avr-libc
1.8.0

Generated by Doxygen 1.8.1.1

Fri Aug 17 2012 14:35:30



CONTENTS i

Contents

1 AVR Libc 1
1.1 Introduction . . . . . . e e 1
1.2 General information about thislibrary . . . . . . . . . . . 1
1.3 Supported Devices . . . . . . . L e e e e e e 1
1.4 avrlibcLicense . . . . . . . . e e e e 10

2 Toolchain Overview 11
2.1 Introduction . . . . . . L e e e 11
22 FSFandGNU . . . . . . . e 11
2.3 GCC . . . e e e 12
24 GNUBINUtils . . . . o o 12
25 avrlibc . . .. e 13
2.6 Building Software . . . . . . L e e 14
2.7 AVRDUDE . . . . . . e 14
2.8 GDB/Insight/DDD . . . . . . . e 14
2.9 AVaRICE . . . . . e 14
210 SIMUIAVR . . . e 14
211 Utilities . . . . o o e 14
2.12 Toolchain Distributions (DisStros) . . . . . . . . . . . . 14
213 OPENSOUICE . . . o o o e e e e e e e e e e e 15

3 Memory Areas and Using malloc() 15
3.1 Introduction . . . . . . L e e 15
3.2 Internalvs. external RAM . . . . . L e 16
3.3 Tunablesformalloc() . . . . . . . . . 16
3.4 Implementationdetails . . . . . . ... 18

4 Memory Sections 18
4.1 The .textSection . . . . . . . . 19
42 The.dataSection . . . . . . . . e 19
4.3 The.bssSection . . . . . . e 19
4.4 The.eeprom Section . . . . . . . . . e e 19
4.5 The.noinit Section . . . . . . . L e 19
4.6 The.initNSections . . . . . . . . . 20
4.7 The finiN Sections . . . . . . . L e 21
4.8 Using Sections in Assembler Code . . . . . . . . . . . 22
4.9 UsingSectionsinC Code . . . . . . . . . e 22

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS ii
5 Data in Program Space 22
5.1 Introduction . . . . . . . L e e 22
52 ANoteONnconst . . . . . . . e 23
5.3 Storing and Retrieving Data inthe Program Space . . . . . . . . . . . . . .. oo 23
5.4 Storing and Retrieving Strings inthe Program Space . . . . . . . . . . . ... o oo 24
5.5 Caveals . . . . . e 26
6 avr-libc and assembler programs 26
6.1 Introduction . . . . . . . . L e e 26
6.2 Invoking the compiler . . . . . . L 26
6.3 Example program . . . . .. e e e e e 27
6.4 Pseudo-ops and operators . . . . ... .. i e e e 29
7 Inline Assembler Cookbook 30
7.1 GCCasmStatement . . . . . . . . e e 31
7.2 AssemblerCode . . . . . . L e 32
7.3 Inputand Output Operands . . . . . . . . . . . i e e e 33
7.4 Clobbers . . . . . o e 36
7.5 Assembler Macros . . . . . ... 38
7.6 CStub Functions . . . . . . . . e 38
7.7 CNames Usedin AssemblerCode . . . . . . . . . . . . 39
7.8 LINKS . . o e e 39
8 How to Build a Library 40
8.1 Introduction . . . . . . . e 40
8.2 Howthe Linker Works . . . . . . . . . e 40
8.3 HowtoDesignalibrary . . . . . . . 40
8.4 Creatingalibrary . . . . . . e 41
8.5 Usingalibrary . . . . . . e 41
9 Benchmarks 42
9.1 Afewoflibcfunctions. . . . . . . . . 42
9.2 Mathfunctions. . . . . . . . . e e 43
10 Porting From IAR to AVR GCC 44
10.1 Introduction . . . . . . L e e e e e 44
10.2 Registers . . . . . . e e e e e 44
10.3 Interrupt Service Routines (ISRs) . . . . . . . . . . . 45
10.4 Intrinsic Routines . . . . . . . . L e 45

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS iiii
10.5 Flash Variables . . . . . . . . . e 46
10.6 Non-Returning main() . . . . . . . . . o e e e e 46
10.7 Locking Registers . . . . . . . . L e 47

11 Building and Installing the GNU Tool Chain 47
11.1 Building and Installing under Linux, FreeBSD, and Others . . . . . . . . . . . . ... ... .. ..... 47
11.2 Required TOOIS . . . . . . o e e e e e e 48
11.3 Optional Tools . . . . . . . . 48
11.4 GNU Binutils forthe AVR target . . . . . . . . . . . 49
11.5 GCCforthe AVRtarget . . . . . . . . . e 50
11.6 AVRLIDC . . . . e 50
11.7 AVRDUDE . . . . . 51
11.8 GDB forthe AVRtarget . . . . . . . . . e 51
11.9 SIMUIAVR . . 52
11.10AVaRICE . . . . . 52
11.11Building and Installing under Windows . . . . . . . . . . . . . 52
11.12Tools Required for Building the Toolchain for Windows . . . . . . . . . . . .. . ... . ... ...... 53
11.13Building the Toolchain for Windows . . . . . . . . . . . . . 55

12 Using the GNU tools 59
12.1 Options for the C compileravr-gcc . . . . . . . . . . . . 60

12.1.1 Machine-specific optionsforthe AVR . . . . . . . . . . . . . ... 60
12.1.2 Selected general compileroptions . . . . . . . . .. L 72
12.2 Options forthe assembleravr-as . . . . . . . . . . e 74
12.2.1 Machine-specific assembler options . . . . . . . . . ... L L 74
12.2.2 Examples for assembler options passed through the C compiler . . . . . . . ... . ... ... 75
12.3 Controlling the linker avr-Id . . . . . . . . . L e 75
12.3.1 Selected linker options . . . . . . . . . L 75
12.3.2 Passing linker options from the C compiler . . . . . . . . . . . ... L 76

13 Compiler optimization 77
13.1 Problems with reorderingcode . . . . . . . . . e 77

14 Using the avrdude program 78

15 Release Numbering and Methodology 80
15.1 Release Version Numbering Scheme . . . . . . . . . . . . . 80
15.2 Releasing AVRLIbC . . . . . . . o e 80

15.2.1 Creatingan SVNbranch . . . . . . . . . . . . 80

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS iv
15.22 Makingarelease . . . . . . . . . 81

16 Acknowledgments 83
17 Todo List 83
18 Deprecated List 83
19 Module Index 84
19.1 Modules . . . . . . e e e e e e 84

20 Data Structure Index 86
20.1 Data Structures . . . . . . . . e e 86

21 File Index 86
211 File List . . . . o e 86
22 Module Documentation 90
22.1 <alloca.h>: Allocate spaceinthestack . . . . . . . . . . . . . . . . 90
22.1.1 Detailed Description . . . . . . . L 90

22.1.2 Function Documentation . . . . . . . . . . 90

22.2 <assert.h>:Diagnostics . . . . . . . . . 91
22.2.1 Detailed Description . . . . . . . e 91

22.2.2 Macro Definition Documentation . . . . . . . . . .. 91

22.3 <ctype.h>: Character Operations . . . . . . . . . . . i i it e 92
22.3.1 Detailed Description . . . . . . . e 92

22.3.2 Function Documentation . . . . . . . . . L 92

22.4 <errno.h>: System Errors . . . . .. L 94
22.41 Detailed Description . . . . . . L 94

22.4.2 Macro Definition Documentation . . . . . . . . . .. .. L 94

22.5 <inttypes.h>: Integer Type conversions . . . . . . . . . . . .. 95
22.5.1 Detailed Description . . . . . . .. 97

22.5.2 Macro Definition Documentation . . . . . . . . . .. L L 97

22.5.3 Typedef Documentation . . . . . . . . . . . . e 104

22.6 <math.h>: Mathematics . . . . . . . . . . . 105
22.6.1 Detailed Description . . . . . . . L e 107

22.6.2 Macro Definition Documentation . . . . . . . . . ... 107

22.6.3 Function Documentation . . . . . . . . . L L e 111

22.7 <setimp.h>:Non-localgoto . . . . . . . . . e 115
22.7.1 Detailed Description . . . . . . . e e 115

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS v

22.7.2 Function Documentation . . . . . . . . .. 115
22.8 <stdint.h>: Standard Integer Types . . . . . . . . . e 117
22.8.1 Detailed Description . . . . . . . . L e e 120
22.8.2 Macro Definition Documentation . . . . . . . . . .. 120
22.8.3 Typedef Documentation . . . . . . . . . . . . e e e e 124
229 <stdio.h>: Standard 10 facilities . . . . . . . . . . 127
22.9.1 Detailed Description . . . . . . . . . 128
22.9.2 Macro Definition Documentation . . . . . . . ... L 130
22.9.3 Function Documentation . . . . . . . . . L 132
22.10<stdlib.h>: General utilities . . . . . . . . L 140
22.10.1 Detailed Description . . . . . . . . L e e 141
22.10.2 Macro Definition Documentation . . . . . . . . . . L L 141
22.10.3 Typedef Documentation . . . . . . . . . . . . . e e 142
22.10.4 Function Documentation . . . . . . . . . . e 142
22.10.5 Variable Documentation . . . . . . . . . .. L 148
22.11<string.h>: Strings . . . . . . L e 149
22.11.1 Detailed Description . . . . . . . . e e 150
22.11.2 Macro Definition Documentation . . . . . . . . . . . .. 150
22.11.3 Function Documentation . . . . . . . . . . L 150
22.12<avr/boot.h>: Bootloader Support Utilities . . . . . . . . . . . .. 159
22.12.1 Detailed Description . . . . . . . L e 159
22.12.2 Macro Definition Documentation . . . . . . . . . . . .. 160
22.13<avr/cpufunc.h>: Special AVR CPU functions . . . . . . . . . .. .. ... ... . 165
22.13.1 Detailed Description . . . . . . . . L e e 165
22.13.2 Macro Definition Documentation . . . . . . . . . .. L L 165
22.14<avr/eeprom.h>: EEPROM handling . . . . . . . . . . . . . 166
22.14.1 Detailed Description . . . . . . . L e e 166
22.14.2 Macro Definition Documentation . . . . . . . . . . 167
22.14.3 Function Documentation . . . . . . . . . . L 167
22.15<avr/fuse.h>: Fuse Support . . . . . . . e 170
22.16<avrf/interrupt.n>: Interrupts . . . . . . . L 173
22.16.1 Detailed Description . . . . . . . . L e 173
22.16.2 Macro Definition Documentation . . . . . . . . . . L L 188
22.17<avrf/io.h>: AVR device-specific IO definitions . . . . . . . . . .. L 191
22.18<avr/lock.h>: Lockbit Support . . . . . . . . 192
22.19<avr/pgmspace.h>: Program Space Utilities . . . . . . . . . . . . . .. o 195
22.19.1 Detailed Description . . . . . . . L e e 196

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS vi

22.19.2 Macro Definition Documentation . . . . . . . . . . L 196
22.19.3 Typedef Documentation . . . . . . . . . . . . e e 198
22.19.4 Function Documentation . . . . . . . . . L 201
22.20<avr/power.h>: Power Reduction Management . . . . . . . . . .. ..o o 207
22.21Additional notes from <avr/sfr_defs.h> . . . . . . . . . . . . 257
22.22<avr/sfr_defs.h>: Special functionregisters . . . . . . . . . L L 258
22.22.1 Detailed Description . . . . . . . . . e 258
22.22.2 Macro Definition Documentation . . . . . . . ... L 259
22.23<avr/signature.h>: Signature Support . . . . .. L 260
22.24 <avr/sleep.h>: Power Managementand SleepModes . . . . . . . . . . . . .. ... . 261
22.24.1 Detailed Description . . . . . . . L e e 261
22.24.2 Function Documentation . . . . . . . ... 262
22.25<avr/version.h>: avr-libc versionmacros . . . . . . . . . . 263
22.25.1 Detailed Description . . . . . . . L e 263
22.25.2 Macro Definition Documentation . . . . . . . .. L 263
22.26<avr/wdt.h>: Watchdog timerhandling . . . . . . . . . . . . . 265
22.26.1 Detailed Description . . . . . . . . e e 265
22.26.2 Macro Definition Documentation . . . . . . . . . .. L 266
22.27 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks . . . . . .. . ... .. ... .. 268
22.27.1 Detailed Description . . . . . . . e e 268
22.27.2 Macro Definition Documentation . . . . . . . ... Lo 269
22.28 <util/crc16.h>: CRC Computations . . . . . . . . . . o 271
22.28.1 Detailed Description . . . . . . . . . L 271
22.28.2 Function Documentation . . . . . . . . .. 271
22.29 <util/delay_basic.h>: Basic busy-waitdelay loops . . . . . . . . . . . .. 274
22.29.1 Detailed Description . . . . . . . . . e 274
22.29.2 Function Documentation . . . . . . . .. L 274
22.30 <util/parity.h>: Parity bit generation . . . . . . . ... 275
22.30.1 Detailed Description . . . . . . . . L e e e 275
22.30.2 Macro Definition Documentation . . . . . . . . . L 275
22.31 <util/setbaud.h>: Helper macros for baud rate calculations . . . . . ... ... ... .. ... ..... 276
22.31.1 Detailed Description . . . . . . . L e 276
22.31.2 Macro Definition Documentation . . . . . . . . . . L L 277
22.32<util/iwi.h>: TWI bit mask definitions . . . . . . . . . . . . 278
22.32.1 Detailed Description . . . . . . . L e 279
22.32.2 Macro Definition Documentation . . . . . . . . . ... 279
22.33<compat/deprecated.h>: Deprecateditems . . . . . . . . . .. ... 282

