state the not
required sections but in their proper sequence). Furthermore, sectioning commands
that are available in other document types (sect, subsect etc.) are not allowed
in a manpage. You can however insert other sections in the manual page with the
macro manpagesection. This macro takes one argument: the title of the extra
section. It is suggested that you type the section name in upper case, to conform
to the standard.

As an example, the manual page for the yodl program follows (the actual manual
page may differ):

manpage (yodl)
(1
(1996)
(The Yodl Package)
(Yet oneOther Document Language)

manpagename (yodl) (main Yodl convertor)

manpagesynopsis ()

tt(Yodl) [-DNAME] [-IDIR] [-oFILE] [-PCMD] [-pPASS] [-t] [-v] [-w] [-hl
[-?] inputfile [inputfile...]

manpagedescription ()

This manual page describes the tt(Yodl) program, the main converter of the
Yodl package. This program is used by the bf(yodl2....) shell scripts,
e.g., bf(yodl2tex) or bf(yodl2html) .

manpageoptions ()

82

description(

dit (-DNAME) Defines symbol em(NAME).

dit(-IDIR) Overrules the standard include directory (default
em(/usr/local/lib/yodl)) with em(DIR).

dit (-oFILE) Specifies em(FILE) as the output file (default is stdout).

dit (-PCMD) ‘Preloads’ command em(CMD), as if em(CMD) was the first line
of the input.

dit (-pPASS) Defines em(PASS) as the maximum number of ‘passes’; when this
number is exceeded, tt(Yodl) aborts.

dit(-t) Enables tracing mode. Useful for debugging.

dit(-v) Raises the verbosity mode. Useful for debugging.

dit(-w) Enables warning. When enabled, tt(Yodl) will warn when it sees
inconsistencies.

dit(-h, -7) Shows usage information.

dit(inputfile) File to process, use em(-) to instruct tt(Yodl) to read
from stdin.

)

manpagefiles()

The tt(Yodl) program requires no files, but ‘normal’ usage of the Yodl package
requires macro files installed (usually in bf(/usr/local/share/yodl)). The
files in this directory are included by the converters bf(yodl2txt) etc..

manpageseealso ()
bf (yod12tex), bf(yodl2html), bf(yodl2man), etc..

manpagediagnostics()

Warnings and errors of tt(Yodl) are too many to enumerate, but all errors
are printed to em(stderr) after which tt(Yodl) exits with a non-zero
status.

manpagebugs ()

There may be bugs in the tt(Yodl) program, but that’s not very likely.
More likely you’ll encounter bugs or omissions in the macro package
itself.

manpageauthor ()
Karel Kubat

4.2 Predefined macros

This section describes all macros defined by default. Altering or removing these
macros may produce unexpected results when converting Yodl documents to other
formats. Furthermore, these macros often depend on macros or other symbols
defined for internal use.

Many predefined macros depend on symbols start with XX. Therefore, it is strongly
advised not to start any locally defined symbol with XX as doing so, or undefining
existing symbols starting with XX, may also produce unexpected results.

Here are the default macros, alphabetically ordered:

83

4.2.1 abstract(text)

Defines an abstract for an article or report document. Abstracts are not imple-
mented for books or manpages. Must appear before starting the document with
the article or report macro.

4.2.2 addntosymbol(symbol)(n)(text)

Adds text n times to symbol. The value n may also be the name of a defined
counter (which itself will not be modified).

4.2.3 affiliation(site)

Defines an affiliation, to appear in the document titlepage below the author field.
Must, appear before starting the document with article, report or book. The
affiliation is only printed when the author field is not empty.

4.2.4 AfourEnlarged()

Enlarges the usable height of A4 paper by 2 cm.: the top margin is reduced by 2
cm. This macro should be called in the preamble. The macro is available only for
ITEX conversions.

4.2.5 appendix()

Starts appendices

4.2.6 article(title)(author)(date)

Starts an article. The top-level sectioning command is (n)sect. In HTML conver-
sions only one output file is written.

4.2.7 bf(text)

Sets text in boldface.

4.2.8 bind(text)

Generate a binding character after text.

84

4.2.9 book(title)(author)(date)

Starts a book document. The top-level sectioning command is (n) chapter, (n)part
being optional. In HTML output files are created for each chapter.

4.2.10 cell(contents)

Sets a table cell, i.e., one element in a row. With the man/ms converters multiple
blanks between cell() macro calls are merged into a single blank character.

4.2.11 cells(nColumns)(contents)

Set a table cell over nColumns columns. In html, ATEX and xml formats the in-
formation in the combined cells will be centered. With man/ms conversions the
cells () macro simply calls the cell () macro, but here the setmanalign() macro
can be used to determine the alignment of multiple cells.

4.2.12 center(text)

Sets text centered, when the output format permits. Use n1() in the text to break
lines.

4.2.13 chapter(title)

Starts a new chapter in books or reports.

4.2.14 cindex()

Generate an index entry for index c.

4.2.15 cite(1)

Sets a citation or quotation

4.2.16 clearpage()

Starts a new page, when the output format permits. Under HTML a horizontal line
is drawn.

4.2.17 code(text)

Sets text in code font, and prevents it from being expanded. For unbalanced
parameter lists, use CHAR(40) to get (and CHAR(41) to get).

85

4.2.18 columnline(from)(to)

Sets a horizontal line over some columns in a row. Note that columnline defines
a row by itself, consisting of just a horizontal line spanning some of its columns,
rather than the table’s full width, like rowline. The two arguments represent
column numbers. It is the responsibility of the author to make sure that the from
and to values are sensible. lLe.,

1 <= from <= to <= ncolumns

4.2.19 def(macroname)(nrofargs)(redefinition)

Defines macroname as a macro, having nrofargs arguments, and expanding to
redefinition. This macro is a shorthand for DEFINEMACRO. An error occurs when
the macro is already defined. Use redef () to unconditionally define or redefine a
macro.

4.2.20 description(list)

Sets 1ist as a description list. Use dit (item) to indicate items in the list.

4.2.21 dit(itemname)

Starts an item named itemname in a descriptive list. The list is either enclosed by
startdit () and enddit (), or is an argument to description().

4.2.22 eit()

Indicates an item in an enumerated list. The eit () macro should be an argument
in enumerate().

4.2.23 ellipsis()

Sets ellipsis (...).

4.2.24 em(text)

Sets text as emphasized, usually italics.

4.2.25 email(address)

In HTML, this macro sets the address in a locator. In
other output formats, the address is sent to the output. The email macro is a

86

special case of url.

4.2.26 endcenter()

DEPRECATED. Use center().

4.2.27 enddit()

DEPRECATED. Use description().

4.2.28 endeit()

DEPRECATED. Use enumeration().

4.2.29 endit()

DEPRECATED. Use itemization().

4.2.30 endmenu()

DEPRECATED. Use menu().

4.2.31 endtable()

DEPRECATED. Use table().

4.2.32 enumerate(list)

DEPRECATED. Use enumeration().

4.2.33 enumeration(list)

enumeration() starts an enumerated list. Use eit () in the list to indicate items
in the list.

4.2.34 euro()

Sets the euro currency symbol in latex, html, (and possibly sgml and xml). In all
other conversions EUR which is the official textual abbreviation (cf. http://ec.europa.eu/euro/entry.html)
is written. Note that INTEX may require latexpackage()(eurosym).

87

4.2.35 fig(label)

This macro is a shorthand for figure ref(label) and just makes the typing
shorter, asin see fig(schematic) for .. See getfigurestring() and setfigurestring()
for the figure text.

4.2.36 figure(file)(caption)(label)

Sets the picture in file as a figure in the current document, using the descriptive
text caption. The label is defined as a placeholder for the figure number and
can be used in a corresponding ref statement. Note that the file must be the
filename without extension: By default, Yodl will supply .gif when in HTML
mode, or .ps when in LaTeX mode. Figures in other modes may not (yet) haven
been implemented.

4.2.37 file(text)

Sets text as filename, usually boldface.

4.2.38 findex()

Generate an index entry for index f.

4.2.39 footnote(text)

Sets text as a footnote, or in parentheses when the output format does not allow
footnotes.

4.2.40 gagmacrowarning(name name ...)

Prevents the yodl program from printing cannot expand possible user macro. E.g.,
if you have in your document the file(s) are .. then you might want to put
before that: gagmacrowarning(file). Calls NOUSERMACRO.

4.2.41 getaffilstring()

Expands to the string that defines the name of Affiliation Information, by default
AFFILIATION INFORMATION. Can be redefined for national language support
by setaffilstring(). Currently, it is relevant only for txt.

4.2.42 getauthorstring()

Expands to the string that defines the name of Author Information, by default
AUTHOR INFORMATION. Can be redefined for national language support by
setauthorstring(). Currently, it is relevant only for txt.

88

4.2.43 getchapterstring()

Expands to the string that defines a ‘chapter’ entry, by default Chapter. Can be
redefined for national language support by setchapterstring().

4.2.44 getdatestring()

Expands to the string that defines the name of Date Information, by default DATE
INFORMATION. Can be redefined for national language support by setdatestring().
Currently, it is relevant only for txt.

4.2.45 getfigurestring()

Returns the string that defines a ‘figure’ text, in captions or in the fig() macro.
The string can be redefined using the setfiguretext () macro.

4.2.46 getpartstring()

Expands to the string that defines a ‘part’ entry, by default Part. Can be redefined
for national language support by setpartstring().

4.2.47 gettitlestring()

Expands to the string that defines the name of Title Information, by default TITLE
INFORMATION. Can be redefined for national language support by settitlestring().
Currently, it is relevant only for txt.

4.2.48 gettocstring()

Expands to the string that defines the name of the table of contents, by default Table
of Contents. Can be redefined for national language support by settocstring().

4.2.49 htmlbodyopt(option)(value)

Adds option="value" to the options of the <body ...> tag in HTML files. Useful
options are, e.g., fgcolor and bgcolor, whose values are expressed as #rrggbb,
where rr are two hexadecimal digits of the red component, gg two hexadecimal
digits of the green component, and bb two hexadecimal digits of the blue component.

4.2.50 htmlcommand(cmd)

Writes cmd to the output when converting to html. The cmd is not further expanded
by Yodl.

89

4.2.51 htmlheadopt(option)

Adds the literal text option to the current information in the head section of an
HTML document. Option may (or: should) contain plain html text. A com-
monly occurring head option is 1link, defining, e.g., a style sheet. Since that op-
tion is frequently used, it has received a dedicated macro: htmlstylesheet. Like
htmlbodyopt this macro should be placed in the document’s preamble.

4.2.52 htmlnewfile()

In HTML output, starts a new file. All other formats are not affected. Note that
you must take your own provisions to access the new file; say via links. Also, it’s safe
to start a new file just befoore opening a new section, since sections are accessible
from the clickable table of contents. The HTML converter normally only starts new
files prior to a chapter definition.

4.2.53 htmlstylesheet(url)

Adds a <1link rel="stylesheet" type="text/css" ...> element to the head
section of an HTML document, using url in its href field. The argument url
is not expanded, and should be plain HTML text, without surrounding quotes.
The macro htmlheadopt can also be used to put information in the head-section
of an HTML document, but htmlheadopt is of a much more general nature. Like
htmlbodyopt this macro should be placed in the document’s preamble.

4.2.54 htmltag(tagname)(start)

Sets tagname as a HTML tag, enclosed by < and >. When start is zero, the
tagname is prefixed with /.

4.2.55 ifnewparagraph(truelist)(falselist)

The macro ifnewparagraph should be called from the PARAGRAPH macro, if defined.
It will insert truelist if a new paragraph is inserted, otherwise falselist is
inserted (e.g., following two consecutive calls of PARAGRAPH). This macro can be
used to prevent the output of multiple blank lines.

4.2.56 includefile(file)

Includes file and defines a label with the same name. The default extension .yo
is supplied if necessary.

4.2.57 includeverbatim(file)

Include file into the output. No processing is done, file should be in preformatted
form, e.g.:

90

whenhtml (includeverbatim(foo.html))

4.2.58 it()

Indicates an item in an itemized list. The list is either surrounded by startit()
and endit (), or it is an argument to itemize().

4.2.59 itemization(list)

Sets 1ist as an itemizationd list. Use it () to indicate items in the list.

4.2.60 itemize(list)

DEPRECATED. Use itemization().

4.2.61 kindex()

Generate an index entry for index k.

4.2.62 label(labelname)

Defines labelname as an anchor for a link command, or to stand for the last
numbering of a section or figure in a ref command.

4.2.63 langle()

Character <

4.2.64 languagedutch()

Defines the Dutch-language specific headers. Active this macro via setlanguage(dutch).

4.2.65 languageenglish()

Defines the English-language specific headers. Active this macro via setlanguage(english).

4.2.66 languageportugese()

Defines the Portugese-language specific headers. Active this macro via setlanguage(portugese).

91

4.2.67 LaTeX()

The LaTeX symbol.

4.2.68 latexaddlayout(arg)

This macro is provided to add Yodl-interpreted text to your own LaTeX layout
commands. The command is terminated with an end-of-line. See also the macro
latexlayoutcmds ()

4.2.69 latexcommand(cmd)

Writes cmd plus a white space to the output when converting to LaTeX. The cmd is
not further expanded by Yodl.

4.2.70 latexdocumentclass(class)

Forces the LaTeX \documentclass{...} setting to class. Normally the class is
defined by the macros article, report or book. This macro is an escape route
incase you need to specify your own document class for LaTeX. This option is a
modifier and must appear before the article, report or book macros.

4.2.71 latexlayoutcmds(NOTRANSSs)

This macro is provided in case you want to put your own LaTeX layout commands
into LaTeX output. The NOTRANSs are pasted right after the \documentclass
stanza. The default is, of course, no local LaTeX commands. Note that this
macro does not overrule my favorite LaTeX layout. Use nosloppyhfuzz() and
standardlayout () to disable my favorite LaTeX layout.

4.2.72 latexoptions(options)

Set latex options: documentclass[options]. This command must appear before
the document type is stated by article, report, etc..

4.2.73 latexpackage(options)(name)

Include latex package(s), a useful package is, e.g., epsf. This command must
appear before the document type is stated by article, report, etc..

4.2.74 1chapter(label)(title)

Starts a new chapter in books or reports, setting a label at the beginning of the
chapter.

92

4.2.75 letter(language)(date)(subject)(opening)(salutation)(author)

Starts a letter written in the indicated language. The date of the letter is set to
‘date’, the subject of the letter will be ‘subject’. The letter starts with ‘opening’.
It is based on the ‘letter.cls’” document class definition. The macro is available for
KTEX only. Preamble command suggestions:

latexoptions(11pt)

e adenlarged()

e letterreplyto(name) (address) (postalcode/city)
e letterfootitem(phone) (number), maybe e-mail too.
e letteradmin(yourdate) (yourref)

e letterto(addressitem). Use a separate letterto() macro call for each new
line of the address.

4.2.76 letteraddenda(type)(value)

Adds an addendum at the end of a letter. ‘type’ should be ‘bijlagen’; ‘cc’ or ‘ps’.

4.2.77 letteradmin(yourdate)(yourref)

Puts ‘yourletterfrom’ and ‘yourreference’ elements in the letter. If left empty, two
dashes are inserted.

4.2.78 letterfootitem(name)(value)

Puts a footer at the bottom of letter-pages. Up to three will usually fit. IATEX only.

4.2.79 letterreplyto(name)(address)(zip city)

Defines the ‘reply to’ address in INTEX or txt-letters.

4.2.80 letterto(element)

Adds ‘element’ as an additional line to the address in LaTex() letters.

4.2.81 link(description)(labelname)

In HTML output a clickable link with the text description is created that points
to the place where labelname is defined using the label macro. Using link is
similar to url, except that a hyperlink is set pointing to a location in the same
document. For output formats other than HTML, only the description appears.

93

4.2.82 Iref(description)(labelname)

This macro is a combination of the ref and link macros. In HTML output a
clickable link with the text description and the label value is created that points
to the place where 1abelname is defined using the 1abel macro. For output formats
other than HTML, only the description and the label value appears.

4.2.83 lsect(label)(title)

Starts a new section, setting a label at the beginning of the section.

4.2.84 lsubsect(label)(title)

Starts a new subsection. Other sectioning commands are subsubsect and subsubsubsect.
A label is added just before the subsection.

4.2.85 lsubsubsect(label)(title)

Starts a sub-subsection, a label is added just before the section

4.2.86 lsubsubsubsect(label)(title)

Starts a sub-sub-sub section. This level of sectioning is not numbered, in contrast
to ‘higher’ sectionings. A label is added just before the subsubsubection.

4.2.87 lurl(locator)

An url described by its Locator. For small urls with readable addresses.

4.2.88 mailto(address)

Defines the default mailto address for HTML output. Must appear before the
document type is stated by article, report, etc..

4.2.89 makeindex()

Make index for latex.

4.2.90 mancommand(cmd)

Writes cmd to the output when converting to man. The cmd is not further expanded
by Yodl.

94

4.2.91 manpage(title)(section)(date)(source)(manual)

Starts a manual page document. The section argument must be a number, stating

to which section the manpage belongs to. Most often used are commands (1), file for-

mats (5) and macro packages (7). The sectioning commands in a manpage are not

(n) sect etc., but manpage. .. (). The first section must be the manpagename, the

last section must be the manpageauthor. The standard manpage for section 1 con-

tains the following sections (in the given order): manpagename, manpagesynopsis,

manpagedescription, manpageoptions, manpagefiles, manpageseealso,manpagediagnostics
manpagebugs, manpageauthor. Optional extra sections can be added with manpagesection.

Standard manpageframes for several manpagesections are provided in /usr/local/share/yodl/manframes.

4.2.92 manpageauthor()

Starts the AUTHOR entry in a manpage document. Must be the last section of a
manpage.

4.2.93 manpagebugs()

Starts the BUGS entry in a manpage document.

4.2.94 manpagedescription()

Starts the DESCRIPTION entry in a manpage document.

4.2.95 manpagediagnostics()

Starts the DTAGNOSTICS entry in a manpage document.

4.2.96 manpagefiles()

Starts the FILES entry in a manpage document.

4.2.97 manpagename(name)(short description)

Starts the NAME entry in a manpage document. The short description is used by,
e.g., the whatis database.

4.2.98 manpageoptions()

Starts the OPTIONS entry in a manpage document.

95

4.2.99 manpagesection(SECTIONNAME)

Inserts a non-required section named SECTIONNAME in a manpage document. This
macro can be used to augment ‘standard’ manual pages with extra sections, e.g.,
EXAMPLES. Note that the name of the extra section should appear in upper
case, which is consistent with the normal typesetting of manual pages.

4.2.100 manpageseealso()

Starts the SEE ALSO entry in a manpage document.

4.2.101 manpagesynopsis()

Starts the SYNOPSIS entry in a manpage document.

4.2.102 mbox()

Unbreakable box in latex(). Other formats may have different opitions on our
unbreakable boxex.

4.2.103 menu(list)

DEPRECATED.

4.2.104 metaC(text)

Put a line comment in the output.

4.2.105 metaCOMMENT (text)

Write format-specific comment to the output.

4.2.106 mit()

DEPRECATED.

4.2.107 mscommand(cmd)

Writes cmd to the output when converting to ms. The cmd is not further expanded
by Yodl.

96

4.2.108 nchapter(title)

Starts a chapter (in a book or report) without generating a number before the title
and without placing an entry for the chapter in the table of contents.

4.2.109 nemail(name)(address)

Named email. A more consistent naming for url, lurl, email and nemail would be
nice.

4.2.110 nl()

Forces a newline; i.e., breaks the current line in two.

4.2.111 node(previous)(this)(next)(up)

DEPRECATED Defines a node with name this, and links to nodes previous,
next and (up), for the node command.

4.2.112 nodeprefix(text)
Prepend text to node names, e.g.
nodeprefix(LilyPond) sect(Overview)

Currently used in texinfo descriptions only.

4.2.113 nodeprefix(text)

Prepend text to node names, e.g.
nodeprefix(LilyPond) sect(Overview)

Currently used in texinfo descriptions only.

4.2.114 nodetext(text)

Use text as description for the next node, e.g.
nodetext (The GNU Music Typesetter)chapter(LilyPond)

Currently used in texinfo descriptions only.

97

4.2.115 nop(text)

Expand to text, to avoid spaces before macros e.g.: a%. Although a+sups(2) should
have the same effect.

4.2.116 nosloppyhfuzz()

By default, LaTeX output contains commands that cause it to shut up about hboxes
that are less than 4pt overfull. When nosloppyhfuzz() appears before stating the
document, type, LaTeX complaints are ‘vanilla’.

4.2.117 notableofcontents()

Prevents the generation of a table of contents. This is default in, e.g., manpage and
plainhtml documents. When present, this option must appear before stating the
document, type with article, report etc..

4.2.118 notitleclearpage()

Prevents the generation of a clearpage () instruction after the typesetting of title
information. This instruction is default in all non article documents. When
present, must appear before stating the document type with article, book or
report.

4.2.119 notocclearpage()

With the I’TEX convertor, no clearpage() instruction is inserted immediately
beyond the document’s table of contents. The clearpage () instruction is default
in all but the article document type. When present, must appear before stating
the document type with article, book or report. With other convertors than the
ITEX convertor, it is ignored.)

4.2.120 notransinclude(filename)

Reads filename and inserts it literally in the text not subject to macro expansion
or character translation. No information is written either before or after the file’s
contents, not even a newline.

4.2.121 noxlatin()

When used in the preamble, the LaTeX converter disables the inclusion of the file
xlatinl.tex. Normally this file gets included in the LateX output files to ensure
the conversion of high ASCII characters (like €) to LaTeX-understandable codes.
(The file xlatinl.tex comes with the Yodl distribution.)

98

4.2.122 nparagraph(title)

Starts a non-numbered paragraph (duh, corresponds to subparagraph in latex).

4.2.123 npart(title)

Starts a part in a book document, but without numbering it and without entering
the title of the part in the table of contents.

4.2.124 nsect(title)

Starts a section, but does not generate a number before the title nor an entry in
the table of contents. Further sectioning commands are nsubsect, nsubsubsect
and nsubsubsubsect.

4.2.125 nsubsect(title)

Starts a non-numbered subsection.

4.2.126 nsubsubsect(title)

Starts a non-numbered sub-sub section.

4.2.127 nsubsubsect(title)

Starts a non-numbered sub-subsection.

4.2.128 paragraph(title)

Starts a parapgraph. This level of sectioning is not numbered, in contrast to ‘higher’
sectionings (duh, corresponds to subparagraph in latex).

4.2.129 part(title)

Starts a new part in a book document.

4.2.130 pindex()

Generate an index entry for index p.

99

4.2.131 plainhtml(title)

Starts a document for only a plain HTML conversion. Not available in other output
formats. Similar to article, except that an author- and date field are not needed.

4.2.132 printindex()

Make index for texinfo (7).

4.2.133 quote(text)

Sets the text as a quotation. Usually, the text is indented, depending on the output
format.

4.2.134 rangle()

Inserts the right angle character (>).

4.2.135 redef(nrofargs)(redefinition)

Defines macro macro to expand to redefinition. Similar to def, but any pre-
existing definition is overruled. Use ARGz in the redefinition part to indicate where
the arguments should be pasted. E.g., ARG1 places the first argument, ARG2 the
second argument, etc...

4.2.136 redefinemacro(nrofargs)(redefinition)

Defines macro macro to expand to redefinition. Similar to def, but any pre-
existing definition is overruled. Use ARGz in the redefinition part to indicate where
the arguments should be pasted. E.g., ARG1 places the first argument, ARG2 the
second argument, etc... This commands is actually calling redef().

4.2.137 ref(labelname)

Sets the reference for labelname. Use label to define a label.

4.2.138 report(title)(author)(date)

Starts a report type document. The top-level sectioning command in a report is
chapter.

100

4.2.139 roffcmd(dotcmd)(sameline)(secondline)(thirdline)

Sets a t/nroff command that starts with a dot, on its own line. The arguments are:
dotcmd - the command itself, e.g., .IP; sameline - when not empty, set following
the dotcmd on the same line; secondline - when not empty, set on the next line;
thirdline- when not empty, set on the third line. Note that dotcmd and thirdline
are not further expanded by Yodl, the other arguments are.

4.2.140 row(contents)

The argument contents may contain a man-page alignment specification (only one
specification can be entered per row), using setmanalign(). If omitted, the stan-
dard alignment is used. Furthermore it contains the contents of the elements of
the row, using cell() or cells() macros. If cells() is used, setmanalign()
should have been used too. In this macro call only the cell(), cells() and
setmanalign() macros should be called. Any other macro call may produce unex-
pected results.

4.2.141 rowline()

Sets a horizontal line over the full width of the table. See also columnline(). Use
rowline() instead of a row() macro call to obtain a horizontal line-separator.

4.2.142 sc(text)

Set text in small caps (or tt).

4.2.143 sect(title)

Starts a new section.

4.2.144 setaffilstring(name)

Defines name as the ‘affiliation information’ string, by default AFFILIATION IN-
FORMATION. E.g., after setaffilstring(AFILIACION), Yodl outputs this Span-
ish string to describe the affiliation information. Currently, it is relevant only for
txt.

4.2.145 setauthorstring(name)

Defines name as the ‘Author information’ string, by default AUTHOR INFORMA-
TION. E.g., after setauthorstring(AUTOR), Yodl outputs this portuguese string
to describe the author information. Currently, it is relevant only for txt.

101

4.2.146 setchapterstring(name)

Defines name as the ‘chapter’ string, by default Chapter. E.g., after setchapterstring (Hoofdstuk),
Yod1 gains some measure of national language support for Dutch. Note that LaTeX
support has its own NLS, this macro doesn’t affect the way LaTeX output looks.

4.2.147 setdatestring(name)

Defines name as the ‘date information’ string, by default DATE INFORMATION.
E.g., after setdatestring(DATA), Yodl outputs this portuguese string to describe
the date information. Currently, it is relevant only for txt.

4.2.148 setfigureext(name)

Defines the name as the ‘figure’ extension. The extension should include the period,
if used. E.g., use setfigureext(.ps) if the extensions of the figure-images should end
in .ps

4.2.149 setfigurestring(name)

Defines the name as the ‘figure’ text, used e.g. in figure captions. E.g., after
setfigurestring(Figuur), Yodl uses Dutch names for figures.