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS vii

22.33.1 Detailed Description . . . . . . . . e e 282
22.33.2 Macro Definition Documentation . . . . . . . . . .. L 283
22.33.3 Function Documentation . . . . . . . . . L 284
22.34 <compat/ina90.h>: Compatibility with IAREWB 3.x . . . . . . . . . . . . . o 285
22.35DEmMO Projects . . . . . .o e e e e e e e e e 286
22.35.1 Detailed Description . . . . . . . . L e 286
22.36Combining C and assembly sourcefiles . . . . . . . . . . ... 287
22.36.1 Hardware setup . . . . . . . . . . e e e 287
22.36.2 A code walkthrough . . . . . . . . . 287
22.36.3Thesource code . . . . . . . . . o i e 289
22.37Asimple Project . . . . . . . e e e 290
22371 The Project . . . . . . . o 290
22.37.2The Source Code . . . . . . . . o e 291
22.37.3Compilingand Linking . . . . . . . .. 293
22.37.4 Examiningthe Object File . . . . . . . . . . . . . 293
22.37.5LinkerMap Files . . . . . . . . 297
22.37.6 Generating Intel Hex Files . . . . . . . . . . . . 299
22.37.7 Letting Make Build the Project . . . . . . . . . . . . . . 300
22.37.8 Reference tothe sourcecode . . . . . . . . . .. 302
22.38A more sophisticated project . . . . . ... 303
22.38. 1 Hardware setup . . . . . . . . . e e 303
22.38.2 Functional overview . . . . . . . L e e e 305
22.38.3 A code walkthrough . . . . . . . . . . 306
22.38.4Thesource code . . . . . . . . o i e 308
22.39Using the standard IO facilities . . . . . . . . . . . 309
22.39. 1 Hardware setup . . . . . . . .. e 309
22.39.2 Functional overview . . . . . . . L e e e e e 310
22.39.3 A code walkthrough . . . . . . . . . L 310
22.39.4Thesource CoOde . . . . . . . . . i e e e 314
22.40Example using the two-wire interface (TWI) . . . . . . . . . . . . . . . 315
22.40.1 Introduction into TWI . . . . . . . . . e e 315
22.40.2The TWlexample project . . . . . . . . . . o e 315
22.40.3The Source Code . . . . . . . . 0 e 315

23 Data Structure Documentation 319
23.1 div_tStruct Reference . . . . . . . . . L e e 319
23.1.1 Detailed Description . . . . . . . L e 319

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS viii

24

23.1.2 Field Documentation . . . . . . . . . . . e e 319
23.2 Idiv_t Struct Reference . . . . . . . L 319
23.2.1 Detailed Description . . . . . . . . e e e 319
23.2.2 Field Documentation . . . . . . . . . . e 319
File Documentation 320
241 asserth File Reference . . . . . . . . . . e 320
24.1.1 Detailed Description . . . . . . . e 320
242 atoi.SFile Reference . . . . . . . e 320
24.2.1 Detailed Description . . . . . . . . e e 320
24.3 atol.SFile Reference . . . . . . . . . e 320
24.3.1 Detailed Description . . . . . . . . L e e 320
24.4 atomic.h File Reference . . . . . . . . . . e 320
24.41 Detailed Description . . . . . . L e 320
245 boot.h File Reference . . . . . . . . . . . e 320
245.1 Detailed Description . . . . . . . . . 321
24.5.2 Macro Definition Documentation . . . . . . . . . . L 321
24.6 cpufunc.h File Reference . . . . . . . . . 325
24.6.1 Detailed Description . . . . . . . . e e 325
24.7 crc16.h File Reference . . . . . . . . . . o e 325
24.7.1 Detailed Description . . . . . . . L e 325
24.8 ctype.h File Reference . . . . . . . . . . e 325
24.8.1 Detailed Description . . . . . . . . . 326
249 delay basic.h File Reference . . . . . . . . . . 326
24.9.1 Detailed Description . . . . . . . . . 326
2410ermo.h File Reference . . . . . . . . . o . 326
24.10.1 Detailed Description . . . . . . . . L e e e 326
24 11fdevopen.c File Reference . . . . . . . . . . L L 326
24.11.1 Detailed Description . . . . . . . . e e 327
2412ffs.SFile Reference . . . . . . . . e 327
24.12.1 Detailed Description . . . . . . . . L e e 327
24 13ffs.S File Reference . . . . . . . . L e 327
24.13.1 Detailed Description . . . . . . . . L e e 327
24.14ffsll.S File Reference . . . . . . . . . e 327
24141 Detailed Description . . . . . . . . e e 327
24.15fuse.h File Reference . . . . . . . . . L e 327
24.15.1 Detailed Description . . . . . . . L e 327

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS ix

24 16interrupt.h File Reference . . . . . . . . . . 327
24.16.1 Detailed Description . . . . . . . . e 328
2417inttypes.h File Reference . . . . . . . . . L 328
24.17.1 Detailed Description . . . . . . . e 330
2418io.h File Reference . . . . . . . . e 330
24.18.1 Detailed Description . . . . . . . . L e 330
24.19lock.h File Reference . . . . . . . . . L e 330
24.19.1 Detailed Description . . . . . . . . . e 330
24.20math.h File Reference . . . . . . . . . o o e 330
24.20.1 Detailed Description . . . . . . . . e 332
24.21memccpy.S File Reference . . . . . . . . L 332
24.21.1 Detailed Description . . . . . . . L e e 332
24.22memchr.S File Reference . . . . . . . . . L 332
24.22.1 Detailed Description . . . . . . . L e e 332
24.23memchr_P.S File Reference . . . . . . . . . . e 332
24.23.1 Detailed Description . . . . . . . . . L 332
24.24memcmp.S File Reference . . . . . . . . L 332
24.24 1 Detailed Description . . . . . . . e e e 332
24.25memcmp_P.S File Reference . . . . . . . . . . L 332
24.25.1 Detailed Description . . . . . . . . e 332
24.26memcmp_PFES File Reference . . . . . . . . e 332
24.26.1 Detailed Description . . . . . . . . e 332
24.27memcpy.S File Reference . . . . . . . . . L 332
24.27.1 Detailed Description . . . . . . . . L e e 332
24.28memcpy_P.S File Reference . . . . . . . . . 332
24.28.1 Detailed Description . . . . . . . . . e 332
24.29memmem.S File Reference . . . . . . . . L 332
24.29.1 Detailed Description . . . . . . . e 333
24.30memmove.S File Reference . . . . . . . . L 333
24.30.1 Detailed Description . . . . . . . . . L e 333
24.31memrchr.S File Reference . . . . . . . . . L 333
24.31.1 Detailed Description . . . . . . . . 333
24.32memrchr_P.S File Reference . . . . . . . . . . . . e 333
24.32.1 Detailed Description . . . . . . . e e 333
24.33memset.S File Reference . . . . . . . . . L 333
24.33.1 Detailed Description . . . . . . . . e e 333
24 34parity.h File Reference . . . . . . . . . L e 333

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS X

24.34.1 Detailed Description . . . . . . . . L e e 333
24.35pgmspace.h File Reference . . . . . . . . . . L 333
24.35.1 Detailed Description . . . . . . . . L e e 336
24.35.2 Macro Definition Documentation . . . . . . . . . .. L L 336
24.36power.h File Reference . . . . . . . . . o e 343
24.36.1 Detailed Description . . . . . . . . L e 343
24.37setbaud.h File Reference . . . . . . . . . o 343
24.37.1 Detailed Description . . . . . . . . e 343
24.38setjmp.h File Reference . . . . . . . . . . e 343
24.38.1 Detailed Description . . . . . . . . . e 343
24.39signature.h File Reference . . . . . . . . o 343
24.39.1 Detailed Description . . . . . . . L e 343
24.40sleep.h File Reference . . . . . . . . . . . o e 344
24.40.1 Detailed Description . . . . . . . L e 344
24 41stdint.h File Reference . . . . . . . . o 344
24.41.1 Detailed Description . . . . . . . . . L 347
24.42stdio.h File Reference . . . . . . . . o L e 347
24.42 1 Detailed Description . . . . . . . L e 348
24.43stdlib.h File Reference . . . . . . . . . o e 348
24.43.1 Detailed Description . . . . . . . e e 350
24.44strcasecmp.S File Reference . . . . . . . L L 350
24.44 1 Detailed Description . . . . . . . L e 350
24.45strcasecmp_P.S File Reference . . . . . . . . . . L 350
24.451 Detailed Description . . . . . . . . e e 350
24 46strcasestr.S File Reference . . . . . . . . o 350
24.46.1 Detailed Description . . . . . . . . . e e 350
24.47strcat.S File Reference . . . . . . . . L 350
24.47 1 Detailed Description . . . . . . L L e 350
24.48strcat_ PS File Reference . . . . . . . . . e 350
24.48.1 Detailed Description . . . . . . . . . 350
24.49strchr.S File Reference . . . . . . . . L 350
24.49.1 Detailed Description . . . . . . . L e 350
24.50strchr_ PS File Reference . . . . . . . . . . . e e 350
24.50.1 Detailed Description . . . . . . . . e e 350
24 51strchrnul.S File Reference . . . . . . . . . o L e 350
24.51.1 Detailed Description . . . . . . . . e e 350
24.52strchrnul_P.S File Reference . . . . . . . . . . . . e e 350

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS Xi

24.52.1 Detailed Description . . . . . . . . . e e 350
24.53strcmp.S File Reference . . . . . . . . . . e 350
24.53.1 Detailed Description . . . . . . . .. e e 350
24.54strcmp_P.S File Reference . . . . . . . . L 350
24541 Detailed Description . . . . . . . L e 350
24.55strcpy.S File Reference . . . . . . . e 350
24.55.1 Detailed Description . . . . . . . . . 350
24.56strcpy_PS File Reference . . . . . . . . . 351
24.56.1 Detailed Description . . . . . . . . e 351
24 57strespn.S File Reference . . . . . . . . L 351
24.57.1 Detailed Description . . . . . . . L e 351
24.58strcspn_P.S File Reference . . . . . . . . o e 351
24.58.1 Detailed Description . . . . . . . . L e e 351
24.59strdup.c File Reference . . . . . . . . . o e 351
24.59.1 Detailed Description . . . . . . . . L e 351
24.60string.h File Reference . . . . . . . . . . e 351
24.60.1 Detailed Description . . . . . . . . . e e 352
24.61stricat.S File Reference . . . . . . . . . . e 352
24.61.1 Detailed Description . . . . . . . . . e e 352
24.62strlcat_ PS File Reference . . . . . . . . . . . e 352
24.62.1 Detailed Description . . . . . . . L e 352
24.63strlcpy.S File Reference . . . . . . . . 352
24.63.1 Detailed Description . . . . . . . . . L 352
24.64stricpy_P.S File Reference . . . . . . . . . 352
24.64.1 Detailed Description . . . . . . . L 352
24.65strlen.S File Reference . . . . . . . . . L e 352
24.65.1 Detailed Description . . . . . . . . e 352
24.66strlen_ PS File Reference . . . . . . . . . . e e 352
24.66.1 Detailed Description . . . . . . . . e e 352
24.67strlwr.S File Reference . . . . . . . . e 352
24.67.1 Detailed Description . . . . . . . . e 352
24.68strncasecmp.S File Reference . . . . . . . . L 353
24.68.1 Detailed Description . . . . . . . . e 353
24.69strncasecmp_P.S File Reference . . . . . . . . . L 353
24.69.1 Detailed Description . . . . . . . L e 353
24.70strncat.S File Reference . . . . . . . . . L e 353
24.70.1 Detailed Description . . . . . . . L e 353