4.2.150 sethtmlfigureext(ext)

Defines the filename extension for HTML figures, defaults to .jpg. Note that a
leading dot must be included in ext. The new extension takes effect starting with
the following usage of the figure macro. It is only active in html, but otherwise
acts identically as setfigureext().

4.2.151 setincludepath(name)

Sets a new value of the include-path specification used when opening .yo files. A
warning is issued when the path specification does not include a .: element. Note
that the local directory may still be an element of the new include path, as the
local directory may be the only or the last element of the specification. For these
eventualities the new path specification is not checked.

4.2.152 setlanguage(name)

Installs the headers specific to a language. The argument must be the name of
a language, whose headers have been set by a corresponding languageXXX() call.
For example: languagedutch(). The language macros should set the names of the
headers of the following elements: table of contents, affiliation, author, chapter,
date, figure, part and title

102

4.2.153 setlatexalign(alignment)

This macro defines the table alignment used when setting tables in IATEX. Use as
many 1 (for left-alignment), r (for right alignment), and c (for centered-alignment,)
characters as there are columns in the table. See also table ()

4.2.154 setlatexfigureext(ext)

Defines the filename extension for encapsulated PostScript figures in LaTeX, de-
faults to .ps. The dot must be included in t new extension ext. The new extension
takes effect starting with a following usage of the figure macro. It is only active
in latex(), but otherwise acts identically as setfigureext().

4.2.155 setlatexverbchar(char)

Set the char used to quote latex() \verb sequences

4.2.156 setmanalign(alignment)

This macro defines the table alignment used when setting tables used in man-pages
(see tbl(1)). Use as many 1 (for left-alignment), r (for right alignment), and c (for
centered-alignment) characters as there are columns in the table. Furthermore, s
can be used to indicate that the column to its left is combined (spans into) the
current column. Use this specification when cells spanning multiple columns are
defined. Each row in a table which must be convertable to a manpage may contain
a separate setmanalign() call. Note that neither rowline nor columnline requires
setmanalign() specifications, as these macros define rows by themselves. It is the
responsibility of the author to ensure that the number of alignment characters is
equal to the number of columns of the table.

4.2.157 setpartstring(name)

Defines name as the ‘part’ string, by default Part. E.g., after setpartstring(Teil),
Yodl identifies parts in the German way. Note that LaTeX output does its own
national language support; this macro doesn’t affect the way LaTeX output looks.

4.2.158 setrofftab(x)

Sets the character separating items in a line of input data of a roff (manpage)
table. By default it is set to ~. This separator is used internally, and needs only
be changed (into some unique character) if the table elements themselves contain ~
characters.

103

4.2.159 setrofftableoptions(optionlist)

Set, the options for tbl table, default: none. Multiple options should be separated
by blanks, by default no option is used. From the tbl(1) manpage, the following
options are selected for consideration:

e center Centers the table (default is left-justified)

e expand Makes the table as wide as the current line length

e box Encloses the table in a box

e allbox Encloses each item of the table in a box
Note that starting with Yodl V 2.00 no default option is used anymore. See also

setrofftab() which is used to set the character separating items in a line of input
data.

4.2.160 settitlestring(name)

Defines name as the ‘title information’ string, by default TITLE INFORMATION.
E.g., after settitlestring(TITEL), Yodl outputs this Dutch string to describe the
title information. Currently, it is relevant only for txt.

4.2.161 settocstring(name)

Defines name as the ‘table of contents’ string, by default Table of Contents. E.g.,
after settocstring(Inhalt), Yodl identifies the table of contents in the German
way. Note that LaTeX output does its own national language support; this macro
doesn’t affect the way LaTeX output looks.

4.2.162 sgmlcommand(cmd)

Writes cmd to the output when converting to sgml. The cmd is not further expanded
by Yodl.

4.2.163 sgmltag(tag)(onoff)

Similar to htmltag, but used in the SGML converter.

4.2.164 sloppyhfuzz(points)

By default, LaTeX output contains commands that cause it to shut up about hboxes
that are less than 4pt overfull. When sloppyhfuzz() appears before stating the
document type, LaTeX complaints occur only if hboxes are overfull by more than
points.

104

4.2.165 standardlayout()

Enables the default LaTeX layout. When this macro is absent, then the first lines of
paragraphs are not indented and the space between paragraphs is somewhat larger.
The standardlayout () directive must appear before stating the document type
as article, report, etc..

4.2.166 startcenter()

DEPRECATED. center() should be used.

4.2.167 startdit()

DEPRECATED. Use description().

4.2.168 starteit()

DEPRECATED. Use enumeration().

4.2.169 startit()

DEPRECATED. Use itemization().

4.2.170 startmenu()

DEPRECATED. Use menu().

4.2.171 starttable()

DEPRECATED. Use table().

4.2.172 sups(text)

Sets superscript in formats allowing so

4.2.173 subsect(title)

Starts a new subsection. Other sectioning commands are subsubsect and subsubsubsect.

4.2.174 subsubsect(title)

Starts a sub-subsection.

105

4.2.175 subsubsubsect(title)

Starts a sub-sub-sub-subsection. This level of sectioning is not numbered, in con-
trast to ‘higher’ sectionings.

4.2.176 sups(text)

Sets superscript, in formats allowing so

4.2.177 table(nColumns)(alignment)(Contents)

The table()-macro defines a table. Its first argument specifies the number of
columns in the table. Its second argument specifies the (standard) alignment of the
information within the cells as used by IWTEX or man/ms. Use 1 for left-alignment,
c for centered-alignment and r for right alignment. Its third argument defines the
contents of the table which are the rows, each containing column-specifications and
optionally man/ms alignment definitions for this row.

See also the specialized setmanalign() macro.

4.2.178 tcell(text)

Roff helper to set a table textcell, i.e., a paragraph. For ITEX special table format-
ting p{} should be used.

4.2.179 telycommand(cmd)

Writes cmd to the output when converting to tely. The cmd is not further expanded
by Yodl.

4.2.180 TeX()

The TeX symbol.

4.2.181 texinfocommand(cmd)

Writes cmd to the output when converting to texinfo. The cmd is not further ex-
panded by Yodl.

4.2.182 tindex()

Generate an index entry for index t.

106

4.2.183 titleclearpage()

Forces the generation of a clearpage() directive following the title of a docu-
ment. This is already the default in books and reports, but can be overruled with
notitleclearpage(). When present, must appear in the preamble; i.e., before the
document, type is stated with article, book or report.

4.2.184 tocclearpage()

With the IWTEX convertor, a clearpage() directive if inserted, immediately fol-
lowing the document’s table of contents. This is already the default in all but the
article document type, but it can be overruled by notocclearpage(). When
present, it must appear in the preamble; i.e., before the document type is stated
with article, book or report. With other convertors than the ITgX convertor, it
is ignored.

4.2.185 tt(text)

Sets text in teletype font, and prevents it from being expanded. For unbalanced
parameter lists, use CHAR(40) to get (and CHAR(41) to get).

4.2.186 txtcommand(cmd)

Writes cmd to the output when converting to txt. The cmd is not further expanded
by Yodl.

4.2.187 wurl(description)(locator)

In LaTeX documents the description is sent to the output. For HTML, a link
is created with the descriptive text description and pointing to locator. The
locator should be the full URL, including service; e.g, http://www.icce.rug.nl,
but excluding the double quotes that are necessary in plain HTML. Use the macro
link to create links within the same document. For other formats, something like
description [locator] will appear.

4.2.188 verb(text)

Sets text in verbatim mode: not subject to macro expansion or character table
expansion. The text appears literally on the output, usually in a teletype font (that
depends on the output format). This macro is for larger chunks, e.g., listings. For
unbalanced parameter lists, use CHAR(40) to get (and CHAR(41) to get).

4.2.189 verbinclude(filename)

Reads filename and inserts it literally in the text, set in verbatim mode. not sub-
ject to macro expansion.The text appears literally on the output, usually in a tele-

107

type font (that depends on the output format). This macro is an alternative to
verb(...), when the text to set in verbatim mode is better kept in a separate file.

4.2.190 verbpipe(command)(text)

Pipe text through command, but don’t expand the output.

4.2.191 vindex()

Generate an index entry for index v.

4.2.192 whenhtml(text)

Sends text to the output when in HTML conversion mode. The text is further
expanded if necessary.

4.2.193 whenlatex(text)

Sends text to the output when in LATEX conversion mode. The text is further
expanded if necessary.

4.2.194 whenman(text)

Sends text to the output when in MAN conversion mode. The text is further
expanded if necessary.

4.2.195 whenms(text)

Sends text to the output when in MS conversion mode. The text is further ex-
panded if necessary.

4.2.196 whensgml(text)

Sends text to the output when in SGML conversion mode. The text is further
expanded if necessary.

4.2.197 whentely(text)

Sends text to the output when in TELY conversion mode. The text is further
expanded if necessary.

108

4.2.198 whentexinfo(text)

Sends text to the output when in TEXINFO conversion mode. The text is further
expanded if necessary.

4.2.199 whentxt(text)

Sends text to the output when in TXT conversion mode. The text is further
expanded if necessary.

4.2.200 whenxml(text)

Sends text to the output when in XML conversion mode. The text is further
expanded if necessary.

4.2.201 xit(itemname)

Starts an xml menu item where the file to which the menu refers to is the argument
of the xit() macro. It should be used as argument to xmlmenu(), which has a 3rd
argument: the default path prefixed to the xit() elements.

This macro is only available within the xml-conversion mode. The argument must
be a full filename, including .xml extension, if applicable.

No .xml extension indicates a subdirectory, containing another sub-menu.

4.2.202 xmlcommand(cmd)

Writes cmd to the output when converting to xml. The cmd is not further expanded
by Yodl.

4.2.203 xmlmenu(order)(title)(menulist)

Starts an xmlmenu. Use itemization() to define the items. Only available in xml
conversion. The menutitle appears in the menu as the heading of the menu. The
menulist is a series of xit() elements, containing the name of the file to which the
menu refers as their argument (including a final /). Prefixed to evert every xit()-
element is the value of XXdocumentbase.

Order is the the ‘order’ of the menu. If omitted, no order is defined.

4.2.204 xmlnewfile()

In XML output, starts a new file. All other formats are not affected. Note that you
must take your own provisions to access the new file; say via links. Also, it’s safe
to start a new file just befoore opening a new section, since sections are accessible

109

from the clickable table of contents. The XML converter normally only starts new
files prior to a chapter definition.

4.2.205 xmlsetdocumentbase(name)

Defines name as the XML document base. No default. Only interpreted with xml
conversions. It is used with the figure and xmlmenu macros.

4.2.206 xmltag(tag)(onoff)

Similar to htmltag, but used in the XML converter.

4.3 Conversion-related topics

4.3.1 Accents

4.3.2 Conversion-type specific literal commands
According to the format of the output file, the macro package defines a given symbol:

e latex when the output format is LaTeX,
e html when the output format is HTML,

e man when the output format is groff in conjunction with the man macro pack-
age,

e ms when the output format is groff with the ms package,
e sgml when the output format is SGML,
e txt when the output format is plain ASCII.

e xml when the output format is XML.

The defined symbol can be tested in a document to determine the conversion type.
Furthermore, the package defines the following macros to send literal text (com-
mands in the output format) to the output file:

e latexcommand(cmd): sends the LaTeX command cmd when in LaTeX conver-

sion mode. The cmd is not further expanded.

e htmlcommand(cmd): sends the HTML command cmd when in HTML conver-
sion mode. The cmd is not further expanded.

e htmltag(tag) (onoff): sends <tag> to the output when onoff is nonzero, or
sends </tag> when onoff is zero. Only active in HTML conversions.

e mancommand (cmd): sends cmd to the output when in man conversion mode.
The cmd is not further expanded.

110

e mscommand (cmd): sends cmd to the output when in ms conversion mode. The
cmd is not further expanded.

e roffcmd(dotcmd) (trailer) (secondline) (thirdline): sends a command
to the output when in man or ms conversion mode. The dotcmd is the typical
groff command that starts with a dot. All other arguments may be empty,
but when given are interpreted as follows. The trailer follows the dotcmd
on the same line. The secondline is sent on a separate line following the
dotcmd and trailer. The thirdline is sent after that. Of the four argu-
ments, dotcmd and thirdline are not subject to further expansion. All other
arguments are further expanded if necessary.

The roffcmd macro illustrates the complexity of dot-commands for the divers
groff macro packages. E.g.; a section title for the man package should look
as

.SH "Section Title"

while the same command for the ms macro package must be sent as

.SH
Section Title
.PP

The roffcmd macro can be used to send these commands to the output file
as follows:

COMMENT (For the man output format:)
roffcmd(.SH) ("Section Title") () ()

COMMENT (For the ms output format:)
roffcmd (.SH) () (Section Title) (.PP) ()

e sgmlcommand(cmd): sends the SGML command cmd when in SGML conver-
sion mode. The cmd is not further expanded.

e sgmltag(tag) (onoff): sends <tag> when onoff is nonzero, or sends </tag>
when onoff is zero. Only active in SGML conversions.

e txtcommand(cmd): implemented for compatibility reasons, though a ‘com-
mand’ in plain ASCIT output doesn’t make much sense. The usefulness of
this macro is rather in the fact that it only produces output when in ASCII
conversion mode.

The above commands can be used to quickly implement a macro. E.g., the macro
package implements the it macro (which starts an item in a list) as:

DEFINEMACRO(it) (0) (

111

latexcommand (\item)
htmlcommand (<1i>)

Depending on the output format, it () will lead to one of the above expansions.

The above described formatcommand () macros are implemented to send not further
expanded strings (i.e., commands) to the output. The macro package also imple-
ments whenformat () macros to send any text, which is then subject to further
expansion. These when. .. () macros are:

e whenlatex(text): sends text when in LaTeX conversion mode,
e whenhtml (text): sends text when in HTML conversion mode,
e whenman(text): sends text when in man conversion mode,
e whenms (text): sends text when in ms conversion mode,
e whentxt (text): sends text when in ASCII conversion mode,
e whensgml (text): sends text when in SGML conversion mode.
Once again, note that the difference between the whenformat() macros and the

formatcommand () macros is, that the former will expand their argument while the
latter will not. As an example, consider the following code fragment:

You are now reading
whenlatex(a LaTeX-generated
footnote(LaTeX is a great
document language!)
document)
whenhtml (a HTML document via your
favorite browser)

The whenformat () macros are used here to make sure that the arguments to the
macros are further expanded; this makes sure that the footnote macro in the
whenlatex block gets treated as a footnote.

4.3.3 Figures

Figures in format-independent documents are a problem. You cannot avoid contact
with the final format (HTML, LaTeX or whatever) if you want to include figures in
a text.

Yodl approaches figures as follows:

e Figures can only be included in LaTeX, HTML and XML documents.

112

e For LaTeX, you must prepare a picture in an external file that is included
in the document as en encapsulated PostScript file. Incidentally, that means
that epsf must be stated as one of the LaTeX styles using the latexoptions
macro. The default, however, can be modified using the setlatexfigureext ()
macro.

The file in question is stated in Yodl without an extension. Yodl provides a
default extension, .ps.

e For HTML and XML, you must prepare a picture in an external file that is

placed in the document using the tag. The file must have the
default extension (. jpg) or the extension specified with the sethtmlfigureext ()
macro.

e All other output formats do not include pictures in the document, but typeset
something like insert figure .. here.

The macro to include a figure is called, appropriately, figure. It takes three argu-
ments:

e The first argument is the filename. This name may include directories, but
may not include the filename extension. The reason for this is, that Yodl
supplies the correct extension once the output format is known.

e The second argument is the figure title, or the caption. Yodl prefixes this
caption with the text Figure xx:, where zz is a number.

e The last argument is a label, which Yodl defines as a placeholder for the figure
number.

For example, you might draw a picture or scan a photo and put it in a . jpg file, for
usage with HTML documents. The conversion to PostScript could be automated,
e.g., using a Yodl macro:

SYSTEM (xpmtoppm picture.xpm | pnmtops > picture.ps)

See section 3.1.67 for details about using the SYSTEM macro.

After this, you would be reasonably safe that the picture is available for both HTML
and LaTeX output. The picture would be typeset in a figure using;:

figure(picture)
(A photo of me.)
(photo)

Note how the first argument, the filename, does not contain an extension. The third
argument, which is a label, can be used in, e.g.,

See figure ref (photo) for a photograph showing me.

113

Yodl has a several auxiliary macros, which are:

e fig(label): This macrois a shorthand for getfigurestring() ref(label).
It just makes typing shorter, and is used as e.g.: See fig(photo) for a
photograph. Note that the string figure that is generated by this macro
can be (re)defined, see below.

e setfigurestring(name): This macro is similar to setchapterstring etc..
Tt defines the string that is used to identify a figure, and is (appropriately)
figure by default. The macro getfigurestring() expands to the string in
question. See also section 4.3.6 for a discussion of national language support.

e sethtmlfigureext(.new): This macro redefines the filename extension for
HTML conversions from .gif to .new. Note that you must include a leading
dot in the redefinition.

The new extension is used in the first following figure statement.

e sethtmlfigurealign(align): This redefines the alignment of figures in HTML,
which is default bottom. Check your HTML handbook for possible options;
top and center should be fairly standard.

e setlatexfigureext(.new): Redefines the extension from .ps to .new.

4.3.4 Fonts and sizes

Yodl’s standard macro package supports the following macros to change fonts:

e bf (text): sets text in boldface.
e em(text): sets text emphasized, usually in italics.
e tt(text): sets text in teletype.

Furthermore, the tt () macro will not expand macros occurring inside its argument.
That means that you can safely write:

In Yodl, you can use tt(includefile(somefile)) to include a file
in your document.

The tt () macro should not be used for long listings of verbatim text; use verb()
to set code samples etc..

Yodl’s standard macro package has no commands to change font sizes, as the size is
changed internally when appropriate (e.g., in section titles), nor is there a default
macro to define other font-families.

4.3.5 Labels, links, references and URLs

References such as see ... for more information are very common in documents.
Yodl supports three mechanisms to accomplish such references:

114

Labels and references: Labels can be defined in a document as a placeholder
for the last number used in a sectioning command. At other points in the
document, references to those labels are used. The reference expands to the
number, as in see section 1.3.

This mechanism is available in all output formats. Furthermore, the numeric
reference (1.3 in the example of the previous paragraph) is in HTML a clickable
reference that leads to the mentioned section.

Labels and links: This mechanism can be used to set links in a document without
using the number of a sectioning command, as in see the introduction for more
information, with the introduction being a clickable link to some label.

This mechanism of course only leads to a clickable link in HTML: in other
formats the text see the etc. is just typeset as is.

URLs: Universal Resource Locators (URLs) are used to create links to other
HTML documents or services, like HTML’s method. The URLs
of course only result in clickable links in HTML output; in other output for-
mats only some descriptive text appears.

The above mechanism is implemented by the following macros:

e The macro label (name) defines a label named name. The name of the label
can be used in a ref or 1ink macro.

e The macro ref (name) sets a reference to the label named name. The text of
the reference is the number of the last sectioning command that was active
during the creation of the label. When using references it is therefore impor-
tant to define the corresponding labels right after a sectioning command, as
in

section(How to install my program) label (howtoinstall)
This section describes...

See section ref(howtoinstall) for installation instructions.

The macro ref (howtoinstall) expands to the number of the section named
How to install my program.

e The macro link(description) (name) always expands to the description.
In HTML output, a clickable link is created pointing to a label called name.
For example:

label (megahard)

COMMENT (sigh...)

The Jodel package isn’t shareware, it isn’t
beggarware, it isn’t freeware, it’s

bf (megahard-ware) .

Who wants a link(picosoft) (megahard)?

115

This code fragment would always set the text picosoft, but under HTML a
clickable link would appear pointing to 1link (the text) (megahard).

e The macrourl(description) (location) always expands to the description,
but creates a hyperlink pointing to location in HTML. For example,

Take a look at my
url (homepage) (http://www.somwhere.nl/karel/karel.html) .

The text homepage' always appears, but only in HTML it is a link. (Note
that the double quotes, which are necessary in HTML around the location,
are not required by Yodl.) To use a different font in the description part,
surrond it inside the url parameter list, as in:

The Yodl package can be obtained at the site tt(ftp.rug.nl) in the
directory url(tt(/contrib/frank/software/yodl))
(ftp://ftp.rug.nl/contrib/frank/software/yodl) .

e The macro email (address) is a special case of url: under HTML, the
address appears as a clickable link in slanted font to mail address. For
example:

I can be reached at
email (f.b.brokken@rug.nl).

I can be reached at f.b.brokken@rug.nl<f.b.brokken@rug.nl>.

Always keep in mind that the name of a label must be exactly identical in
both the 1label macro and in the ref or 1ink macro. Other than that, the
name is irrelevant.

Furthermore, note that includefile is yet another macro defining a lable: it
includes a file and automatically creates a label just before the included file’s
text. That means that a Yodl file like:

chapter (Introduction)
sect(Welcome)
includefile(welcome)

chapter(Technical information)
includefile(techinfo)

implicitly creates two labels: welcome and techinfo.
Here are some final thoughts about using labels and references:

e Don’t put ‘weird’ characters in label names. Generally, don’t use spaces and
tabs.

Lhttp://www.somwhere.nl/karel /karel.html

116

e The name of the label is always only an internal symbol; it does not appear
in the output. Therefore, constructions such as the following are not correct:

ref (em(labelname))

The reason for the incorrectness is, what internal name should em(labelname)
generate? Here probably an attempt is made to set a reference in italics. The
right construction is of course to set whatever ref () returns in italics, as in:

em(ref (labelname))

e The label macro should not appear nested inside another macro. There is
no strict reason for this as far as Yodl is concerned; however, the processors
of Yodl’s output might go haywire. E.g., beware of the construction

section(Introduction label(intro))

The right form being

section(Introduction)label (intro)

(linking to intro will usually not show Introduction), or:

label(intro)section(Introduction)

(linking to intro will usually show Introduction), or:

3

4.3.6 Lists and environments

Yodl’s default macros support the following lists and environments:

By default, the following lists are available:

Description lists: A description list consists of a list of elements, where each
element starts with a short (usually bold faced) description. The description
list is generated by the description() macro. The elements of the list start
with dit (). The dit () macro expects a short description of the item.

Example:

A description list:
description(

dit(First this:) One item.
dit(Then this:) Another item.
)

117

Enumeraton lists: An enumeration list consist of sequentially numbered elements.
The list is generated by the enumeration() macro. Its elements start with
the eit () macro.

Example:

An enumerated list:
enumeration(

eit() One item.
eit() Another item.

)

Itemized lists: An itemized lists consists of indented items, usually preceded by
a bullet.

An itemized list is produced by the itemization() macro, which has one
argument: the items themselves. These items must start with it ().

Example:

An itemized list:
itemization(

it() One item.
it () Another item.
)

Specialized environments are:

Centered text: Centering text may not be available in all output formats. When
unavailable, the text is typeset left-flushed.

Centered text is generated by the center () macro. Line brakes within cen-
tered text may be obtained using the nl () macro.

Example:

center(
Centered text. nl()
Another line of centered text.

)

Verbatim text: Verbatim text appears on the output exactly in the same layout
as it is in the input file. Typesetting text in verbatim mode is useful for, e.g.,
source files. Depending on the output format, the font of the verbatim text is
changed to a teletype font.

The text must either be inside the verb() macro. For example:

verb(
This is totally verbatim text.
It is not further processed by Yodl.

118

The verbatim text is of course not subject to macro expansion by Yodl. Note,
however, that SUBST transformations will take place, as these substitutions
take place during the lexical scanning phase of Yodl’s input, and are not part
of the macro-expansion process. See also section 3.1.65.

Furthermore, if a character translation table has been defined, the argu-
ment of the verb() macro will also be subject to character table transfor-
mations. By temporarily suppressing the active character table (see section
PUSHCHARTABLE 3.1.56) this can be prevented.

Quotations: Quotations are usually indented with respect to their surrounding
text. It is for the author to decided whether the quoted text should be typeset
normally, or that it should be bold-faced or emphasized. To insert a quotation
use the quote () macro:

Shakespeare once wrote:
quote(
‘‘To be or not to be, that’s the question’’

)

National language support

allows you to redefine the strings identifying chapters or parts, or the strings iden-
tifying figures. E.g., a command chapter (Introduction) will by default result in
the text Chapter 1: Introduction.

Yodl includes rudimentary national language support (NLS), in the sense that it

Using the setchapterstring(text) macro, the Chapter text can be redefined.
E.g., in a Dutch text you might put

setchapterstring (Hoofdstuk)

somewhere near the beginning of your document. Similar to setchapterstring, a
macro getchapterstringexists returning the text identifying chapters. (Internally,
getchapterstring is of course used to actually set the text). To redefine the text
to identify a part, use setpartstring(text); to redefine the text to identify a
figure, use setfigurestring(text).

The set....string macros only influence how Yodl names chapters or parts in
HTML, man, ms or txt output. LaTeX output is not affected, since LaTeX does its
own NLS. Usually, NLS is present for LaTeX as a ‘style file’ named, e.g., dutch.sty.
Therefore, if you want a Dutch document, you need to:

e put latexpackage(dutch) (babel)in the preamble of the document. This
ensures that LaTeX uses Dutch abbreviation rules.

e redefine the chapter and part names for non-LaTeX output, using:

setlanguage (dutch)

119

e Finally, you should probably type your text in Dutch.

The setlanguage () macro expects one argument: the name of the language that is
used. See section 4.2 for details about this macro. The setlanguage() macro
redefines the language-dependent section (and other) headers, and depends on
the availability of the corresponding language<name>() macro, where <name> is
the name of the language (by convention <name> states the english name of the
language). Currently, languagedutch(), languageenglish() (the default), and
languageportugese () are available. It’s easy to expand this little set with macros
for other languages. The setlanguage () macro merely requires the specification of
the language. For example:

setlanguage (english)

This macro installs the following defaults (corresponding translations should be
defined for other languages):

settocstring(Table of Contents)
setaffilstring(Affiliation)
setauthorstring(Author)
setchapterstring(Chapter)
setdatestring(Date)
setfigurestring(Figure)
setpartstring(Part)
settitlestring(Title)

Pagebreaks after the title and table of contents

Yodl inserts page-breaks in a limited number of cases:
e A pagebreak is generated after the title information in book and report doc-
uments.
e A pagebreak is generated after a table of contents in all documents.
So, when a document has both title information and a table of contents then what-
ever follows next will normally be starting on a separate page. Furthermore, if

the document is a book or a report, the title and table of contents will also be
separated by a pagebreak.