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



CONTENTS Xii

24.71strncat_ PS File Reference . . . . . . . . . e 353
24.71.1 Detailed Description . . . . . . . L e 353
24.72strncmp.S File Reference . . . . . . . . . L 353
24.72.1 Detailed Description . . . . . . . e 353
24.73strncmp_P.S File Reference . . . . . . . . . . e 353
24.73.1 Detailed Description . . . . . . . . e e 353
24.74strnepy.S File Reference . . . . . . . oL 353
24.74 1 Detailed Description . . . . . . . L e 353
24.75strncpy_P.S File Reference . . . . . . . . o 353
24.75.1 Detailed Description . . . . . . . . L e e 353
24.76strnlen.S File Reference . . . . . . . . . L L 353
24.76.1 Detailed Description . . . . . . . L e 353
24.77strnlen_P.S File Reference . . . . . . . . . . e 353
24.77.1 Detailed Description . . . . . . . L e e 353
24.78strpbrk.S File Reference . . . . . . . . L 353
24.78.1 Detailed Description . . . . . . . . .. L 353
24.79strpbrk_P.S File Reference . . . . . . . . L 353
24.79.1 Detailed Description . . . . . . . L e 353
24.80strrechr.S File Reference . . . . . . . . o o e 353
24.80.1 Detailed Description . . . . . . . . e e 354
24.81strrchr PS File Reference . . . . . . . . . . . . e 354
24.81.1 Detailed Description . . . . . . . . e 354
24.82strrev.S File Reference . . . . . . . . e 354
24.82.1 Detailed Description . . . . . . . . L e e 354
24.83strsep.S File Reference . . . . . . . . e 354
24.83.1 Detailed Description . . . . . . . . L e e 354
24.84strsep_PS File Reference . . . . . . . . . e 354
24.84.1 Detailed Description . . . . . . . L e 354
24.85strspn.S File Reference . . . . . . . . L 354
24.85.1 Detailed Description . . . . . . . . . 354
24.86strspn_P.S File Reference . . . . . . . . . L 354
24.86.1 Detailed Description . . . . . . . . e 354
24.87strstr.S File Reference . . . . . . . . . o L 354
24.87.1 Detailed Description . . . . . . . e e 354
24.88strstr P.S File Reference . . . . . . . . . e e e 354
24.88.1 Detailed Description . . . . . . . . L e 354
24.89strtok.c File Reference . . . . . . . . . L 354

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1 AVR Libc 1

24.89.1 Detailed Description . . . . . . . . . e e 354
24 90strtok_P.c File Reference . . . . . . . . . L 354
24.90.1 Detailed Description . . . . . . . . e 355
24.91strtok_r.S File Reference . . . . . . . . . . . e 355
24.91.1 Detailed Description . . . . . . . L e 355
24.92strtok_rP.S File Reference . . . . . . . . . . e 355
24.92.1 Detailed Description . . . . . . . . . 355
24.93strupr.S File Reference . . . . . . . . L 355
24.93.1 Detailed Description . . . . . . . . e 355
24.94twi.h File Reference . . . . . . . . . 355
24.94.1 Detailed Description . . . . . . . L e 356
24.95wdt.h File Reference . . . . . . . . . e 356
24.95.1 Detailed Description . . . . . . . . L e e 356
1 AVR Libc

1.1 Introduction

The latest version of this document is always available fromhttp: //savannah.nongnu.org/projects/avr-1libc/

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-bit RISC microcontrollers.
In addition, the library provides the basic startup code needed by most applications.

There is a wealth of information in this document which goes beyond simply describing the interfaces and routines
provided by the library. We hope that this document provides enough information to get a new AVR developer up to
speed quickly using the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you may wish to post a message
to the avr-gcc mailing list. Most of the developers of the AVR binutils and gcc ports in addition to the devleopers of
avr-libc subscribe to the list, so you will usually be able to get your problem resolved. You can subscribe to the list at
http://lists.nongnu.org/mailman/listinfo/avr—-gcc—1ist . Before posting to the list, you might
want to try reading the FAQ chapter of this document.

Note

If you think you’'ve found a bug, or have a suggestion for an improvement, either in this documentation or in the
library itself, please use the bug tracker at ht tps://savannah.nongnu.org/bugs/?group=avr-1libc
to ensure the issue won'’t be forgotten.

1.2 General information about this library

In general, it has been the goal to stick as best as possible to established standards while implementing this library.
Commonly, this refers to the C library as described by the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C")
standard, as well as parts of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are purely AVR-specific (like the entire
program-space string interface).

Unless otherwise noted, functions of this library are not guaranteed to be reentrant. In particular, any functions that store
local state are known to be non-reentrant, as well as functions that manipulate 10 registers like the EEPROM access

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://savannah.nongnu.org/projects/avr-libc/
http://www.atmel.com/products/AVR/
http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://savannah.nongnu.org/bugs/?group=avr-libc

1.3 Supported Devices 2

routines. If these functions are used within both standard and interrupt contexts undefined behaviour will result. See the
FAQ for a more detailed discussion.

1.3 Supported Devices

The following is a list of AVR devices currently supported by the library. Note that actual support for some newer devices
depends on the ability of the compiler/assembler to support these devices at library compile-time.

megaAVR Devices:

« atmegai03

* atmegai28

» atmegai28a
« atmegai280
+ atmegal281
« atmegai284
« atmegai284p
+ atmegai6

+ atmegai61

» atmegai62

+ atmegai63

« atmegai6da
+ atmegai64p
« atmegai64pa
+ atmegai65

+ atmegai65a
» atmegai65p
+ atmegai65pa
+ atmegai68

+ atmegai68a
+ atmegai68p
» atmegai68pa
* atmegal6ba

* atmega2560

* atmega2561

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

» atmega32

+ atmega32a

+ atmega323

« atmega324a
« atmega324p
« atmega324pa
» atmega325

+ atmega325a
» atmega325p
+ atmega325pa
+ atmega3250
+ atmega3250a
» atmega3250p
» atmega3250pa
* atmega328

* atmega328p
* atmega48

* atmega48a

» atmega4d8pa
* atmega48p

» atmega64

* atmega64a

* atmega640

+ atmegab644

* atmega644a
+ atmegab44p
« atmega644pa
* atmega645

+ atmega645a
« atmega645p
* atmega6450
* atmega6450a

* atmega6450p

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

+ atmega8

+ atmega8a

+ atmega88

» atmega88a
» atmega88p
« atmega88pa
* atmega8515

* atmega8535

tinyAVR Devices:

* attiny4

* attiny5

* attiny10

« attiny11 [1]
* attiny12 [1]
* attiny13

* attiny13a
* attiny15 [1]
* attiny20

* attiny22

« attiny24

« attiny24a
« attiny25

* attiny26

* attiny261

« attiny261a
* attiny28 [1]
* attiny2313
* attiny2313a
* attiny40

* attiny4313
* attiny43u

« attiny44

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

* attiny44a
* attiny45

* attiny461
« attiny461a
* attiny48

* attiny828
* attiny84

« attiny84a
* attiny841
* attiny85

* attiny861
« attiny861a
* attiny87

* attiny88

* attiny1634

Automotive AVR Devices:

+ atmegaibm1
+ atmega32ci
+ atmega32m1
« atmega64ci
+ atmega64m1
* attiny167

+ ata5505

+ ata5272

+ ata5790

+ ata5790n

+ ata5795

+ ata5831

CAN AVR Devices:

» at90can32

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

» at90can64

» at90can128

LCD AVR Devices:

+ atmegai69

+ atmegai69a
» atmegai69p
+ atmegai69pa
» atmega329

» atmega329a
* atmega329p
» atmega329pa
* atmega3290
* atmega3290a
» atmega3290p
» atmega3290pa
* atmega649

* atmega649a
* atmega6490
* atmega6490a
» atmega6490p

* atmega649p

Lighting AVR Devices:

+ at90pwm1

+ at90pwm2

+ at90pwmz2b
+ at90pwm216
+ at90pwm3

+ at90pwm3b
+ at90pwm316

+ at90pwm161

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

+ at90pwma81

Smart Battery AVR Devices:

» atmega8hva

» atmegai6hva

+ atmegai6hva2

+ atmegai6hvb

» atmegai6hvbrevb
» atmega26hvg

» atmega32hvb

+ atmega32hvbrevb
» atmega64hve

* atmega406

» atmega48hvf

USB AVR Devices:

+ at90usb82
 at90usb162
+ at90usb646
+ at90usb647
+ at90usb1286
+ at90usb1287
+ atmega8u2
» atmegai6u2
« atmegai6u4
* atmega32u2
» atmega32u4

« atmega32u6

XMEGA Devices:

e atmxt112sl

* atmxt224

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

« atmxt224e

+ atmxt336s

» atmxt540s

» atmxt540sreva
» atxmegal6a4
+ atxmegal6adu
» atxmegai6c4
+ atxmegal6d4
+ atxmega32a4
» atxmega32a4u
» atxmega32c4
+ atxmega32d4
+ atxmega32e5
» atxmega32x1
» atxmegab4al
» atxmega64aiu
» atxmega64a3
» atxmega64a3u
» atxmega64adu
» atxmega64b1
» atxmega64b3
» atxmega64c3
» atxmega64d3
» atxmega64d4
» atxmegai28at
+ atxmegai28alu
+ atxmegal28a3
» atxmegai28a3u
+ atxmegai28adu
» atxmegai28b1
+ atxmegai28b3
« atxmegai28c3

+ atxmegai28d3

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.3 Supported Devices

» atxmegal28d4
+ atxmegal192a3
« atxmegai92a3u
« atxmegal92c3
» atxmega192d3
+ atxmega256a3
+ atxmega256a3u
+ atxmega256a3b
» atxmega256a3bu
» atxmega256¢3
+ atxmega256d3
+ atxmega384c3

» atxmega384d3

Wireless AVR devices:

» atmega64rfa2
» atmega64rfr2
» atmegai28rfat
» atmegai28rfa2
+ atmegai28rfr2
» atmega256rfa2

» atmega256rfr2

Miscellaneous Devices:

+ at94K [2]

« at76c711 [3]
+ at43usb320
+ at43usb355
+ at86rf401

* at90scr100
* ata6285

» ata6286

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.4 avr-libc License 10

» ata6289
* m3000 [4]

Classic AVR Devices:

« at90s1200 [1]
. at90s2313
. at90s2323
. at90s2333
. at90s2343
. at90s4414
. at90s4433
. at90s4434
- at90s8515
- at90c8534
- at90s8535

Note

[1] Assembly only. There is no direct support for these devices to be programmed in C since they do not have a
RAM based stack. Still, it could be possible to program them in C, see the FAQ for an option.

Note

[2] The at94K devices are a combination of FPGA and AVR microcontroller. [TRoth-2002/11/12: Not sure of the
level of support for these. More information would be welcomed.]

Note

[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

Note

[4] The m3000 is a motor controller AVR ASIC from Intelligent Motion Systems (IMS) / Schneider Electric.

1.4 avr-libc License

avr-libc can be freely used and redistributed, provided the following license conditions are met.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



1.4 avr-libc License

Portions of avr-libc are Copyright (c) 1999-2010
Werner Boellmann,
Dean Camera,

Pieter Conradie,
Brian Dean,

Keith Gudger,

Wouter wvan Gulik,
Bjoern Haase,
Steinar Haugen,
Peter Jansen,
Reinhard Jessich,
Magnus Johansson,
Harald Kipp,

Carlos Lamas,

Cliff Lawson,

Artur Lipowski,
Marek Michalkiewicz,
Todd C. Miller,

Rich Neswold,

Colin O’Flynn,

Bob Paddock,

Andrey Pashchenko,
Reiner Patommel,
Florin-Viorel Petrov,
Alexander Popov,
Michael Rickman,
Theodore A. Roth,
Juergen Schilling,
Philip Soeberg,
Anatoly Sokolov,
Nils Kristian Strom,
Michael Stumpf,
Stefan Swanepoel,
Helmut Wallner,

Eric B. Weddington,
Joerg Wunsch,

Dmitry Xmelkov,
Atmel Corporation,
egnite Software GmbH,
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



2 Toolchain Overview 12

2 Toolchain Overview

2.1 Introduction

Welcome to the open source software development toolset for the Atmel AVR!

There is not a single tool that provides everything needed to develop software for the AVR. It takes many tools working
together. Collectively, the group of tools are called a toolset, or commonly a toolchain, as the tools are chained together
to produce the final executable application for the AVR microcontroller.

The following sections provide an overview of all of these tools. You may be used to cross-compilers that provide
everything with a GUI front-end, and not know what goes on "underneath the hood". You may be coming from a desktop
or server computer background and not used to embedded systems. Or you may be just learning about the most
common software development toolchain available on Unix and Linux systems. Hopefully the following overview will be
helpful in putting everything in perspective.

2.2 FSFand GNU

According to its website, "the Free Software Foundation (FSF), established in 1985, is dedicated to promoting computer
users’ rights to use, study, copy, modify, and redistribute computer programs. The FSF promotes the development and
use of free software, particularly the GNU operating system, used widely in its GNU/Linux variant." The FSF remains
the primary sponsor of the GNU project.

The GNU Project was launched in 1984 to develop a complete Unix-like operating system which is free software: the
GNU system. GNU is a recursive acronym for »GNU’s Not Unix«; it is pronounced guh-noo, approximately like canoe.