This behavior can be modified using the (no)titleclearpage() and (no)tocclearpage ()
directives, further described in section 4.3.8.

4.3.7 Sectioning

This section describes the sectioning commands for articles, reports, books and
for plainhtml. The document type manpage defines its own sectioning commands
(cf. section 4.1.2:

120

e part(title): Starts a new part. Only available in book documents.

e chapter(title): Starts a new chapter. Only available in book or report
documents.

e sect(title): Starts a section.
e subsect(title): A subsection.
e subsubsect(title): A sub-subsection.

e subsubsubsect(title): An even smaller sectioning command.

These macros generate entries in the table of contents and use numbering, which
means that each section is prefixed with a number (1, 1.1, 1.2, and so on). The
macros are also available with an n prefix (npart, nchapter, nsect etc.) which
generate neither entries in the table of contents nor numbers. The n-versions can be
used in, e.g., an article where the sectioning commands should show their captions,
but not any numbers generated by default.

Sectioning should always start at the top level sections of the available document:
chapter for reports, sect for articles, etc.. If you start a document with a lower
sectioning command (e.g., when you start an article with a subsect), the number-
ing of sections may go haywire. The only exception to this rule is the part of a
book document: parts are optional, in books, chapters may be the top sectioning
commands. Summarizing, books or reports should start with chapter. Articles
should start with sections.

The sectioning commands have a further function: when label statements appear
after the sectioning command, then a label name is used as a placeholder for the
last generated number. This is further described in section 4.3.5.

4.3.8 Typesetting modifiers

This section lists various macros that can be used to modify the looks of your
document. When used, these macros must appear before stating the document
type with article, report, book, manpage or plainhtml.

e abstract(text): This macro is relevant for all output formats. The text
is added to the document after the title, author and date information, but
before the table of contents. The abstract is usually set as a quote, in italics
font (though this depends on the output format). Abstracts are supported
in articles and reports, but not in other document types. lL.e., if you need
introductory text in a book, you should start with a non-numbered chapter
that holds this text.

e affiliation(site): This macro is relevant for article, report and book
documents. It defines the affiliation of the author. The site information
appears in the title, below the author’s name.

e htmlbodyopt (option) (value): This macro adds option="value" to the
<body> tag that will be generated for HTML output. The HTML converter
generates <body> tags each time that a new file is started; i.e., at the top

121

of the document and at each chapter-file. Different HTML browsers support
different <body> tag options, but useful ones may be e.g.:

htmlbodyopt (fgcolor) (#000000)
htmlbodyopt (bgcolor) (#FFFFFF)

This defines the foreground color as pure white (red/green/blue all 0) and the
background color as black (red/green/blue all hexadecimal FF, or 255). An-
other useful option may be htmlbodyopt (background) (some.gif), defining
some.gif as the page background.

See the documentation on HTML for more information.

Note that value is automatically surrounded by double quotes when this
macro is used. They should not be used by authors using this macro.

e latexdocumentclass(class): This macro forces the \documentclass{...}
setting in LaTeX output to class.

e latexlayoutcmds(commands): This macro can be used to specify your own
LaTeX layout commands. When present, the commands are placed in LaTeX
output following the \documentclass definition.

e latexoptions(options): This macro is only relevant for LaTeX output for-
mats, it is not expanded in other formats. The options are used in LaTeX’s
\documentclass definition; e.g., a useful option might be dina4. Multiple
options should be separate by commas, according to the LaTeX convention.

e latexpackage(options) (name): This macro is only relevant for LaTeX out-
put formats, it is not expanded in other formats. Each package should have
its own latexpackage() statement. If there are no options, the options
argument should remain empty. Here is an example using this macro:

latexpackage (dutch) (babel)

e mailto(email): The mailto macro is only expanded in HTML documents, it
is ignored in other formats. It defines where mail about the document should
be sent, to.

e nosloppyhfuzz(): By default, the LaTeX output contains the text

\hfuzz=4pt

which is placed there by the macro package. This suppresses overfull hbox
warnings of LaTeX when the overfull-ness is less than 4pt. Use nosloppyhfuzz ()
to get the standard LaTeX warnings about overfull hboxes.

e notableofcontents(): As the name suggests, this macro suppresses the gen-
eration of the table of contents. For HTML that means that no clickable index
of sections appears after the document title.

The table of contents is by default suppressed in plainhtml and manpage
documents.

122

Note

notitleclearpage(): Normally, Yodl inserts a clearpage() directive after
typesetting title information in book or report documents, but not in article
documents. Use notitleclearpage to suppress this directive.

notocclearpage() (no table-of-contents clear-page): In all document types,
Yodl inserts a clearpage() directive following the table of contents. Use
notocclearpage() to suppress that.

noxlatin(): The LaTeX output contains by default the command to include
the file x1atin1. tex, distributed with Yodl. This file maps Latin-1 characters
to LaTeX-understandable codes and makes sure that you can type characters
such as i, and still make them processable by LaTeX. If you don’t want this,
put noxlatin() in the preamble.

standardlayout (): This is another LaTeX option. Use standardlayout ()
to get ‘vanilla’ LaTeX layout, possibly indenting paragraphs and using fairly
limited vertical spacing between paragraphs. This macro is ignored for other
conversion types.

titleclearpage(): Forces the insertion of a clearpage () directive after the
title information has been typeset. This behavior is the default in book and
report documents. See also notitleclearpage().

tocclearpage(): Forces the insertion of a clearpage() directive following
the table of contents. This behavior is default in all document types; the
macro is provided for consistency reasons with (no)titleclearpage().

again: these modifiers must appear before the document type definition.

4.3.9 Miscellaneous commands

The following is a list of commands that don’t fall in one of the above categories.

clearpage(): This macro starts a new page in LaTeX. For HTML, a hori-
zontal rule is shown. (Note that the macro package sometimes inserts new
pages by itself; e.g., following a table of contents. See also section 4.3.8 for a
discussion of (no)titleclearpage() and (no)tocclearpage().)

def (macro) (nrofarguments) (definition): This defines a new macro macro
having nrofarguments arguments, and expanding to definition. The mark-
ers ARGz, where z is 1, 2, etc., can be used in the definition part to indi-
cate where arguments should be pasted in. This macro is a shorthand for
DEFINEMACRO, see section 3.1.11.

footnote (text): This macro sets text as a footnote when the output format
allows it. When not, the text is set in parentheses.

gagmacrowarning(name name ...): This macro suppresses yodl’s warnings
cannot expand possible user macro name, where name is a candidate macro
name. gagmacrowarning is a synonym for NOUSERMACRO, described in section
3.1.45.

E.g., if your document contains "as for manpages, see sed(1), tr(1) and
awk(1)", and if you get tired of warnings about possible user macros sed, tr
and awk, try the following:

123

gagmacrowarning(sed tr awk)

As for manpages, see sed(1), tr(1) and awk(1l).

e htmlnewfile(): Starts a new subfile in HTML output. This stanza is also
automatically generated when the HTML converter encounters a chapter
directive. Using htmlnewfile, the output can be split at any point. However
make sure that the subfile is still reachable; e.g., by creating a clickable link
with label and ref, or label and link.

e includefile(file): Includes file and defines a label (see the 1abel macro)
with the same name. Furthermore, a message about the inclusion is shown
on the screen. The file is searched for relative to the directory where the
yodl run was started and in the system-wide include directory. The default
extension .yo is supplied if necessary.

This macro is handy in the following situation:

chapter (Introduction)
includefile(intro)

This fragment starts a chapter and includes a file. The label name intro can
also be used to refer to the chapter. The includefile stanza should therefore
appear immediately following the corresponding sectioning command.

e n1(): Forces a new line. Some output formats may produce an error upon
the usage of n1() in ‘unexpected’ places; e.g., LaTeX won't allow new lines in
the footnote text (as defined in the footnote macro). Using n1() in running
text should however be ok. Example:

This line is nl()
broken in two.

e redefinemacro(macro) (nrofargs) (redef): This command (re)defines a macro,
expecting nrofargs arguments, to redef. If a previous definition of the macro
existed, it is overruled. Example:

redefinemacro (clearpage) (0) (\
em(---New page starts here---))

Use ARGz in the redef part to indicate where all arguments should occur, as
in the following imaginary macro to typeset a literature reference:

redefinemacro(litref) (3) (
Title: bf (ARG1) nl()
Author(s): em(ARG2) nl()
Published by: ARG3

124

litref (Java in a Nutshell)
(David Flanagan)
(0’Reilly & Associates, Inc.)

The redefinemacro statement also has a shorthand called redef.

4.4 Locations of the macros

The files defining the macros are by default installed to the directory /usr/local/share/yodl
during Yodl’s installation process (Note that this diverts from an earlier default:
/usr/local/lib/yodl; furthermore, some systems or some distributions may use

other locations).

The files in this directory are organized as follows:
e The files that should be read for a particular conversion are named after
their conversion, e.g., latex.yo and html.yo. These files must be processed

by Yodl before your document can be converted accordingly. The provided
yodl2. .. scripts take care of that automatically.

e All support counters, symbols and macros are defined in files named std.<conversion>.yo,
e.g., std.html.yo, std.latex.yo. These files may be modified without no-
tice, and are an essential part of the Yodl macros. They should not be modified
by hand, as they are created by the macro generating process.

e The predefined character tables are found in files names chartables/<conversion>.yo.
The (binary) Yodl package contains the following programs and support files:

e The yodl program itself, which generates converted document(s);

e The yodlpost postprocessor, which performs fixups for conversion formats.
Using yodlpost is required for formats whose documents cannot be created
in one pass by yodl itself;

e Auxiliary scripts such as yod12tex, yod12html;

e The macros and character tables for the various conversion types;

e The raw macros and the macro-generating scripts;

e The documentation (html and manual pages)
The source Yodl package contains all the sources files, installation guides, change-
logs etc., that are required to compile the binary programs. Those who want to
compile Yodl themselves, must have a C compiler (preferably the Gnu C compiler)

available, and preferably the icmake program maintenance utility. Basic support
for make is provided as well.

125

Chapter 5

Conversions and convertors

Each macro package handling a conversion from Yodl to a given output format has
its pecularities. Although the various macro packages are very similar, they do show
some differences, due to the unique characteristics of the output formats. Normally,
these differences should not cause difficulties in performing the conversion(s). In
this chapter the conversion of a Yodl document is covered. The currently supported
document, types are discussed. Furthermore, in this chapter the new post processor
yodlpost is described as well as a little support program: yodlverbinsert.

5.1 Conversion script invocations

Yodl is distributed with scripts named yod12latex, yod12html and other yod12. ..
drivers. Invocations like

yodl2latex file

causes Yodl to process file.yo and to write output to file.latex. The extension
of the input file, .yo, is the default Yod1l extension; the extension of the output file,
.latex, is given by the name of the shell script. Analogously, yod12html writes to
a file having the extension .html.

The conversion scripts auto-load the macro file appropriate for the conversion:
latex.yo for LaTeX conversions, html.yo for HTML conversions, etc.. The macro
files are in Yodl’s standard include directory (which is mentioned in Yodl’s usage
information when Yodl is started without arguments). If the include directory is
altered in such a way that it doesn’t contain a path to the default directory any-
more, then Yodl won’t be able to auto-load the conversion specific macro files,
producing unexpected results. This can be prevented by specifying the literal text
$STD_INCLUDE in a user-defined path setting.

When the conversion scripts themselves are started without arguments, usage in-
formation is shown about the conversion scripts.

Depending on the conversion type, the following output is produced:

126

e For LaTeX conversions, one output file with the extension .latex is written.

e For HTML conversions, several files may be written; one file per chapter of
the original document. When the document is not sectioned by chapters, only
one output file is produced.

The ‘main’ output, file always has the name of the input file but with extension
.html. This file holds the document title and the table of contents. When
more than one output files are created, then they are named name01.html,
name02.html etc., where name is the original name of the input file. E.g., a
document prog.yo might lead to prog.html, prog01.html etc..

e For man conversions, one output file with the extension .man is written.

e For text conversions, the converter is named yodl2txt and one output file
with the extension .txt is created.

e For XML conversions, the converter is named yod12xml and output files are
produced comparably to the way they are produced with the html conversion:
one file per chapter if chapters are used, otherwise one single output file, having
the extension(s) .xml.

The ‘second-phase’ scripts, distributed with earlier versions of Yodl, are no longer
part of Yodl’s distribution, as they do not relate directly to Yodl’s actions. They
may remain useful, though, as leftovers from earlier distributions.

5.2 The HTML converter

HTML doesn’t support automatic section numbering or resolving of label /reference
pairs. The converter takes care of this. Other target languages (e.g., XML, text)
suffer from the same problems.

Direct commands to HTML

Similar to the ATEX converter, you can use either NOTRANS or htmlcommand to
send HTML commands to the output. Or, since the only ‘difficult’ characters are
probably only < and >, you can also resort to CHAR for these two characters.

Furthermore, the HTML converter defines the macro htmltag, expecting two argu-
ments: the tag to set, and an ‘on/off’” switch. E.g., htmltag(b) (1) sets while
htmltag(b) (0) sets .

E.g., the following code sends a HTML command <hr> to the output file when in
HTML mode:

COMMENT(-- alternative 1, using htmlcommand --)
htmlcommand (<hr>)

COMMENT(-- alternative 2, using NOTRANS --)
IFDEF (html) (

NOTRANS (<hr>)
)O

127

COMMENT(-- alternative 3, using CHAR --)
IFDEF (html) (

CHAR(<)hrCHAR(>)
) O

COMMENT(-- alternative 4, using htmltag --)
htmltag(hr) (1)

Section numbering

The HTML converter numbers its own sections. This is handled internally. How-
ever, the current converter only can number sections as starting at 1, and outputs
the numbers in arabic numerals (you can’t number with A, B, etc..).

5.3 The LaTeX converter

The IMTEX converter is, from Yodl’s viewpoint, an easy one: since ITEX supports
wide functionality, a Yodl document is basically just re-mapped to IANTEX commands.
No post-processing by yodlpost is required.

Direct commands to LaTeX

To send ITEX commands directly to the output, use the latexcommand () macro
(see section 4.3.2), or use NOTRANS (see section 3.1.44). The advantage of the

3

latexcommand macro is that it only outputs its argument when in IXTEX mode.

The following two code fragments both output \pagestyle{plain} when in I TEX
mode:

COMMENT (-- First alternative: --)
latexcommand (\pagestyle{plain})

COMMENT (-- Second alternative: --)
IFDEF (1latex) (

NOTRANS (\pagestyle{plain})
) O

Verbatim text

The Yodl macro package defines two macros that generate verbatim text (e.g., source
code listings). These macros are verb() and tt ().

verb The verb() macro and is meant for longer listings (whole files); as in:

128

verb(
#include <stdio.h>

int main (int argc, char **argv)
{
printf ("Hello World!\n");
return 0;

The verb() macro will generate \begin{verbatim} and \end{verbatim}
when used in TATEX conversion mode. That means that (in that situation)
the verb macro has only one caveat: you cannot put \end{verbatim} into it.

tt The tt() macro also inserts verbatim text. It is used for short in-line strings
(e.g, **argv). The BWTEX converter doesn’t actually use a verbatim mode,
but sets the characters in teletype font.

5.4 The man converter

Manual pages can be constructed using the special yod12man converter. This con-
verter assumes that the manual page has been designed using the manpage () macro.
Yodl (and thus the yodl2man converter, when conerting man-pages, will skip all
leading white space on lines. Paragraphs are supported, though. An empty line
separates paragraphs.

Direct commands to man

Either NOTRANS or mancommand can be used to send man commands to the output.

E.g., the following code sends a MAN command <hr> to the output file when in
MAN mode:

COMMENT(-- alternative 1, using mancommand --)
mancommand (<hr>)

COMMENT(-- alternative 2, using NOTRANS --)
IFDEF (man) (

NOTRANS (<hr>)
)O

5.5 The txt converter

Plain text documents can be constructed using the yod12txt converter. This con-
verter will resolve all references into the document itself, so postprocessing is re-
quired.

129

Direct commands to txt

Either NOTRANS or txtcommand can be used to send txt commands to the output.

E.g., the following code sends a TXT command <hr> to the output file when in
TXT mode:

COMMENT(-- alternative 1, using txtcommand --)
txtcommand (<hr>)

COMMENT(-- alternative 2, using NOTRANS --)
IFDEF (txt) (

NOTRANS (<hr>)
)O

5.6 The experimental XML converter

The XML converter is experimental. It was added to Yodl to allow me to write
documents for the horrible ‘webplatform’ of the university of Groningen. The XML
support files (located in the xml directory in the standard macro’s directory) clearly
reflect this target. Although experimental, they were kept because the XML macros
support interesting constructions allowing Yodl to handle closing tags somewhat
more strict than required for HTML.

5.7 The Yodl Post-processor ‘yodlpost’

Following the conversion of a Yod1 text, most target-languages require an additional
operation, called ‘post-processing’. Post-processing is required for various reasons:
to split the output in separate files (HTML, XML); to fixup the locations of labels,
that are referred to earlier than the labels are defined (virtually all target language
except LaTeX); tables of contents are available only after the conversion, but will
have to be inserted at the beginning of the document; etc. etc..

Starting with Yodl V. 2.00 there is only one post-processor, handling all the conver-
sions for all target languages. Program maintenance of just one program is certainly
easier than maintenance of as many programs as there are target-languages, at the
expense of only a slightly larger program: after all, the one post-processor con-
tains the conversion procedures for all target languages. It turns out that this is a
very minimal drawback. See section 6.7 for the technical details of post-processor
program maintenance.

The post-processor that is distributed since Yod1 V. 2.00 does not use the .tt(Yod1l) TAGSTART.
and .tt(Yodl)TAGEND. tags anymore. Instead, the conversion process produces a
indez file in which comparable information is written. The advantage of using an
index file is that the postprocessor doesn’t have to parse the output file generated
by Yodl twice (once to determine the tags, once to process the tags), which by
itself accelerates the conversion process; and (albeit of a somewhat limited prac-
tical importance) that the tags are no longer reserved words: authors may put
.tt(Yod1) TAGSTART. and .tt(Yodl) TAGEND. into their texts as often as they want.

130

Authors should be aware of some caveats with respect to some target languages:

man- and ms- conversions all dots are converted by the active character con-
version table to \&.. Commands in these languages always start with a dot as
the first character on a line. In order to insert these commands the roffcmd ()
(see section MACROLIST) should be used.

plain text conversions As stated before, the ASCII converter basically only strips
macronames from its input. This converter is so basic, that it should only be
used as a last resort, when no other target language is available for the job.
With the plain text converer, the layout of the input file is very important, as
the output is basically the same as the input. The only exception to this rule
are multiple empty lines, which normally are consumed by the post-processor,
to be replaced by one single empty line.

sgml conversions the SGML converter was implemented for historic reasons. Tt
is by no means complete, and can at best be considered an ‘initial starting
point’. Currently, the SGML converter only supports the article document
type, having sect as its top-level sectioning command.

xml conversions The XML converter was implemented to allow me (Frank) to
produce XML text as defined by the so-called ‘webplatform’ of the University
of Groningen. A completely pathological implementation of XML, crippling
its users to the level of the ‘double click brigade’. Well, so be it. The net
result of this is that Yodl now offers some sort of XML conversion, which will
surely require modifications in the near future. Much XML handling is based
on frame-files which are literally inserted into the converted text. Hopefully
that will be useful when constructing XML conversions for other environments
than the ‘webplatform’.

5.8 The support program ‘yodlverbinsert’

The program yodlverbinsert is a simple C support program that can be used to
generate verb ()-sections in Yod1 files from sections of existing files. The files from
which sections are included are usually C or Cpp source files, accepting either //
or /*-style comment.

Yodlverbinsert offers the possibility to indent both the initial verb-statement and
the inserted file contents. Furthermore, an additional empty line may be inserted
before the first line that is actually inserted. The program is invoked according to
the following synopsis:

yodlverbinsert [OPTIONS] marker file

The arguments have the following meanings;

e marker
The argument marker must start in file’s first column en must either start
as a standard C or C++ comment: // or /* must be used. Following that,
the remainder of the argument is used as a label, e.g., //label, /*LABELx*/.
The label may contain non-alpha characters as well. Except for the first two

131

characters and their locations no special restrictions imposed upon the label
texts. A labeled section ends at the next //= (when the label started with
//) or at the next /**/ (when the label started with /*). Like the labels, the
end-markers must also start in the file’s first column.

o file
The argument file must be an existing file. Yodlverbinsert was designed
with C or C++ sources in minde, from which labeled sections must be in-
serted into a Yodl document, but file could also refer to another type of
(text) file.

The default values of options are listed below, with each of the options between
square brackets. The defaults were chosen so that yodlverbinsert performs the
behavior of an earlier version of this program, which was not distributed with Yodl.

o -N
Do not write a newline immediately following verb-statement’s open-parenthesis.
By default it is written, causing an additional line to be inserted before the
first line that’s actually inserted from a file.

e -s spaces [0]
start each line that is written into the verb-section with spaces additional
blanks.

e -S spaces [§]
prefix the verb of the verb-section by spaces additional blanks.

e -t tabs [(]
start each line that is written into the verb-section with tabs additional tab
characters. If both -s and -t are specified, the tabs are inserted first.

e -T tabs [0]
prefix the verb of the verb-section by tabs additional tab characters. If both
-S and -T are specified, the tabs are inserted first.

Yodlverbinsert writes its selected section to its standard output stream.

5.8.1 Example

Assume the file demo contains the following text:

preceding text

//one

one 1
//=
/*twox*/

two

132

/*%/

trailing text

Then the following commands write the shown output to the program’s standard
output:

e verbinclude //one demo

verb(
one 1

e verbinclude -N //one demo

verb(one 1

e verbinclude -s4 ’/*two*/’ demo

verb(

two

To call yodlverbinsert from a Yodl document, use PIPETHROUGH. E.g.,

PIPETHROUGH (yodlverbinsert //one demo)

Alternatively, define a simple macro like the macro verbinsert:

DEFINEMACRO (verbinsert) (2) (PIPETHROUGH (yodlverbinsert //ARG1 ARG2) O\
)

which may be a useful macro if all or most of your labeled sections start with //,
and if yodlverbinsert’s arguments don’t vary much. Variants to this macro can
easily be conceived of.

Note, however, that by default the PIPETHROUGH built-in will not be executed. Be
sure to call yodl using the -1ive-data option, e.g., yodl -13

133

Chapter 6

Technical information

This chapter consists of various sections. The first section describes Yodl from
the point of view of the systems administrator. Issues such as the installation
of the package are addressed here. The second section describes Yodl’s technical
implementation in some detail. Apart from the documentation about Yodl given
here, much can be found in the individual source files. However, section 6.2 describes
‘the broad picture’. Having read section 6.2, it should be relatively easy to determine
what happens where inside the Yodl program and the yodl-post post processor.

6.1 Obtaining Yodl

Yod1 and the distributed macro package can be obtained at the ftp site ftp.rug.nl!
in the directory contrib/frank/software/linux/yodlz.

The package is found in various yod1-X.Y.Z files, where X is the highest version
number. This is a gzipped archive containing all sources, documentation and macro
files. In the yodl directory archives having the .deb extension can also be found:
these are Debian? files, containing all information that is required to install binary
versions using Debian’s dpkg -install command.

6.1.1 Installing Yodl

The binary package, distributed in yod1-X.Y.Z_a.b.c.deb can be installed using
dpkg -install yodl-X.Y.Z. It will install:

e Yodl’s binaries in /usr/bin;

e Yodl’s macros in /usr/share/yodl

e Yodl’s documentation in /usr/share/doc/yodl;

e Yodl's manpages in /usr/share/man/man{1,7};

Yftp://ftp.rug.nl/
2ftp://ftp.rug.nl/contrib/frank /software/linux /yodl
3http://www.debian.org

134

Local installations, not using the Debian installation process, can be obtained using
the provided icmake build-script see below. An alternative is to use make.

If a local installation is preferred or required, unpack the file yod1-X.Y.Z.tar.gz.
Next, chdir to the directory yod1-X.Y.Z, and optionally tweak the file config to
your needs. Next, issue the command:

build package

Followed by

build install /usr

or

build install /usr/local

The installation process will install the binaries, manual pages, other documentation
and macro files under the indicated directory. For each part of the Yodl package
a separate build script is available (repsectively in the src, macros, man and
manual subdirectories under the common .../yodl-root where the main build
script is found). Each of these build scripts can be called using build install xxx
as well, allowing you to store Yod1’s various parts in completely different directories.

However, by far the easiest way to install a binary distribution is to use the Debian
dpkg -install yodl*.deb command. Dpkg will install the various parts according
to Debian’s conventions under usr/.

Installation from source requires you to have the following programs installed on
your system:

e A C compiler and run-time environment. A POSIX-compliant compiler, li-
braries and set, of header files should work without problems. The GNU gcc
compiler 3.3.4 and higher should work flawlessly.

e Icmake: Icmake is part of the standard Debian distribution, and can also be
obtained from ftp://ftp.rug.nl/*

e Standard tools, like sed, grep, perl, etc..

e /bin/sh: a POSIX-compliant shell interpreter. The GNU shell interpreter
bash can be used instead.

4ftp:/ /ftp.rug.nl/contrib/frank /software/linux /icmake

135

6.2 Organization of the software

This section describes the organization of the source files. Its contents are not
necessarily relevant for the binary distribution. The section is probably most useful
to those readers who want to be able to extend or who want to do maintenance
on Yodl’s sources, or who want simply to understand what’s happening inside the
Yodl program.

Much of the documentation is provided in the individual source files themselves.
This section, however, should offer the ‘broad picture’, allowing you to understand
the logic behind Yod1 relatively fast.

6.2.1 Subdirectories and their meanings

After unpacking Yodl’s source archive, the following directories are available:

e yodl: the root-directory of the Yodl tree. All sources and program mainte-
nance scripts are found in or below this directory.

e debian: an auxiliary directory containing all files and directories required to
create a new Debian distribution.

e debian/tmp: a temporary directory used by the Debian installation process
to store the files belonging to a particular .deb distribution.

e yodl/macros: This directory contains all the macro definitions of the standard
macro package. It contains the following subdirectories:

— yodl/macros/in: This directory contains generic macro files. These
macro files contain the words @STD_INCLUDEQ®, which will be replaced by
the standard include directory used in a particular distribution.