One of the main projects of the GNU system is the GNU Compiler Collection, or GCC, and its sister project, GNU
Binutils. These two open source projects provide a foundation for a software development toolchain. Note that these
projects were designed to originally run on Unix-like systems.

23 GCC

GCC stands for GNU Compiler Collection. GCC is highly flexible compiler system. It has different compiler front-ends
for different languages. It has many back-ends that generate assembly code for many different processors and host
operating systems. All share a common "middle-end", containing the generic parts of the compiler, including a lot of
optimizations.

In GCC, a host system is the system (processor/OS) that the compiler runs on. A target system is the system that
the compiler compiles code for. And, a build system is the system that the compiler is built (from source code) on. If a
compiler has the same system for host and for target, it is known as a native compiler. If a compiler has different systems
for host and target, it is known as a cross-compiler. (And if all three, build, host, and target systems are different, it is
known as a Canadian cross compiler, but we won’t discuss that here.) When GCC is built to execute on a host system
such as FreeBSD, Linux, or Windows, and it is built to generate code for the AVR microcontroller target, then it is a cross
compiler, and this version of GCC is commonly known as "AVR GCC". In documentation, or discussion, AVR GCC is
used when referring to GCC targeting specifically the AVR, or something that is AVR specific about GCC. The term
"GCC" is usually used to refer to something generic about GCC, or about GCC as a whole.

GCC is different from most other compilers. GCC focuses on translating a high-level language to the target assembly
only. AVR GCC has three available compilers for the AVR: C language, C++, and Ada. The compiler itself does not
assemble or link the final code.

GCC is also known as a "driver" program, in that it knows about, and drives other programs seamlessly to create the
final output. The assembler, and the linker are part of another open source project called GNU Binutils. GCC knows
how to drive the GNU assembler (gas) to assemble the output of the compiler. GCC knows how to drive the GNU linker
(Id) to link all of the object modules into a final executable.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



2.4 GNU Binutils 13

The two projects, GCC and Binutils, are very much interrelated and many of the same volunteers work on both open
source projects.

When GCC is built for the AVR target, the actual program names are prefixed with "avr-". So the actual executable name
for AVR GCC is: avr-gcc. The name "avr-gcc” is used in documentation and discussion when referring to the program
itself and not just the whole AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.

2.4 GNU Binutils

The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler (gas), and the GNU linker (Id),
but also contains many other utilities that work with binary files that are created as part of the software development
toolchain.

Again, when these tools are built for the AVR target, the actual program names are prefixed with "avr-". For example,
the assembler program name, for a native assembler is "as" (even though in documentation the GNU assembler is
commonly referred to as "gas"). But when built for an AVR target, it becomes "avr-as". Below is a list of the programs
that are included in Binutils:

avr-as
The Assembler.
avr-ld

The Linker.

avr-ar

Create, modify, and extract from libraries (archives).

avr-ranlib

Generate index to library (archive) contents.
avr-objcopy

Copy and translate object files to different formats.
avr-objdump

Display information from object files including disassembly.
avr-size

List section sizes and total size.
avr-nm

List symbols from object files.
avr-strings

List printable strings from files.

avr-strip

Discard symbols from files.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



2.5 avr-libc 14

avr-readelf

Display the contents of ELF format files.

avr-addr2line

Convert addresses to file and line.

avr-c++filt

Filter to demangle encoded C++ symbols.

2.5 avr-libc

GCC and Binutils provides a lot of the tools to develop software, but there is one critical component that they do not
provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending upon your system time, whether
for a native compiler (GNU Libc), for some other embedded system (newlib), or for some versions of Linux (uCLibc).
The open source AVR toolchain has its own Standard C Library project: avr-libc.

AVR-Libc provides many of the same functions found in a regular Standard C Library and many additional library
functions that is specific to an AVR. Some of the Standard C Library functions that are commonly used on a PC
environment have limitations or additional issues that a user needs to be aware of when used on an embedded system.

AVR-Libc also contains the most documentation about the whole AVR toolchain.

2.6 Building Software

Even though GCC, Binutils, and avr-libc are the core projects that are used to build software for the AVR, there is another
piece of software that ties it all together: Make. GNU Make is a program that makes things, and mainly software. Make
interprets and executes a Makefile that is written for a project. A Makefile contains dependency rules, showing which
output files are dependent upon which input files, and instructions on how to build output files from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a Makefile template written for the AVR
toolchain and AVR applications that you can copy and modify for your application.

See the GNU Make User Manual for more information.

2.7 AVRDUDE

After creating your software, you’ll want to program your device. You can do this by using the program AVRDUDE which
can interface with various hardware devices to program your processor.

AVRDUDE is a very flexible package. All the information about AVR processors and various hardware programmers is
stored in a text database. This database can be modified by any user to add new hardware or to add an AVR processor
if it is not already listed.

2.8 GDB/Insight/DDD

The GNU Debugger (GDB) is a command-line debugger that can be used with the rest of the AVR toolchain. Insight
is GDB plus a GUI written in Tcl/Tk. Both GDB and Insight are configured for the AVR and the main executables are
prefixed with the target name: avr-gdb, and avr-insight. There is also a "text mode" GUI for GDB: avr-gdbtui. DDD (Data
Display Debugger) is another popular GUI front end to GDB, available on Unix and Linux systems.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



2.9 AVaRICE 15

2.9 AVaRICE

AVaRICE is a back-end program to AVR GDB and interfaces to the Atmel JTAG In-Circuit Emulator (ICE), to provide
emulation capabilities.

2.10 SimulAVR

SimulAVR is an AVR simulator used as a back-end with AVR GDB. Unfortunately, this project is currently unmaintained
and could use some help.

2.11 Utilities

There are also other optional utilities available that may be useful to add to your toolset.

SRecord is a collection of powerful tools for manipulating EPROM load files. It reads and writes numerous EPROM
file formats, and can perform many different manipulations.

MF1ile is a simple Makefile generator is meant as an aid to quickly customize a Makefile to use for your AVR application.

2.12 Toolchain Distributions (Distros)

All of the various open source projects that comprise the entire toolchain are normally distributed as source code. It is
left up to the user to build the tool application from its source code. This can be a very daunting task to any potential
user of these tools.

Luckily there are people who help out in this area. Volunteers take the time to build the application from source code on
particular host platforms and sometimes packaging the tools for convenient installation by the end user. These packages
contain the binary executables of the tools, pre-made and ready to use. These packages are known as "distributions" of
the AVR toolchain, or by a more shortened name, "distros".

AVR toolchain distros are available on FreeBSD, Windows, Mac OS X, and certain flavors of Linux.

2.13 Open Source

All of these tools, from the original source code in the multitude of projects, to the various distros, are put together by
many, many volunteers. All of these projects could always use more help from other people who are willing to volunteer
some of their time. There are many different ways to help, for people with varying skill levels, abilities, and available
time.

You can help to answer questions in mailing lists such as the avr-gcc-list, or on forums at the AVR Freaks website. This
helps many people new to the open source AVR tools.

If you think you found a bug in any of the tools, it is always a big help to submit a good bug report to the proper project.
A good bug report always helps other volunteers to analyze the problem and to get it fixed for future versions of the
software.

You can also help to fix bugs in various software projects, or to add desirable new features.

Volunteers are always welcome! :-)

3 Memory Areas and Using malloc()

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



3.1 Introduction 16

3.1 Introduction

Many of the devices that are possible targets of avr-libc have a minimal amount of RAM. The smallest parts supported by
the C environment come with 128 bytes of RAM. This needs to be shared between initialized and uninitialized variables
(sections .data and .bss), the dynamic memory allocator, and the stack that is used for calling subroutines and storing
local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management which could help in separating
the mentioned RAM regions from being overwritten by each other.

The standard RAM layout is to place .data variables first, from the beginning of the internal RAM, followed by .bss.
The stack is started from the top of internal RAM, growing downwards. The so-called "heap" available for the dynamic
memory allocator will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will ever collide with
the RAM variables (unless there were bugs in the implementation of the allocator). There is still a risk that the heap
and stack could collide if there are large requirements for either dynamic memory or stack space. The former can even
happen if the allocations aren’t all that large but dynamic memory allocations get fragmented over time such that new
requests don’t quite fit into the "holes" of previously freed regions. Large stack space requirements can arise in a C
function containing large and/or numerous local variables or when recursively calling function.

Note

The pictures shown in this document represent typical situations where the RAM locations refer to an ATmegai128.
The memory addresses used are not displayed in a linear scale.

0x0100
OX10FF
0x1100

OXFFFF

external RAM

on-board RAM

.data
variables

u— SP L RAMEND
*(__brkval) (<= *SP - *(__malloc_margin))
*(_malloc_heap_start) == __heap_start
__bss_end

__data_end == __bss_start

data start

Figure 1: RAM map of a device with internal RAM

On a simple device like a microcontroller it is a challenge to implement a dynamic memory allocator that is simple enough
so the code size requirements will remain low, yet powerful enough to avoid unnecessary memory fragmentation and
to get it all done with reasonably few CPU cycles. Microcontrollers are often low on space and also run at much lower
speeds than the typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these constraints, and offers some tuning options
that can be used if there are more resources available than in the default configuration.

3.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where only internal RAM is available.
Extreme care must be taken to avoid a stack-heap collision, both by making sure functions aren’t nesting too deeply, and
don’t require too much stack space for local variables, as well as by being cautious with allocating too much dynamic
memory.

If external RAM is available, it is strongly recommended to move the heap into the external RAM, regardless of whether
or not the variables from the .data and .bss sections are also going to be located there. The stack should always be kept

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



3.3 Tunables for malloc() 17

in internal RAM. Some devices even require this, and in general, internal RAM can be accessed faster since no extra
wait states are required. When using dynamic memory allocation and stack and heap are separated in distinct memory
areas, this is the safest way to avoid a stack-heap collision.

3.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior of malloc() to the expected requirements and
constraints of the application. Any changes to these tunables should be made before the very first call to malloc(). Note
that some library functions might also use dynamic memory (notably those from the <stdio.h>: Standard 10 facilities),
so make sure the changes will be done early enough in the startup sequence.

The variables __malloc_heap_start and __malloc_heap_end can be used to restrict the malloc() function
to a certain memory region. These variables are statically initialized to pointto __heap_start and __heap_end,
respectively, where __heap_start is filled in by the linker to point just beyond .bss, and __heap_end is setto 0
which makes malloc() assume the heap is below the stack.

If the heap is going to be moved to external RAM, __malloc_heap_end must be adjusted accordingly. This can
either be done at run-time, by writing directly to this variable, or it can be done automatically at link-time, by adjusting
the value of the symbol __heap_end.

The following example shows a linker command to relocate the entire .data and .bss segments, and the heap to location
0x1100 in external RAM. The heap will extend up to address Oxffff.

avr-gcc ... -Wl,--section-start, .data=0x801100,--defsym=__heap_end=0x80ffff ...

Note

See explanation for offset 0x800000. See the chapter about using gcc for the —W1 options.

The Id (linker) user manual states that using -Tdata=<x> is equivalent to using —section-start,.data=<x>. However,
you have to use —section-start as above because the GCC frontend also sets the -Tdata option for all MCU types
where the SRAM doesn’t start at 0x800060. Thus, the linker is being faced with two -Tdata options. Sarting with
binutils 2.16, the linker changed the preference, and picks the "wrong" option in this situation.

0x0100
OX10FF
0x1100
OXFFFF

on—-board RAM external RAM

.data
variables

SP J E *(_malloc_heap_end) == __heap_end
RAMEND *(__brkval)
*(__malloc_heap_start) == __heap_start
__bss_end
__data_end == __bss_start
data start

Figure 2: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in internal RAM, something like the
following could be used. Note that for demonstration purposes, the assignment of the various regions has not been
made adjacent in this example, so there are "holes" below and above the heap in external RAM that remain completely
unaccessible by regular variables or dynamic memory allocations (shown in light bisque color in the picture below).

avr-gcc ... —-Wl,--defsym=__heap_start=0x802000, -—defsym=__heap_end=0x803fff ...

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



3.4 Implementation details 18

external RAM

on-board RAM

0x0100
Ox10FF
0x1100
0x2000

L
L
LL
0

x
o

OXFFFF

.data
variables

SP —T L *(__malloc_heap_end) == __heap_end
RAMEND *(__brkval)
__bss_end *(__malloc_heap_start) == __heap_start

__data_end == __bss_start

data start

Figure 3: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack in order to prevent a stack-heap
collision when extending the actual size of the heap to gain more space for dynamic memory. It will not try to go beyond
the current stack limit, decreased by __malloc_margin bytes. Thus, all possible stack frames of interrupt routines
that could interrupt the current function, plus all further nested function calls must not require more stack space, or they
will risk colliding with the data segment.

The default value of __malloc_margin is set to 32.

3.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header prepended that records the size of the
allocation. This is later used by free(). The returned address points just beyond that header. Thus, if the application
accidentally writes before the returned memory region, the internal consistency of the memory allocator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that have been returned in previous
calls to free(). Note that all of this memory is considered to be successfully added to the heap already, so no further
checks against stack-heap collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying the contents of the freed memory
to contain pointers chaining the pieces together. That way, no additional memory is regired to maintain this list except
for a variable that keeps track of the lowest memory segment available for reallocation. Since both, a chain pointer and
the size of the chunk need to be recorded in each chunk, the minimum chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request. If there’s a chunk available on
the freelist that will fit the request exactly, it will be taken, disconnected from the freelist, and returned to the caller. If no
exact match could be found, the closest match that would just satisfy the request will be used. The chunk will normally
be split up into one to be returned to the caller, and another (smaller) one that will remain on the freelist. In case this
chunk was only up to two bytes larger than the request, the request will simply be altered internally to also account for
these additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where __malloc_margin will be
considered if the heap is operating below the stack, or where __malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request, NULL will eventually be returned to the caller.

When calling free(), a new freelist entry will be prepared. An attempt is then made to aggregate the new entry with
possible adjacent entries, yielding a single larger entry available for further allocations. That way, the potential for heap
fragmentation is hopefully reduced. When deallocating the topmost chunk of memory, the size of the heap is reduced.

A call to realloc() first determines whether the operation is about to grow or shrink the current allocation. When shrinking,
the case is easy: the existing chunk is split, and the tail of the region that is no longer to be used is passed to the standard

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



4 Memory Sections 19

free() function for insertion into the freelist. Checks are first made whether the tail chunk is large enough to hold a chunk
of its own at all, otherwise realloc() will simply do nothing, and return the original region.

When growing the region, it is first checked whether the existing allocation can be extended in-place. If so, this is done,
and the original pointer is returned without copying any data contents. As a side-effect, this check will also record the
size of the largest chunk on the freelist.

If the region cannot be extended in-place, but the old chunk is at the top of heap, and the above freelist walk did not
reveal a large enough chunk on the freelist to satisfy the new request, an attempt is made to quickly extend this topmost
chunk (and thus the heap), so no need arises to copy over the existing data. If there’'s no more space available in the
heap (same check is done as in malloc()), the entire request will fail.

Otherwise, malloc() will be called with the new request size, the existing data will be copied over, and free() will be called
on the old region.

4 Memory Sections

Remarks
Need to list all the sections which are available to the avr.
Weak Bindings

FIXME: need to discuss the .weak directive.

The following describes the various sections available.

4.1 The .text Section

The .text section contains the actual machine instructions which make up your program. This section is further subdi-
vided by the .initN and .finiN sections dicussed below.
Note

The avr-size program (part of binutils), coming from a Unix background, doesn’t account for the .data initial-
ization space added to the .text section, so in order to know how much flash the final program will consume, one
needs to add the values for both, .text and .data (but not .bss), while the amount of pre-allocated SRAM is the sum
of .data and .bss.

4.2 The .data Section

This section contains static data which was defined in your code. Things like the following would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section. This is accomplished by adding
-W1l,-Tdata, addr to the avr—-gcc command used to the link your program. Not that addr must be offset by
adding 0x800000 the to real SRAM address so that the linker knows that the address is in the SRAM memory space.
Thus, if you want the .data section to start at 0x1100, pass 0x801100 at the address to the linker. [offset explained]

Note

When using malloc () in the application (which could even happen inside library calls), additional adjustments
are required.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



4.3 The .bss Section 20

4.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

4.4 The .eeprom Section

This is where eeprom variables are stored.

4.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that variables which are defined as
such:

int foo __attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following code will cause avr—gcc to issue
an error:

int bar __attribute_ _ ((section (".noinit"))) = Oxaa;

Itis possible to tell the linker explicitly where to place the .noinit section by adding -W1, -section-start=.noinit=0x802000
to the avr—gcc command line at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note

Because of the Harvard architecture of the AVR devices, you must manually add 0x800000 to the address you pass
to the linker as the start of the section. Otherwise, the linker thinks you want to put the .noinit section into the .text
section instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an example or ref to dox for writing
linker scripts.]

4.6 The.initN Sections
These sections are used to define the startup code from reset up through the start of main(). These all are subparts of
the .text section.

The purpose of these sections is to allow for more specific placement of code within your program.

Note

Sometimes, it is convenient to think of the .initN and .finiN sections as functions, but in reality they are just symbolic
names which tell the linker where to stick a chunk of code which is not a function. Notice that the examples for asm
and C can not be called as functions and should not be jumped into.

The .initN sections are executed in order from 0 to 9.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



4.7 The .finiN Sections 21

.init0:
Weakly bound to __init(). If user defines __init(), it will be jumped into immediately after a reset.
init1:
Unused. User definable.
.init2:
In C programs, weakly bound to initialize the stack, and to clear zero_reg (r1).
.init3:
Unused. User definable.

(init4:

For devices with > 64 KB of ROM, .init4 defines the code which takes care of copying the contents of .data from the
flash to SRAM. For all other devices, this code as well as the code to zero out the .bss section is loaded from libgcc.a.

.init5:
Unused. User definable.
.init6:
Unused for C programs, but used for constructors in C++ programs.
init7:
Unused. User definable.
init8:
Unused. User definable.
.init9:

Jumps into main().

4.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a call to exit(). These all are
subparts of the .text section.

The .finiN sections are executed in descending order from 9 to 0.
finit9:

Unused. User definable. This is effectively where _exit() starts.
fini8:

Unused. User definable.
fini7:

Unused. User definable.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



4.8 Using Sections in Assembler Code 22

fini6:

Unused for C programs, but used for destructors in C++ programs.
fini5:

Unused. User definable.
finid:

Unused. User definable.
fini3:

Unused. User definable.
fini2:

Unused. User definable.
finit:

Unused. User definable.
fini0:

Goes into an infinite loop after program termination and completion of any _exit() code (execution of code in the
fini9 -> _fini1 sections).

4.8 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .initl, "ax",@progbits

1di r0, Oxff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), rO

Note

The , "ax", @progbits tells the assembler that the section is allocatable ("a"), executable ("x") and contains
data ("@progbits"). For more detailed information on the .section directive, see the gas user manual.

4.9 Using Sections in C Code

Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init3")));

void
my_init_portb (void)
{
PORTB = 0xff;
DDRB = Oxff;

Note

Section .init3 is used in this example, as this ensures the inernal ___zero_reg___ has already been set up. The
code generated by the compiler might blindly rely on __zero_reg___ being really 0.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



5 Data in Program Space 23

5 Data in Program Space

5.1 Introduction

So you have some constant data and you’re running out of room to store it? Many AVRs have limited amount of RAM
in which to store data, but may have more Flash space available. The AVR is a Harvard architecture processor, where
Flash is used for the program, RAM is used for data, and they each have separate address spaces. It is a challenge to
get constant data to be stored in the Program Space, and to retrieve that data to use it in the AVR application.

The problem is exacerbated by the fact that the C Language was not designed for Harvard architectures, it was designed
for Von Neumann architectures where code and data exist in the same address space. This means that any compiler
for a Harvard architecture processor, like the AVR, has to use other means to operate with separate address spaces.

Some compilers use non-standard C language keywords, or they extend the standard syntax in ways that are non-
standard. The AVR toolset takes a different approach.

GCC has a special keyword, attribute that is used to attach different attributes to things such as function declara-
tions, variables, and types. This keyword is followed by an attribute specification in double parentheses. In AVR GCC,
there is a special attribute called progmem. This attribute is use on data declarations, and tells the compiler to place
the data in the Program Memory (Flash).

AVR-Libc provides a simple macro PROGMEM that is defined as the attribute syntax of GCC with the progmem attribute.
This macro was created as a convenience to the end user, as we will see below. The PROGMEM macro is defined in the
<avr/pgmspace.h> system header file.

It is difficult to modify GCC to create new extensions to the C language syntax, so instead, avr-libc has created macros
to retrieve the data from the Program Space. These macros are also found in the <avr/pgmspace.h> system
header file.

5.2 A Note On const

Many users bring up the idea of using C’s keyword const as a means of declaring data to be in Program Space. Doing
this would be an abuse of the intended meaning of the const keyword.

const is used to tell the compiler that the data is to be "read-only". It is used to help make it easier for the compiler to
make certain transformations, or to help the compiler check for incorrect usage of those variables.

For example, the const keyword is commonly used in many functions as a modifier on the parameter type. This tells
the compiler that the function will only use the parameter as read-only and will not modify the contents of the parameter
variable.

const was intended for uses such as this, not as a means to identify where the data should be stored. If it were used
as a means to define data storage, then it loses its correct meaning (changes its semantics) in other situations such as
in the function parameter example.

5.3 Storing and Retrieving Data in the Program Space
Let’s say you have some global data:

unsigned char mydata[1l1][10] =

{

0x00,0x01,0x02,0x03,0x04,0x05, 0x06, 0x07,0x08,0x09},
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,0x11,0x12,0x13},
0Ox14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
0x1E, 0x1F, 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
0x28,0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31},
0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39, 0x3A, 0x3B},
0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41,0x42,0x43, 0x44, 0x45},

{
{
{
{
{
{
{
{0x46,0x47,0x48,0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, Ox4F},

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



5.3 Storing and Retrieving Data in the Program Space 24

{0x50,0x51,0x52, 053, 0x54,0x55, 0x56, 0x57, 0x58, 0x59},

{0x5A, 0x5B, 0x5C, 0x5D, 0x5E, O0x5F, 0x60, 0x61, 0x62, 0x63},

{0x64,0x65,0x66,0x67,0x68,0x69, 0x6A, 0x6B, 0x6C, 0x6D}
bi

and later in your code you access this data in a function and store a single byte into a variable like so:

byte = mydatal[i][3j];

Now you want to store your data in Program Memory. Use the PROGMEM macro found in <avr/pgmspace.h> and
put it after the declaration of the variable, but before the initializer, like so:

#include <avr/pgmspace.h>

unsigned char mydata[11][10] PROGMEM =

{
{0x00,0x01,0x02, 0x03,0x04,0x05, 0x06, 0x07, 0x08,0x09},
{0x0A, 0x0B, 0x0C, 0x0D, 0x0E, Ox0OF, 0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E, 0x1F, 0x20, 0x21, 0x22,0x23, 0x24, 0x25, 0x26,0x27},
{0x28,0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39, 0x3A, 0x3B},
{0x3C, 0x3D, 0x3E, 0x3F, 0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49, 0x4A,0x4B, 0x4C, 0x4D, 0x4E, 0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55, 0x56, 0x57, 0x58, 0x59},
{0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63},
{0x64,0x65,0x66,0x67,0x68,0x69, 0x6A, 0x6B, 0x6C, 0x6D}

}i

That’s it! Now your data is in the Program Space. You can compile, link, and check the map file to verify that mydata
is placed in the correct section.

Now that your data resides in the Program Space, your code to access (read) the data will no longer work. The code
that gets generated will retrieve the data that is located at the address of the mydata array, plus offsets indexed by the
i and j variables. However, the final address that is calculated where to the retrieve the data points to the Data Space!
Not the Program Space where the data is actually located. It is likely that you will be retrieving some garbage. The
problem is that AVR GCC does not intrinsically know that the data resides in the Program Space.

The solution is fairly simple. The "rule of thumb" for accessing data stored in the Program Space is to access the data
as you normally would (as if the variable is stored in Data Space), like so:

byte = mydatalil[jl;
then take the address of the data:

byte = & (mydata[i]l[]]);

then use the appropriate pgm__read_ * macro, and the address of your data becomes the parameter to that macro:

byte = pgm_read_byte (& (mydatal[i]l [j]));

The pgm_read_* macros take an address that points to the Program Space, and retrieves the data that is stored
at that address. This is why you take the address of the offset into the array. This address becomes the parameter
to the macro so it can generate the correct code to retrieve the data from the Program Space. There are different
pgm_read_x* macros to read different sizes of data at the address given.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



5.4 Storing and Retrieving Strings in the Program Space 25

5.4 Storing and Retrieving Strings in the Program Space

Now that you can successfully store and retrieve simple data from Program Space you want to store and retrive strings
from Program Space. And specifically you want to store and array of strings to Program Space. So you start off with
your array, like so:

char #string_table[] =

{
"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

i

and then you add your PROGMEM macro to the end of the declaration:

char #string_table[] PROGMEM =
{

"String 1",

"String 2",

"String 3",

"String 4",

"String 5"
Vi

Right? WRONG!

Unfortunately, with GCC attributes, they affect only the declaration that they are attached to. So in this case, we
successfully put the st ring_table variable, the array itself, in the Program Space. This DOES NOT put the actual
strings themselves into Program Space. At this point, the strings are still in the Data Space, which is probably not what
you want.