— yodl/macros/rawmacros: This directory contains the raw macro defi-
nition files themselves. One file per raw macro. A raw macro contains
the implementations of that macro for all supported conversion types,
and has the extension .raw. Furthermore, this directory contains some
support scripts: create, separator.pl, startdoc.pl.

— yodl/macros/yodl: this is the directory to contain Yodl’s standard
macros. The (recursive) contents of this directory will eventual be copied
by the installation procedure to the .../share/yodl directory, which
will then become Yod1’s standard include directory.

— yodl/macros/yodl/chartables: This directory contains character-translation
tables for various target languages.

— yodl/macros/yodl/xml: This directory contains the XML frame files,
used to convert Yodl documents to XML, as implemented by the ‘web-
platform’ of the University of Groningen. All these frame files have the
extensions .xml.

e yodl/man: The raw source files of all man-pages: manpages of the Yodl
program itself, of the yodl post-processor, of the conversion scripts, of the
builtin-functions, of the standard macros and of Yodl’s manpage and letter
document, types. These raw source files have the extensions .in, indicating

136

that they may contain @STD_INCLUDE@ words, which will be replaced by the
eventually used standard include path.

— yodl/man/1: The destination for Yod1l’s manual pages in section 1 (pro-
grams).
— yodl/man/7: The destination for Yod1’s manual pages in section 7 (macro

packages and conventions).

e yodl/manual: The source files of the complete Yodl manual, as well as the
directories for the various converted formats. The script build, found in this
directory, constructs the manual in the subdirectories:

— yodl/manual/html: the HTML-converted manual;

— yodl/manual/latex: the ITgX-version of the manual;
— yodl/manual/pdf: the pdf-version of the manual;

— yodl/manual/ps: the PostScript-version of the manual;
— yodl/manual/txt: the plain text-version of the manual;

e yodl/manual/yo: The source files of the complete The Yodl document files

themselves are located in subdirectories of this directory. They are:
— yodl/manual/yo/converters
— yodl/manual/yo/intro
— yodl/manual/yo/macros
— yodl/manual/yo/technical
— yodl/manual/userguide (and various subdirectories)

e yodl/scripts: support scripts used by the building process: configreplacements
replaces @XXX@ words by their actual values as found in yodl/src/config.h;
yodl2whatever. in is the generic yodl-converter, calling macros specific for a
particular conversion type. This generic converter will be installedin . . ./bin/,

together with specific converters, installed as soft-links to this generic con-
verter.

e yodl/src: This directory contains the source-files of the C programs Yodl and
yodl-post, as well as all auxiliary directories containing sources of the (logi-
cal) components of these programs. Most of these components are like C++
classes in that they define a building block of the Yodl and/or yodl-post
program. Their organization, interaction and relationship is described below.
They are:

— yodl/src/args: the component handling the command-line arguments;
— yodl/src/builtin: the component handling Yodl’s builtin functions;
— yodl/src/chartab: the component handling Yod1’s character table type;
— yodl/src/counter: the component handling Yodl’s counter type;

— yodl/src/file: the component handling all file operations (locating,
opening, etc.);

— yodl/src/hashitem: key/value combinations stored in Yod1’s hashtable;
— yodl/src/hashmap: Yodl’s hashtable;

— yodl/src/lexer: Yodl’s lexical scanner: this component consumes the
.yo file, and produces a continuous stream of tokens to be handled by
another component: the parser.

137

— yodl/src/lines: the component storing lines of text, used by yodl-post.
— yodl/src/macro: the component handling Yod1’s macro type;

— yodl/src/message: the component handling all messages (warnings, er-
rors, verbosity settings, etc.).

— yodl/src/new: the component handling all memory allocations (except
for duplicating strings, which is handled by the root-component,).

— yodl/src/ostream: the component handling all Yodl’s output to its
output-file (Yodl may also output to strings, which is not handled by the
ostream component).

— yodl/src/parser: the component handling the tokens produced by the
lexer-component. This component governs all actions to be taken during
a conversion. Its actions all derive from its function parser_process().

— yodl/src/postqueue: the component handling the postprocessing re-
quired by most conversions.

— yodl/src/process: the component handling the execution of child- or
system-processes.

— yodl/src/queue: the component allowing the lexical scanner to queue
its input, awaiting further processing.

— yodl/src/root: the component defining some basic typedefs and enu-
merations, as well as the new_str() function duplicating a string, and
the out_of _memory () function handling memory allocation failures.

— yodl/src/stack: the component implementing a stack data structure.

— yodl/src/string: the component implementing a text-storage data
structure and its functionality.

— yodl/src/subst: the component handling Yod1’s SUBST definitions;
— yodl/src/symbol: the component handling Yodl’s symbol type;

— yodl/src/yodl: the sources of the Yodl program itself. This direc-
tory also contains the implementations of all builtin functions, whose
filenames all start with gram_ (E.g., gramaddtocounter.c).

— yodl/src/yodlpost: the sources of the yodl-post program.

The script build, found in this directory, constructs the programs Yodl and
yodl-post in the subdirectory:

— yodl/src/bin

6.3 Yodl’s component interrelations and component
setup

Yodl’s components show a strict hierarchical ordering. This allows the testing
and development of components placed nearer to the component’s tree without
considering anything that’s placed farther away.

The following piece of ‘ascii-art’ shows the relationships for the Yodl program. The
root, of the tree starts at the top, at the root component. The tree can be read
from the top to the bottom, where each horizontal line starts a level of components
mentioned immediately below it, and each vertical route through the figure a series

138

of components whose functioning depend on at least the components mentioned
earlier.

However, a more natural way to look at it is to start somewhere in the tree, and
see what’s envountered going up. Doing so, all components that are required are
visited. Once the figure shows a

construction. This means that the horizontal line is not related to the vertical
dependency crossing (but not touching) it.

root
|
message
|
new
|
o O +
| | |
string queue stack
| | |
e e + | hashitem
| | | | |
| args subst | hashmap
| | | | |
| | o + S S +
| | | | |
| | | symbol 4---t-——-H--————— F +
| | | | | | | |
| D T S T ——— | —————- + chartab counter macro builtin
| | | | | | |
| file | S o +
| | | |
| o t———+ |
| | |
| o —t———+ |
| | | |
process lexer ostream |
| | | |
| o o P +
| |
| parser
| |
o +
|
(yodl)

139

A similar, albeit much simpler, tree can be drawn for yodl-pst. Here is the orga-
nization of the components for the yodl-post program:

root

message

new

I

e R S
I I I

I I I

lines string hashitem
I

I

I

I

I

I

I

args hashmap
| I
Fomm - +
|
file
|
R +
|
postqueue

I
yodl2html-post

The source files of each component are organized as follows:

e All the files of a component are stored in a directory, named after the compo-
nent. For example, the counter component is found in the directory

yodl/src/counter

containing all the (source) files that define that component.

e Each function is stored in a file of its own inside its component-directory.
For example, the function counter_value() is defined in the source file
countervalue.c.

e The file names are identical to the names of the functions, except for the fact
that only lower case letters are used for the file names, and that the file names
never use underscore characters.

e The .h header files declare the functions that can be used by other compo-
nents. These functions are comparable to C++’s public members. Further-
more, these .h files define all structs and typedefs that are required for other
components to use a particular component. For example, the component.h
header file may contain

140

#ifndef _INCLUDED_COUNTER_H_
#define _INCLUDED_COUNTER_H_

#include "../root/root.h"

#include "../hashmap/hashmap.h"

void counter_add(HashItem *item, int add); /* err if no counter
bool counter_has_value(int *valuePtr, HashItem *item) ;

Result counter_insert(HashMap *symtab, char const *key, int value);

void counter_set (HashItem *item, int value); /* err if no counter
char const *counter_text(HashItem *item) ; /* returns static buffer

int counter_value(HashItem *item) ; /% err if no stack/item
#endif

All functions declared in .h file start with the name of the component, and
often contain an initial pointer to some struct containing the essential fields
that are associated with that particular component. For example, most counter_
functions have a HashItem * as their first argument, as a HashItem is nor-
mally used to store the details about a counter.

The modifier const is used with pointers to indicate that the information
pointed to by the pointer is ‘owned’ by the provider of that information. With
parameters it indicates that the caller owns the information, and the function
will not modify the provided info; with return types it indicates that the func-
tion ‘owns’ the returned information, which therefore may not be modified (or
freed) by the caller of that function (e.g., char const *counter_text). The
absence of const in combination with pointers indicates that the information
pointed to by the pointer could, in principle, be modified by the code receiving
the pointer value.

Most, components also show a .ih file, a so-called internal header file. The
internal header declares ‘internal support functions’, not to be used by other
parts of the software, and defines internal typedefs. Since they are an essential
ingredient of the component, all these internal headers start to include the
component’s .h file, followed by the declarations of the ‘private’ functions.
All these private functions start with abbreviated component names, like co_
in the case of counters. Here is a possible implementation of the counter.ih
internal header file:

#include "counter.h"

#include <stdio.h>

#include "../stack/stack.h"
#include "../message/message.h"

#include "../new/new.h"

Stack *co_construct(int value);
Stack *co_sp(HashItem *item, bool errOnFailure);

The combination of .h and . ih files define the dependencies of the component
in the component hierarchy. As can be seen, counter depends on stack,

141

*/
*/
*/

message, new, hashmap and root. The actual dependency listing may be a
bit more complex, as some .h files themselves depend on other .h files. This
is clearly visible in the counter.h file. The class hierarchy given earlier shows
the final component dependencies.

e A .hfile of a component X will never include a .ih file of component Y, but
only the .h files of other components.

6.4 The token-producer ‘lexer lex()’

Tokens are produced by the lexical scanner. The function lexer_lex() produces
the next token, which is always an element of the following set:

TOKEN_UNKNOWN,

TOKEN_SYMBOL,
TOKEN_TEXT,
TOKEN_PLAINCHAR,
TOKEN_OPENPAR,
TOKEN_CLOSEPAR,
TOKEN_PLUS,

TOKEN_SPACE,

TOKEN_NEWLINE,

TOKEN_EQOR,
TOKEN_EQOF,

/*

/*

/ *

/ *

/ *

/ *
/ *

should never be returned */

formerly: anychar */

it’s semantics what we do with a +, not
something for the lexer to worry about
Blanks should be at the end

end of record: ends pushed strings
at the end of nested evaluations/eof

In particular note the existence of a TOKEN_EQOR token: this token indicates the end
of a piece of text, a string, inserted into the input stream by the parser’s actions,

when it calls lexer_push_str().
macro is evaluated: having read a macro, and replacing its parameters ARG1, ARG2,
ARGn by their respective argumentes, the resulting string is pushed back into
the input stream by lexer_push_str(). This happens, e.g., inside the function
p_expand_macro (). An excerpt from this function shows this call:

Such a situation occurs in particular when a

void p_expand_macro(register Parser *pp, register HashItem *item)

{

if (argc)

/* macro with arguments

p_macro_args(pp, &expansion, argc);

lexer_push_str(&pp->d_lexer, string str(&expansion));

142

*/
*/

*/
*/

*/

The parser repeatedly calls the lexer’s function lexer_lex(). This happens most
dramatically inside the function p_parse(), defined by a mere single statement:

void p_parse(register Parser *pp)

{
while ((*pp->d_handler[lexer_lex(&pp->d_lexer)]) (pp))

B

Here, in a loop continuing until the handler indicates that the loop should terminate,
lexer_lex() is called to produce the next token. The finite state automaton (FSA)
implemented here is described in more detail in section 6.5.

Apart from here, lexer_lex() is called from four other locations inside the parser
component:

e parser_parlist() repeatedly calls lexer_lex() to obtain all the tokens as-
sociated with a parameter list;

e p_handle_default_newline() repeatedly calls lexer_lex () to obtain all the
tokens until all consecutive spaces and newlines are read. This is one of the
handlers of the parser FSA 6.5;

e p_no_user_macro () calls lexer_lex() to determine whether a ‘no user macro’
has been detected;

e p_plus_series() calls lexer_lex() to determine whether a +symbol has
been encountered.

So, lexer_lex() is the parser’s ‘window to the outside world’. The lexer_lex()
function, however, is a fairly complex animal:

o lexer_lex(): returns next token. It calls 1_lex() to retrieve the next char-
acter from the info waiting to be read;

e 1_lex(): calls 1_nextchar() to obtain the next token, and appends all
char-tokens to the lexer’s matched text buffer. Potential compound symbols
(words, numbers) are combined by 1_compound() and are then returned as
TOKEN_PLAINCHAR or as a compound token like TOKEN_IDENT;

e 1 nextchar(): calls 1_get() to get the next character, and handles escape
chars, including \at eoln;

e 1 _get(): if there are no media left, EOF is returned. If there are media left,
then 1_subst_get () will retrieve the next character, handling possible SUBST
definitions. At the end of the current input buffer (memory buffer or file)
1_pop() attempts to reactivate the previous buffer. If this succeeds, EOR is
returned, otherwise EOF is returned. So, the lexer is not able to switch between
truly nested media, as in EVAL() calls, but is able to switch between nested
buffers resulting from replacing macro calls by their definitions;

e 1_subst_get(): calls 1_media_get() to get the next char from the media.
The next char is passed to subst_find() which is a FSA trying to match the

143

longest SUBST. This may be done repeatedly, and eventually subst_text()
will either return a substitution text, or the next plain character. A substitu-
tion text is pushed onto the lexer’s media buffer. The next character returned
is then the next one to appear at the lexer’'s media buffer;

e 1 _media_get(): If the current active source of information is a file, it returns
the next character from that file or EOF if no such char is available anymore.
If the current active source is a memory buffer then the next char from the
buffer is returned. If the buffer is empty EOF is returned. The media buffer is
a circular, self-expanding Queue.