In order to put the strings in Program Space, you have to have explicit declarations for each string, and put each string
in Program Space:

char string_1[] PROGMEM = "String 1";
char string_2[] PROGMEM = "String 2";
char string_3[] PROGMEM = "String 3";
char string_4[] PROGMEM = "String 4";
char string_5[] PROGMEM = "String 5";

Then use the new symbols in your table, like so:

PGM_P string_table[] PROGMEM =
{

string_ 1,

string_2,

string_3,

string_4,

string_5
bi

Now this has the effect of putting string_table in Program Space, where string_table is an array of pointers
to characters (strings), where each pointer is a pointer to the Program Space, where each string is also stored.

The PGM_P type above is also a macro that defined as a pointer to a character in the Program Space.

Retrieving the strings are a different matter. You probably don’t want to pull the string out of Program Space, byte by
byte, using the pgm_read_byte () macro. There are other functions declared in the <avr/pgmspace.h> header file
that work with strings that are stored in the Program Space.

For example if you want to copy the string from Program Space to a buffer in RAM (like an automatic variable inside a
function, that is allocated on the stack), you can do this:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



5.5 Caveats 26

void foo (void)

{
char buffer[10];

(unsigned char 1 = 0; 1 < 5; i++)

strcpy_P (buffer, (PGM_P)pgm_read_word(& (string_table]|
i])));

// Display buffer on LCD.

7

Here, the string_table array is stored in Program Space, so we access it normally, as if were stored in Data Space,
then take the address of the location we want to access, and use the address as a parameter to pgm_read_wozrd.
We use the pgm_read_word macro to read the string pointer out of the string_table array. Remember that
a pointer is 16-bits, or word size. The pgm_read_word macro will return a 16-bit unsigned integer. We then have
to typecast it as a true pointer to program memory, PGM_P. This pointer is an address in Program Space pointing to
the string that we want to copy. This pointer is then used as a parameter to the function st rcpy_P. The function
strcpy_P is just like the regular st rcpy function, except that it copies a string from Program Space (the second
parameter) to a buffer in the Data Space (the first parameter).

There are many string functions available that work with strings located in Program Space. All of these special string
functions have a suffix of _P in the function name, and are declared in the <avr/pgmspace.h> header file.

5.5 Caveats

The macros and functions used to retrieve data from the Program Space have to generate some extra code in order to
actually load the data from the Program Space. This incurs some extra overhead in terms of code space (extra opcodes)
and execution time. Usually, both the space and time overhead is minimal compared to the space savings of putting
data in Program Space. But you should be aware of this so you can minimize the number of calls within a single function
that gets the same piece of data from Program Space. It is always instructive to look at the resulting disassembly from
the compiler.

6 avr-libc and assembler programs

6.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain assembler source code. Among them
are:

+ Code for devices that do not have RAM and are thus not supported by the C compiler.

+ Code for very time-critical applications.

« Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using the inline assembler facility of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers using the C (and C++) language,
there’s limited support for direct assembler usage as well. The benefits of it are:

» Use of the C preprocessor and thus the ability to use the same symbolic constants that are available to C pro-
grams, as well as a flexible macro concept that can use any valid C identifier as a macro (whereas the assembler’s
macro concept is basically targeted to use a macro in place of an assembler instruction).

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



6.2 Invoking the compiler 27

+ Use of the runtime framework like automatically assigning interrupt vectors. For devices that have RAM, initializing
the RAM variables can also be utilized.

6.2 Invoking the compiler
For the purpose described in this document, the assembler and linker are usually not invoked manually, but rather using
the C compiler frontend (avr—gcc) that in turn will call the assembler and linker as required.

This approach has the following advantages:

» There is basically only one program to be called directly, avr—gcc, regardless of the actual source language
used.

» The invokation of the C preprocessor will be automatic, and will include the appropriate options to locate required
include files in the filesystem.

» The invokation of the linker will be automatic, and will include the appropriate options to locate additional libraries
as well as the application start-up code (crt XXX. o) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename provided for the assembler file ends
in .S (the capital letter "s"). This would even apply to operating systems that use case-insensitive filesystems since the
actual decision is made based on the case of the filename suffix given on the command-Iline, not based on the actual
filename from the file system.

Alternatively, the language can explicitly be specified using the —x assembler-with-cpp option.

6.3 Example program

The following annotated example features a simple 100 kHz square wave generator using an AT90S1200 clocked with
a 10.7 MHz crystal. Pin PD6 will be used for the square wave output.

#include <avr/io.h> ; Note [1]
work = 16 ; Note [2]
tmp = 17
inttmp = 19
intsav = 0
SQUARE = PD6 ; Note [3]
; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNTO is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1:

rjmp 1b ; Note [6]

.global TIMERO_OVF_vect ; Note [7]
TIMERO_OVF_vect:

1di inttmp, 256 - tmconst + fuzz

out _SFR_TIO_ADDR (TCNTO), inttmp ; Note [8]

in intsav, _SFR_IO_ADDR (SREG) ; Note [9]

sbic _SFR_TIO_ADDR (PORTD), SQUARE

rjmp 1f

sbi _SFR_IO_ADDR (PORTD), SQUARE

rjmp 2f

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



6.3 Example program 28

1: cbi _SFR_IO_ADDR(PORTD), SQUARE
2:
out _SFR_IO_ADDR (SREG), intsav
reti
ioinit:
sbi _SFR_IO_ADDR (DDRD), SQUARE
1di work, _BV(TOIEO)
out _SFR_IO_ADDR (TIMSK), work
1di work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCRO), work
1di work, 256 - tmconst
out _SFR_IO_ADDR (TCNTO), work
sei
ret
.global __ _vector_default ; Note [10]

__vector_default:
reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the 10 port definitions for the device. Note
that not all include files can be included into assembler sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to use a C preprocessor macro
instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a CPP macro which will be
substituted by its value (6 in this case) before actually being passed to the assembiler.

Note [4]

The assembler uses integer operations in the host-defined integer size (32 bits or longer) when evaluating expressions.
This is in contrast to the C compiler that uses the C type int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per second. Since we use timer 0
without any prescaling options in order to get the desired frequency and accuracy, we already run into serious timing
considerations: while accepting and processing the timer overflow interrupt, the timer already continues to count. When
pre-loading the TCCNTO register, we therefore have to account for the number of clock cycles required for interrupt
acknowledge and for the instructions to reload TCCNTO (4 clock cycles for interrupt acknowledge, 2 cycles for the jump
from the interrupt vector, 2 cycles for the 2 instructions that reload TCCNTO0). This is what the constant fuzz is for.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



6.3 Example program 29

Note [5]

External functions need to be declared to be .global. main is the application entry point that will be jumped to from the
ininitalization routine in crts1200. o.

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is completely handled by the timer
0 overflow interrupt service. A sleep instruction (using idle mode) could be used as well, but probably would not
conserve much energy anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get the usual names that are also available to C programs. The linker will then put them into the
appropriate interrupt vector slots. Note that they must be declared .global in order to be acceptable for this purpose.
This will only work if <avr/io.h> has been included. Note that the assembler or linker have no chance to check the
correct spelling of an interrupt function, so it should be double-checked. (When analyzing the resulting object file using
avr—-objdump or avr—nm, a name like __vector_N should appear, with N being a small integer number.)

Note [8]

As explained in the section about special function registers, the actual 10 port address should be obtained using the
macro _SFR_TIO_ADDR. (The AT90S1200 does not have RAM thus the memory-mapped approach to access the 10
registers is not available. It would be slower than using in / out instructions anyway.)

Since the operation to reload TCCNTO is time-critical, it is even performed before saving SREG. Obviously, this requires
that the instructions involved would not change any of the flag bits in SREG.

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary to save at least the state of the
flag bits in SREG. (Note that this serves as an example here only since actually, all the following instructions would not
modify SREG either, but that’'s not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict with those used outside. In
the case of a RAM-less device like the AT90S1200, this can only be done by agreeing on a set of registers to be used
exclusively inside the interrupt routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken to follow the register usage guidelines
imposed by the C compiler. Also, any register modified inside the interrupt sevice needs to be saved, usually on the
stack.

Note [10]

As explained in Interrupts, a global "catch-all" interrupt handler that gets all unassigned interrupt vectors can be installed
using the name ___vector_default. This must be .global, and obviously, should end in a reti instruction. (By
default, a jump to location 0 would be implied instead.)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



6.4 Pseudo-ops and operators 30

6.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas) manual. The manual can be
found online as part of the current binutils release under http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly different than the one being
used by other assemblers. Numeric constants follow the C notation (prefix 0x for hexadecimal constants), expressions
use a C-like syntax.

Some common pseudo-ops include:
* .byte allocates single byte constants
« .ascii allocates a non-terminated string of characters
« .asciz allocates a \O-terminated string of characters (C string)
+ .data switches to the .data section (initialized RAM variables)
« .text switches to the .text section (code and ROM constants)
+ .set declares a symbol as a constant expression (identical to .equ)
+ .global (or .globl) declares a public symbol that is visible to the linker (e. g. function entry point, global variable)

+ .extern declares a symbol to be externally defined; this is effectively a comment only, as gas treats all undefined
symbols it encounters as globally undefined anyway

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an assembler environment that uses
relocatable object files, as it is the linker that determines the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-specific operators available which are
unfortunately not yet described in the official documentation. The most notable operators are:

* 108 Takes the least significant 8 bits of a 16-bit integer
» hi8 Takes the most significant 8 bits of a 16-bit integer

+ pm Takes a program-memory (ROM) address, and converts it into a RAM address. This implies a division by 2 as
the AVR handles ROM addresses as 16-bit words (e.g. in an TJMP or ICALL instruction), and can also handle
relocatable symbols on the right-hand side.

Example:
1di r24, lo8 (pm(somefunc))
1di r25, hi8 (pm(somefunc))
call something

This passes the address of function some func as the first parameter to function something.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://sources.redhat.com/binutils/

7 Inline Assembler Cookbook 31

7 Inline Assembler Cookbook

AVR-GCC
Inline Assembler Cookbook
About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly language code into C programs.
This cool feature may be used for manually optimizing time critical parts of the software or to use specific processor
instruction, which are not available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it may take some time to figure out
the implementation details by studying the compiler and assembler source code. There are also a few sample programs
available in the net. Hopefully this document will help to increase their number.

It's assumed, that you are familiar with writing AVR assembler programs, because this is not an AVR assembler pro-
gramming tutorial. It's not a C language tutorial either.

Note that this document does not cover file written completely in assembler language, refer to avr-libc and assembler
programs for this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided that the copyright notice and this
permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this
manual provided that the entire resulting derived work is distributed under the terms of a permission notice identical to
this one.

This document describes version 3.3 of the compiler. There may be some parts, which hadn’t been completely un-
derstood by the author himself and not all samples had been tested so far. Because the author is German and not
familiar with the English language, there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Anyway, he decided to offer his little
knowledge to the public, in the hope to get enough response to improve this document. Feel free to contact the author
via e-mail. For the latest release check http://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Note

As of 26th of July 2002, this document has been merged into the documentation for avr-libc. The latest version is
now available at http://savannah.nongnu.org/projects/avr-libc/.

7.1 GCC asm Statement
Let’s start with a simple example of reading a value from port D:
asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)) );

Each asm statement is devided by colons into (up to) four parts:

1. The assembiler instructions, defined as a single string constant:

"in %0, %1"

2. Alist of output operands, separated by commas. Our example uses just one:

"=r" (value)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://www.ethernut.de/
http://savannah.nongnu.org/projects/avr-libc/

7.1 GCC asm Statement 32

3. A comma separated list of input operands. Again our example uses one operand only:

"I" (_SFR_IO_ADDR (PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assembler programs. However, registers
and constants are used in a different way if they refer to expressions of your C program. The connection between
registers and C operands is specified in the second and third part of the asm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit. $0 refers to the first $1 to the
second operand and so forth. From the above example:

%0 refersto "=r" (value) and
%1 refersto "I" (_SFR_IO_ADDR (PORTD)).

This may still look a little odd now, but the syntax of an operand list will be explained soon. Let us first examine the part
of a compiler listing which may have been generated from our example:

1ds r24,value
/* #APP */

in r24, 12
/% #NOAPP «/

sts value, r24

The comments have been added by the compiler to inform the assembler that the included code was not generated by
the compilation of C statements, but by inline assembler statements. The compiler selected register r24 for storage
of the value read from PORTD. The compiler could have selected any other register, though. It may not explicitely load
or store the value and it may even decide not to include your assembler code at all. All these decisions are part of the
compiler’s optimization strategy. For example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization. To avoid this, you can add the
volatile attribute to the asm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

Alternatively, operands can be given names. The name is prepended in brackets to the constraints in the operand list,
and references to the named operand use the bracketed name instead of a number after the % sign. Thus, the above
example could also be written as

asm("in %[retval], %[port]" :
[retval] "=r" (value) :
[port] "I" (_SFR_IO_ADDR(PORTD)) );

The last part of the asm instruction, the clobber list, is mainly used to tell the compiler about modifications done by the
assembler code. This part may be omitted, all other parts are required, but may be left empty. If your assembler routine
won'’t use any input or output operand, two colons must still follow the assembler code string. A good example is a
simple statement to disable interrupts:

asm volatile("cli"::);

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.2 Assembler Code 33

7.2 Assembler Code

You can use the same assembler instruction mnemonics as you'd use with any other AVR assembler. And you can write
as many assembler statements into one code string as you like and your flash memory is able to hold.

Note

The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile ("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
1)

The linefeed and tab characters will make the assembler listing generated by the compiler more readable. It may look a
bit odd for the first time, but that’s the way the compiler creates it's own assembler code.

You may also make use of some special registers.

Symbol Register

__SREG___ Status register at address 0x3F
__SP_H___ Stack pointer high byte at address 0x3E
__SP_L___ Stack pointer low byte at address 0x3D
__tmp_reg___ Register r0, used for temporary storage
__zero_reqg___ Register r1, always zero

Register r0 may be freely used by your assembler code and need not be restored at the end of your code. It's a good
idea to use tmp_reg and zero_req instead of r0 or r1, justin case a new compiler version changes the register
usage definitions.

7.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C expression in parantheses. AVR-GCC
3.3 knows the following constraint characters:

Note

The most up-to-date and detailed information on contraints for the avr can be found in the gcc manual.
The x register is ¥r27: 126, the y registeris r29:r28, and the z registeris r31:r30

Constraint Used for Range

a Simple upper registers r16 to r23

b Base pointer registers pairs Y, Z

d Upper register r16 to r31

e Pointer register pairs XY,z

q Stack pointer register SPH:SPL

r Any register r0 to r31

t Temporary register r0

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.3 Input and Output Operands 34

w Special upper register pairs r24, r26, r28, r30
X Pointer register pair X X (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)
G Floating point constant 0.0
I 6-bit positive integer constant 0to 63
J 6-bit negative integer constant -631t00
K Integer constant 2
L Integer constant 0
| Lower registers r0tor15
M 8-bit integer constant 0to 255
N Integer constant -1
(0] Integer constant 8,16, 24
P Integer constant 1
Q (GCC >=4.2.x) A memory address

based on Y or Z pointer with

displacement.
R (GCC >= 4.3.x) Integer constant. -6to 5

The selection of the proper contraint depends on the range of the constants or registers, which must be acceptable to
the AVR instruction they are used with. The C compiler doesn’t check any line of your assembler code. But it is able to
check the constraint against your C expression. However, if you specify the wrong constraints, then the compiler may
silently pass wrong code to the assembler. And, of course, the assembler will fail with some cryptic output or internal
errors. For example, if you specify the constraint "r" and you are using this register with an "ori" instruction in your
assembler code, then the compiler may select any register. This will fail, if the compiler chooses r2 to r15. (It will never
choose r0 or r1, because these are uses for special purposes.) That's why the correct constraint in that case is "d".
On the other hand, if you use the constraint "M", the compiler will make sure that you don'’t pass anything else but an
8-bit value. Later on we will see how to pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and the related contraints. Because
of the improper constraint definitions in version 3.3, they aren’t strict enough. There is, for example, no constraint, which
restricts integer constants to the range 0 to 7 for bit set and bit clear operations.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.3 Input and Output Operands

35

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,l and r,r
andi d,M asr r

bclr | bld rl
brbc llabel brbs llabel
bset | bst rl

cbi Il cbr d,l
com r cp r,r
cpc r,r cpi d,M
cpse rr dec r
elpm t,z eor r,r

in r,l inc r

Id re ldd rb

Idi d,M Ids rlabel
Ipm t,z Isl r

Isr r mov r,r
movw r,r mul r,r
neg r or rr

ori d,M out l,r
pop r push r

rol r ror r

sbc r,r sbci d,M
sbi I, sbic Il
sbiw w,l sbr d,M
sbrc rl sbrs rl

ser d st e,r
std b,r sts label,r
sub r,r subi d,M
swap r

Constraint characters may be prepended by a single constraint modifier.
operands. Modifiers are:

Contraints without a modifier specify read-only

Modifier Specifies

= Write-only operand, usually used for all output
operands.

+ Read-write operand

& Register should be used for output only

Output operands must be write-only and the C expression result must be an Ivalue, which means that the operands
must be valid on the left side of assignments. Note, that the compiler will not check if the operands are of reasonable
type for the kind of operation used in the assembler instructions.

Input operands are, you guessed it, read-only. But what if you need the same operand for input and output? As stated
above, read-write operands are not supported in inline assembler code. But there is another solution. For input operators
it is possible to use a single digit in the constraint string. Using digit n tells the compiler to use the same register as for
the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "O" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint "0" tells the compiler, to use the
same input register as for the first operand. Note however, that this doesn’t automatically imply the reverse case. The
compiler may choose the same registers for input and output, even if not told to do so. This is not a problem in most
cases, but may be fatal if the output operator is modified by the assembler code before the input operator is used. In
the situation where your code depends on different registers used for input and output operands, you must add the &
constraint modifier to your output operand. The following example demonstrates this problem:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.3 Input and Output Operands 36

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (_SFR_IO_ADDR (port)), "r" (output)
)i

In this example an input value is read from a port and then an output value is written to the same port. If the compiler
would have choosen the same register for input and output, then the output value would have been destroyed on the
first assembler instruction. Fortunately, this example uses the & constraint modifier to instruct the compiler not to select
any register for the output value, which is used for any of the input operands. Back to swapping. Here is the code to
swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %BO" "\n\t"
"mov %BO, __tmp_reg__ " "\n\t"
: "=r" (value)
: "0" (value)

)i

First you will notice the usage of register __tmp_reg___, which we listed among other special registers in the Assem-
bler Code section. You can use this register without saving its contents. Completely new are those letters A and B in
%$A0 and $BO. In fact they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, $A0" "\n\t"
"mov %A0, $%DO" "\n\t"
"mov %D0, __tmp_reg__ " "\n\t"
"mov __tmp_reg__, %BO" "\n\t"
"mov %B0, %CO" "\n\t"
"mov $CO0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

)i

Instead of listing the same operand as both, input and output operand, it can also be declared as a read-write operand.
This must be applied to an output operand, and the respective input operand list remains empty:

asm volatile("mov __tmp_reg__, %A0"™ "\n\t"
"mov A0, %DO" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"
"mov __tmp_reg__, %BO" "\n\t"
"mov %B0, $%CO" "\n\t"
"mov %CO0, __tmp_reg__ " "\n\t"
: "+r" (value));

If operands do not fit into a single register, the compiler will automatically assign enough registers to hold the entire
operand. In the assembler code you use $A0 to refer to the lowest byte of the first operand, $A1 to the lowest byte of
the second operand and so on. The next byte of the first operand will be $B0, the next byte $C0 and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the desired size.

A final problem may arise while using pointer register pairs. If you define an input operand

"em (ptr)

and the compiler selects register Z (r30:r31), then
%$A0 refersto r30 and
%$BO0 refersto r31.

But both versions will fail during the assembly stage of the compiler, if you explicitely need Z, like in

1d r24,2

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.4 Clobbers 37

If you write

1d r24, %a0

with a lower case a following the percent sign, then the compiler will create the proper assembler line.

7.4 Clobbers

As stated previously, the last part of the asm statement, the list of clobbers, may be omitted, including the colon
seperator. However, if you are using registers, which had not been passed as operands, you need to inform the compiler
about this. The following example will do an atomic increment. It increments an 8-bit value pointed to by a pointer variable
in one go, without being interrupted by an interrupt routine or another thread in a multithreaded environment. Note, that
we must use a pointer, because the incremented value needs to be stored before interrupts are enabled.

asm volatile(

nelim "\t
"1d r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
: "e" (ptr)

: "r24n

)i

The compiler might produce the following code:

cli

1d r24, 2z
inc r24
st z, r24
sei

One easy solution to avoid clobbering register r24 is, to make use of the special temporary register tmp_ reg defined
by the compiler.

asm volatile(
nelin "\n\t"
"1d _ tmp_reg , %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
: "e" (ptr)

)i

The compiler is prepared to reload this register next time it uses it. Another problem with the above code is, that it
should not be called in code sections, where interrupts are disabled and should be kept disabled, because it will enable
interrupts at the end. We may store the current status, but then we need another register. Again we can solve this
without clobbering a fixed, but let the compiler select it. This could be done with the help of a local C variable.

uint8_t s;
asm volatile(

"in %0, _ SREG_ " "\n\t"
welim "\n\t
"ld __tmp_reg__, %al" "\n\t"
"inc __tmp_reg__ " "\n\t"
"st %al, __tmp_reg_ " "\n\t"
"out __SREG__, %0" "\n\t"
¢ "=sxr" (s)

: "e" (ptr)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.5 Assembler Macros 38

Now every thing seems correct, but it isn’t really. The assembler code modifies the variable, that pt r points to. The
compiler will not recognize this and may keep its value in any of the other registers. Not only does the compiler work with
the wrong value, but the assembler code does too. The C program may have modified the value too, but the compiler
didn’t update the memory location for optimization reasons. The worst thing you can do in this case is:

uint8_t s;
asm volatile(

"in %0, __ _SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %al" "\n\t"
"inc __tmp_reg__ " "\n\t"
"st %al, __tmp_reg__ " "\n\t”
"out __SREG__, %0" "\n\t"
¢ "=&r" (s)
: "e" (ptr)
: "memory"

The special clobber "memory" informs the compiler that the assembler code may modify any memory location. It forces
the compiler to update all variables for which the contents are currently held in a register before executing the assembler
code. And of course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination itself volatile:

volatile uint8_t xptr;

This way, the compiler expects the value pointed to by ptr to be changed and will load it whenever used and store it
whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better ways. Clobbered registers will
force the compiler to store their values before and reload them after your assembler code. Avoiding clobbers gives the
compiler more freedom while optimizing your code.

7.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros and put them into include files.
AVR Libc comes with a bunch of them, which could be found in the directory avr/include. Using such include files
may produce compiler warnings, if they are used in modules, which are compiled in strict ANSI mode. To avoid that, you
can write asm instead of asm and volatile instead of volatile. These are equivalent aliases.

Another problem with reused macros arises if you are using labels. In such cases you may make use of the special
pattern %=, which is replaced by a unique number on each asm statement. The following code had been taken from
avr/include/iomacros.h:

#define loop_until_bit_is_clear (port,bit) \
__asm__ _ volatile__ ( \
"I_%=: " "sbic %0, $1" "\n\t" \
"rimp IL_%=" \
: /% no outputs =%/
"I" (_SFR_IO_ADDR (port)),
nym (blt)

When used for the first time, L__%= may be translated to I._1404, the next usage might create L_1405 or whatever.
In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in faq_asmstabs. The above example
would then look like:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.6 C Stub Functions 39

#define loop_until_bit_is_clear (port,bit)
__asm__ _ _volatile__ (
"l: " "sbic %0, %1" "\n\t"
"rijmp 1b"
/* no outputs */
"I" (_SFR_IO_ADDR (port)),
nyw (blt)

7.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced. This may not be acceptable for
larger routines. In this case you may define a C stub function, containing nothing other than your assembler code.

void delay (uint8_t ms)
{
uintl6_t cnt;
asm volatile (
m\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %BO0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)
)i

The purpose of this function is to delay the program execution by a specified number of milliseconds using a counting
loop. The global 16 bit variable delay_count must contain the CPU clock frequency in Hertz divided by 4000 and must
have been set before calling this routine for the first time. As described in the clobber section, the routine uses a local
variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16 bit value read from two successive
port addresses.

uintlé_t inw(uint8_t port)
{
uintl6_t result;
asm volatile (
"in %A0,%1" "\n\t"
"in %BO, (1) + 1"

: "=r" (result)
: "I" (_SFR_IO_ADDR(port))
)i

return result;

Note
inw() is supplied by avr-libc.
7.7 C Names Used in Assembler Code

By default AVR-GCC uses the same symbolic names of functions or variables in C and assembler code. You can specify
a different name for the assembler code by using a special form of the asm statement:

unsigned long value asm("clock") = 3686400;

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



7.8 Links 40

This statement instructs the compiler to use the symbol name clock rather than value. This makes sense only for
external or static variables, because local variables do not have symbolic names in the assembler code. However, local
variables may be held in registers.

With AVR-GCC you can specify the use of a specific register:

void Count (void)

{

register unsigned char counter asm("r3");

. some code...
asm volatile("clr r3");
. more code...

The assembler instruction, "clr r3", will clear the variable counter. AVR-GCC will not completely reserve the speci-
fied register. If the optimizer recognizes that the variable will not be referenced any longer, the register may be re-used.
But the compiler is not able to check wether this register usage conflicts with any predefined register. If you reserve too
many registers in this way, the compiler may even run out of registers during code generation.

In order to change the name of a function, you need a prototype declaration, because the compiler will not accept the
asm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the function Calc () will create assembler instructions to call the function CALCULATE.