6.5 The Parser’s Finite State Automaton

The parsing of the input files is performed by the function parser_process(),
which is called by Yodl’s main() function.

This processor will push all files that were specified on the input in reverse order on
the input stack, and will then call the support function p_parse() to process each
of them in turn.

p_parse() is an very short function: it contains one while statement, repeatedly
calling a handler appropriate with the next token returned by the lexical scanner.

Therefore, the parser can be considered as a table driven finite state automaton
(FSA).

The table itself is initialized in parser/psetuphandlerset.c, by the function p_setup_handlerSet ().
It fills the two dimensional array ps_handlerSet with the address of the func-
tion that must be called for each combination of parser-state (as defined in the
HANDLER_SET_ELEMENTS enum) in parser/parser.h and token that may be pro-
duced by the lexical scanner (as defined in the LEXER_TOKEN enum in lexer/lexer.h).
Depending on the situation the parser encounters, it may point its pointer d_handler
to a particular row in this table. Since the rows represent the parser’s states, states
can be switched easily by reassigning this pointer. This happens all the time. For ex-
ample, when in parsernameparlist.c a name must be retrieved from a parameter
list, it calls parser_parlist(pp, COLLECT_SET), which function will temporarily
switch the parser’s state to COLLECT_SET, returning the parameter list’s contents.
to its caller.

The functions whose addresses are stored in the various column-elements of the array
ps_handlerSet are called handler. Most handlers are named p_handle_<state>_<lextoken>(),
where <state> is the name of the associated parser state, and <lextoken> is the

name of the appropriate lexical scanner token. For example, p_handle_default_symbol()

is the handler that was designed for the situation where the parser is in its initial,

or default, state, and the lexical scanner returns a TOKEN_SYMBOL token. Some han-

dlers have more generic names, like p_handle_unknown(), which is some sort of

emergengy exit, called when the parser doesn’t know what to do with the received

lexical scanner token (a situation which should, of course, not happen).

In versin 2.00, the following handler functions are available:

e p_handle_insert(Parser *pp): insert matched text

e p_handle_default_eof (Parser *pp): return false

144

e p_handle_default_newline(Parser *pp): series of \n’s

e p_handle_default_plus(Parser *pp): handle + series

e p_handle_default_symbol(Parser *pp): handle all symbols
e p_handle_ignore(Parser *pp): ignores token

e p_handle_ignore_closepar (Parser *pp): handle openpar
e p_handle_ignore_openpar (Parser *pp): handle openpar

e p_handle_noexpand_plus(Parser *pp): handle + series

e p_handle_noexpand_symbol(Parser *pp): handle executed symbols in NO-
EXPAND

e p_handle_parlist_closepar (Parser *pp): handle closepar
e p_handle_parlist_openpar (Parser *pp): handle openpar
e p_handle_skipws_unget (Parser *pp): unget received text
e p_handle_unexpected_eof (Parser *pp): EMERG exit

e p_handle_unknown(Parser *pp): emergency exit
The parser has the following states:

COLLECT _SET retrieves parameter lists as they are encountered on the in-
put. The parameter list is not processed in any way, and will omit the
surrounding parentheses. So, when entering this state (e.g., in the function
parser_parlist()), a parameter list is completely consumed, but only its
contents (and not its surrounding parentheses) become available. In fact,
when entering a state, p_parse() can be called again to process the infor-
mation in this state. Eventually a state will encounter some stopping sig-
nal (e.g., a non-nested close parenthesis in the collect-state will result in
p_handle_parlist_closepar() toreturn false, thus terminating p_parse())
terminating that particular state. The function parser_parlist () shows this
process in further detail.

3

DEFAULT SET In this state macros, builtins etc. are processed. For most of
the tokens that can be returned by the lexical scanner p_handle_insert() is
called.

e When receiving EOF it will try to switch to the next file on the stack
(or stop),

e When receiving a symbol, it will either handle them as plain symbols or
as macros,

e When receiving newlines they will be handled (maybe merging them by
calling a paragraph handler (if defined)),

e Series of + characters will be handled

e All other tokens will be inserted into the current output medium (which
may be a file, but it may also be a memory buffer).

IGNORE SET In this state a parameter list is completely skipped. This state
is used, for example, when processing COMMENT ().

145

NOEXPAND SET The contents of a parameter list is not expanded, but CHAR
builtins are processed. In Yodl version 2.00 there is only one situation wher
this state (and its companion state NOTRANS SET) is actively used: Yodl’s
function gram_NOEXPAND() uses these states to retrieve the contents of a no-
expanded or no-transed parameter list.

NOTRANS SET When the parser is in this state, a parameter list will be in-
serted using the currently active insertion function (inserting to file or mem-
ory) It is identical to the NOEXPAND SET state, but the character trans-
lation table is not used in the NOTRANS STATE, whereas it is used in the
NOEXPAND STATE.

SKIPWS SET In this state all white-space characters are consumed. The lexical
scanner will only return the next non-whitespace character. This state is used,
e.g., to skip the white space between multiple parameter lists when they are
defined for macros.

6.6 Adding a new macro

With the advent of Yodl V 2.00, raw macros files are introduced. A raw macro file
defines one macro, and all of its conversions. The raw macro files must be organized

as follows:

<STARTDOC>

macro (name (argl) (arg2) (etc))

(
Description of the macro ‘name’, having arguments ‘argl’, ‘arg2’,
‘etc’, each argument is given its own parameter list. The names of the
arguments in this description should be chosen in such a way that they
suggest their function or purpose. All macro descriptions starting
with tt(<STARTDOC>) will be included in both the ‘man yodlmacros’
manpage and the description of the macro in the user guide. If this is
not considered appropriate (e.g., tt(XX...()) macros are not described
in these documents) then use tt(<COMMENT>) rather than
tt (<STARTDOC>) .

)

<>

DEFINEMACRO (name) (#) (

statements of macro ‘name’ expecting ‘#’ arguments used by all
conversions. This section is optional

<html>

statements that should be executed by the HTML convertor

<man ms>

statements that should be executed by two converters. In this case,
the ‘man’ and ‘ms’ converters

<else>

<>

statements that should be executed by all converters not explicitly
mentioned above

statements of macro ‘name’ expecting ‘#’ arguments used by all

146

conversions, having processed their specific statements.
This section is also optional

When setting up these macro definitions, the <> tags must appear with the initial
documentation section. It must also appear when at least one specific convertor tag
is used. For a macro which is converter independent, the macro definition doesn’t
contain these pointed-arrow tags.

When writing standard Yodl macros, each macro should be stored in a file ‘name’ . raw,
where ‘name’ is the lower-case name of the macro. This file should then be kept
in the macros/rawmacros directory. The macros/build std call will then add the
macro (filtering only the required statements per conversion) to each of the standard
conversion formats.

If the macro requires a counter or symbol, consider defining the counter or symbol in,
respectively, @counters and @symbols. Furthermore, consider pushing and popping
these ‘variables’, rather than plain assigning them, to allow other macros to use the
variables as well. A case in point is the counter XXone which was added to the set
of counters representing a local counter. Macros may always push XXone and pop
Xxone, but should never reassign XXone before its value has been pushed. For Yodl
version 2.00 only XXone was required, but other local counters might be considered
useful in the future. In that case, XXtwo, XXthree etc. will be used. For local
symbold XXs prefixes will be used: XXsone, XXstwo, etc.

6.7 The Yodl post-processor

With Yodl version 2.00 the old-style post-processor has ceased to exist. Also, the
.tt(Yod1)TAGSTART. and .tt(Yodl)TAGEND. symbols no longer appear in yodl’s
output.

Instead, a system using an index file was adopted. When converting information,
yodl will produce an output file and an associated indez file. The index file defines
offsets in the output file up to where certain actions are to be performed. Each line
in the index file contains the required information of one directive for yodlpost.
For example:

0 set extension man
b3 ignorews

2112 verb on

2166 verb off

80007 ignorews
80065 copy

80065 mandone

Entries can be written into the index file using the INTERNALINDEX builtin func-
tion. This function has one argument: the information following the offset where
it is called. So, there will be a INTERNALINDEX (set extension man) in the macro
definitions for this particular conversion (obviously it is a man conversion. The

147

particular INTERNALINDEX call is found in the standard man.yo macro definition
file).

When yodlmacros is called, it processes the directives on the idx file in two steps:

e First, it reads all directives, and constructs a queue of actions to perform.
During this phase it will solve all references to, e.g., labels defined in the s
processed by yodl. This queue is constructed by a PostQueue object, during
its construction phase.

Postprocessing is realized by a template-method design pattern-like construc-
tion in C.

The algorithm proceeds as follows:

Each element of the index file is read, and its keyword (the word following
the offfset) is determined. Then the ’construct’ function associated with that
keyword is called. The ‘construct’ functions return pointers to Hashltem
elements, which areprocessed by storing them either into the the symbol table
or into the work-queue. The construct functions can use all PostQueue, New,
Message String Args and File functions. Which function is actually called
is determined in the file yodlpost/data.c, where the array Task tast[] is
initialized. Task structs have three elements:

— char const *d_key points to the name of the keyword that will trigger
the corresponding Task struct;

— HashItem *(*d_constructor) (char const *key, char *rest) points
to the function that will be called when the task struct is created.

— void (*d_handler) (long offset, HashItem *item) points to the func-
tion that will be called when the queue is processed.

e Then, when all commands are available, the queued commands are processed.

For this, the appropriate 'handle’ functions are called.

For example, when the INTERNALINDEX (htmllabel ...) is specified, the function
construct_label() is called. This function receives a line line

432 label Overview

meaning that this label has been defined in offset 432 in the file generated by yodl.
The construct_label() function will now:

e Store the current section number, the filecount and the sectionnumber in a
HashlItem.

e Store the hashitem inside its hash-table.

Then, when the queue is processed, a reference to this label may be encoun-
tered. This is signalled by an INTERNALINDEX (ref Overview) call. In this case
the construct_ref () function doesn’t have to do much. Here it is the handler
that’s doing all the work:

e First it looks up the label in the symbol table. The label should be there, as a

result of the earlier construction of the symbol table during the postqueue_construct ()
call.

148

e Then it copies the file written by yodl up to the offset mentioned in the the
ref command.

e Then (since we're talking about an html-specific reference) the appropriate
<a href=... command is inserted into the current output file.

When references are solved in text-files, the INTERNALINDEX (txtref ...) com-
mand is used. Here, construct_ref () can still be used, but a specific handle_txt_ref ()
function is required.

New postprocessing labels can be constructed easily:

e Add an element to the array Task task[] in src/yodlpost/data.c. For
example, add a line like:

{"verb", construct_verb, handle_verb},

e Declare the functions in yodlpost.h:

HashItem *construct_verb(char const *key, char *rest);
void handle_verb(long offset, HashItem *item);

e The construct_verb() function receives the key (e.g., verb) and any infor-
mation that may be available beyond the key as a trimmed line (not beginning
or ending in white space). The construct function should return a pointer to
a hashitem, which can be constructed by hashitem_construct (). This func-
tion should be called with the following arguments:

VOIDPTR;

a pointer to some text to be stored as the hashitem’s key (use an empty
string if nothing needs to be stored in a hashtable);

A pointer to the information associated with the key (use 0 if no infor-
mation is used; use (void *)intValue to store an int value. Note that
this is mot (void *)&intValue: it is the value of the variable that is
interpreted as a pointer here).

— The function that will handle the destruction of the value-information.
Use free if some information was actually allocated and must be freed.
E.g.,

hashitem_construct(VOIDPTR, "", new_str(rest), free);

Use root_nop if no allocation took place. E.g.,

hashitem_construct (VOIDPTR, "", (void #*)s_lastLabelNr, root_nop);

149

Often the constructor doesn’t have to do anything at all. In that case, initialize
the Task element with the existing construct_nop function. E.g.,

{"drainws", construct_nop, handle_drain_ws},

e The handle_verb() function is called when the file produced by yodl is pro-
cessed by postqueue_process(). This happens immediately after postqueue_construct().
The handler is called with two arguments:

— Its first argument is the offset where the INTERNALINDEX call was gener-
ated. The handler should make sure that yodl’s output file is processed
up to this offset. Not any further. If a simple copy is required the
function file_copy2offset () is available. E.g.,

file_copy2offset(global.d_out, postqueue_istream(), offset);

Note its arguments: the output and input file pointers are available
through, respectively, global.d_out and postqueue_istream().

— Its second argument is a pointer to the hashitem struct originally created
by the matching construct. .. () function. The handler should not free
the information it receives. The function postqueue_process() takes
care of that.

Examples of actual construct. .. () and handle. .. () functions can be found
in src/yodlpost.

150