7.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user manual. The latest version of the gcc manual
is always available here: http://gcc.gnu.org/onlinedocs/

8 How to Build a Library

8.1 Introduction

So you keep reusing the same functions that you created over and over? Tired of cut and paste going from one project
to the next? Would you like to reduce your maintenance overhead? Then you're ready to create your own library!
Code reuse is a very laudable goal. With some upfront investment, you can save time and energy on future projects by
having ready-to-go libraries. This chapter describes some background information, design considerations, and practical
knowledge that you will need to create and use your own libraries.

8.2 How the Linker Works

The compiler compiles a single high-level language file (C language, for example) into a single object module file. The
linker (Id) can only work with object modules to link them together. Object modules are the smallest unit that the linker
works with.

Typically, on the linker command line, you will specify a set of object modules (that has been previously compiled) and
then a list of libraries, including the Standard C Library. The linker takes the set of object modules that you specify on the
command line and links them together. Afterwards there will probably be a set of "undefined references". A reference is
essentially a function call. An undefined reference is a function call, with no defined function to match the call.

The linker will then go through the libraries, in order, to match the undefined references with function definitions that are
found in the libraries. If it finds the function that matches the call, the linker will then link in the object module in which

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://gcc.gnu.org/onlinedocs/

8.3 How to Design a Library M

the function is located. This part is important: the linker links in THE ENTIRE OBJECT MODULE in which the function
is located. Remember, the linker knows nothing about the functions internal to an object module, other than symbol
names (such as function names). The smallest unit the linker works with is object modules.

When there are no more undefined references, the linker has linked everything and is done and outputs the final
application.

8.3 How to Design a Library

How the linker behaves is very important in designing a library. Ideally, you want to design a library where only the
functions that are called are the only functions to be linked into the final application. This helps keep the code size to
a minimum. In order to do this, with the way the linker works, is to only write one function per code module. This will
compile to one function per object module. This is usually a very different way of doing things than writing an application!

There are always exceptions to the rule. There are generally two cases where you would want to have more than one
function per object module.

The first is when you have very complementary functions that it doesn’t make much sense to split them up. For example,
malloc() and free(). If someone is going to use malloc(), they will very likely be using free() (or at least should be using
free()). In this case, it makes more sense to aggregate those two functions in the same object module.

The second case is when you want to have an Interrupt Service Routine (ISR) in your library that you want to link in. The
problem in this case is that the linker looks for unresolved references and tries to resolve them with code in libraries. A
reference is the same as a function call. But with ISRs, there is no function call to initiate the ISR. The ISR is placed in
the Interrupt Vector Table (IVT), hence no call, no reference, and no linking in of the ISR. In order to do this, you have to
trick the linker in a way. Aggregate the ISR, with another function in the same object module, but have the other function
be something that is required for the user to call in order to use the ISR, like perhaps an initialization function for the
subsystem, or perhaps a function that enables the ISR in the first place.

8.4 Creating a Library

The librarian program is called ar (for "archiver") and is found in the GNU Binutils project. This program will have been
built for the AVR target and will therefore be named avr—-ar.

The job of the librarian program is simple: aggregate a list of object modules into a single library (archive) and create an
index for the linker to use. The name that you create for the library filename must follow a specific pattern: libname.a.
The name part is the unique part of the filename that you create. It makes it easier if the name part relates to what
the library is about. This name part must be prefixed by "lib", and it must have a file extension of .a, for "archive". The
reason for the special form of the filename is for how the library gets used by the toolchain, as we will see later on.

Note

The filename is case-sensitive. Use a lowercase "lib" prefix, and a lowercase ".a" as the file extension.

The command line is fairly simple:

avr-ar rcs <library name> <list of object modules>

The r command switch tells the program to insert the object modules into the archive with replacement. The c command
line switch tells the program to create the archive. And the s command line switch tells the program to write an object-file
index into the archive, or update an existing one. This last switch is very important as it helps the linker to find what it
needs to do its job.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



8.5 Using a Library 42

Note

The command line switches are case sensitive! There are uppercase switches that have completely different ac-
tions.

MFile and the WinAVR distribution contain a Makefile Template that includes the necessary command lines to build
a library. You will have to manually modify the template to switch it over to build a library instead of an application.

See the GNU Binutils manual for more information on the ar program.

8.5 Using a Library

To use a library, use the —1 switch on your linker command line. The string immediately following the -1 is the unique
part of the library filename that the linker will link in. For example, if you use:

-1lm

this will expand to the library filename:

libm.a

which happens to be the math library included in avr-libc.
If you use this on your linker command line:

—lprintf_ flt

then the linker will look for a library called:

libprintf_flt.a

This is why naming your library is so important when you create it!

The linker will search libraries in the order that they appear on the command line. Whichever function is found first that
matches the undefined reference, it will be linked in.

There are also command line switches that tell GCC which directory to look in (—L) for the libraries that are specified to
be linke in with —1.

See the GNU Binutils manual for more information on the GNU linker (Id) program.

9 Benchmarks

The results below can only give a rough estimate of the resources necessary for using certain library functions. There
is a number of factors which can both increase or reduce the effort required:

» Expenses for preparation of operands and their stack are not considered.

+ In the table, the size includes all additional functions (for example, function to multiply two integers) but they are
only linked from the library.

» Expenses of time of performance of some functions essentially depend on parameters of a call, for example,
gsort() is recursive, and sprintf() receives parameters in a stack.

« Different versions of the compiler can give a significant difference in code size and execution time. For example,
the dtostre() function, compiled with avr-gcc 3.4.6, requires 930 bytes. After transition to avr-gcc 4.2.3, the size
become 1088 bytes.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



9.1 A few of libc functions. 43

9.1 A few of libc functions.

Avr-gcc version is 4.2.3

The size of function is given in view of all picked up functions. By default Avr-libc is compiled with

-mcall-prologues option.

epilogue is resulted. Both of the size can coincide, if function does not cause a prologue/epilogue.

In brackets the size without taking into account modules of a prologue and an

Function Units Avr2 Avr25 Avrd
atoi ("12345") Flash bytes 82 (82) 78 (78) 74 (74)
Stack bytes 2 2
MCU clocks 155 149
atol ("12345") Flash bytes 122 (122) 118 (118) 118 (118)
Stack bytes 2 2
MCU clocks 221 219
dtostre (1.2345, s, 6, 0) Flash bytes 1184 (1072) 1088 (978) 1088 (978)
Stack bytes 17 17
MCU clocks 1313 1152
dtostrf (1.2345, 15, 6, s) Flash bytes 1676 (1564) 1548 (1438) 1548 (1438)
Stack bytes 36 36
MCU clocks 1608 1443
itoa (12345, s, 10) Flash bytes 150 (150) 134 (134) 134 (134)
Stack bytes 4 4
MCU clocks 1172 1152
ltoa (12345L, s, 10) Flash bytes 220 (220) 200 (200) 200 (200)
Stack bytes 9 9
MCU clocks 3174 3136
malloc (1) Flash bytes 554 (554) 506 (506) 506 (506)
Stack bytes 4 4
MCU clocks 196 178
realloc ((void *)0, 1) Flash bytes 1152 (1040) 1042 (932) 1042 (932)
Stack bytes 20 20
MCU clocks 303 280
gsort (s, sizeof(s), 1, Flash bytes 1242 (1130) 990 (880) 1008 (898)
cmp) Stack bytes 38 38
MCU clocks 20914 16678
sprintf_min (s, "%d", Flash bytes 1216 (1104) 1090 (980) 1086 (976)
12345) Stack bytes 59 59
MCU clocks 1846 1711
sprintf (s, "%d", 12345) Flash bytes 1674 (1562) 1542 (1432) 1498 (1388)
Stack bytes 58 58
MCU clocks 1610 1528
sprintf_flt (s, "%e", Flash bytes 3334 (3222) 3084 (2974) 3040 (2930)
1.2345) Stack bytes 66 66
MCU clocks 2513 2297
sscanf_min ("12345", Flash bytes 1540 (1428) 1354 (1244) 1354 (1244)
"%d", &i) Stack bytes 55 55
MCU clocks 1339 1240
sscanf ("12345", "%d", Flash bytes 1950 (1838) 1704 (1594) 1704 (1594)
&i) Stack bytes 53 53
MCU clocks 1334 1235
sscanf ("point,color”, Flash bytes 1950 (1838) 1704 (1594) 1704 (1594)
"%[a-z]", s) Stack bytes 87 87
MCU clocks 2878 2718
sscanf_flt ("1.2345", Flash bytes 3298 (3186) 2934 (2824) 2918 (2808)
"%e", &x) Stack bytes 63 63
MCU clocks 2187 1833
strtod ("1.2345", &p) Flash bytes 1570 (1458) 1472 (1362) 1456 (1346)
Stack bytes 22 22
MCU clocks 1237 971

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



9.2 Math functions.

44

strtol ("12345", &p, 0) Flash bytes
Stack bytes

MCU clocks

942 (830)
29
1074

874 (764)

808 (698)
21
722

9.2 Math functions.

The table contains the number of MCU clocks to calculate a function with a given argument(s).
big difference between Avr2 and Avr4 is a hardware multiplication.

The main reason of a

Function Avr2 Avrd
__addsf3 (1.234, 5.678) 113 108
__mulsf3 (1.234, 5.678) 375 138
_ divsf3 (1.234, 5.678) 466 465
acos (0.54321) 4411 2455
asin (0.54321) 4517 2556
atan (0.54321) 4710 2271
atan2 (1.234, 5.678) 5270 2857
cbrt (1.2345) 2684 2555
ceil (1.2345) 177 177
cos (1.2345) 3387 1671
cosh (1.2345) 4922 2979
exp (1.2345) 4708 2765
fdim (5.678, 1.234) 111 111
floor (1.2345) 180 180
fmax (1.234, 5.678) 39 37
fmin (1.234, 5.678) 35 35
fmod (5.678, 1.234) 131 131
frexp (1.2345, 0) 42 4
hypot (1.234, 5.678) 1341 866
Idexp (1.2345, 6) 42 42
log (1.2345) 4142 2134
log10 (1.2345) 4498 2260
modf (1.2345, 0) 433 429
pow (1.234, 5.678) 9293 5047
round (1.2345) 150 150
sin (1.2345) 3353 1653
sinh (1.2345) 4946 3003
sqrt (1.2345) 494 492
tan (1.2345) 4381 2426
tanh (1.2345) 5126 3173
trunc (1.2345) 178 178

10 Porting From IAR to AVR GCC

10.1 Introduction

C language was designed to be a portable language. There two main types of porting activities: porting an application
to a different platform (OS and/or processor), and porting to a different compiler. Porting to a different compiler can be
exacerbated when the application is an embedded system. For example, the C language Standard, strangely, does not
specify a standard for declaring and defining Interrupt Service Routines (ISRs). Different compilers have different ways
of defining registers, some of which use non-standard language constructs.

This chapter describes some methods and pointers on porting an AVR application built with the IAR compiler to the

GNU toolchain (AVR GCC). Note that this may not be an exhaustive list.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



10.2 Registers 45

10.2 Registers

IO header files contain identifiers for all the register names and bit names for a particular processor. IAR has individual
header files for each processor and they must be included when registers are being used in the code. For example:

#include <ioml69.h>

Note

IAR does not always use the same register names or bit names that are used in the AVR datasheet.

AVR GCC also has individual IO header files for each processor. However, the actual processor type is specified as a
command line flag to the compiler. (Using the -mmcu=processor flag.) This is usually done in the Makefile. This
allows you to specify only a single header file for any processor type:

finclude <avr/io.h>

Note

The forward slash in the <avr/io.h> file name that is used to separate subdirectories can be used on Windows
distributions of the toolchain and is the recommended method of including this file.

The compiler knows the processor type and through the single header file above, it can pull in and include the correct
individual 10 header file. This has the advantage that you only have to specify one generic header file, and you can
easily port your application to another processor type without having to change every file to include the new 10 header
file.

The AVR toolchain tries to adhere to the exact names of the registers and names of the bits found in the AVR datasheet.
There may be some descrepencies between the register names found in the IAR 10 header files and the AVR GCC 10
header files.

10.3 Interrupt Service Routines (ISRs)

As mentioned above, the C language Standard, strangely, does not specify a standard way of declaring and defining an
ISR. Hence, every compiler seems to have their own special way of doing so.

IAR declares an ISR like so:

#prqgma vector=TIMERO_OVF_vect
__interrupt void MotorPWMBottom()
{

// code

}

In AVR GCC, you declare an ISR like so:

ISR(PCINT1_vect)
{

//code
}

AVR GCC uses the ISR macro to define an ISR. This macro requries the header file:

#include <avr/interrupt.h>

The names of the various interrupt vectors are found in the individual processor 10 header files that you must include
with <avr/io.h>.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



10.4 Intrinsic Routines 46

Note

The names of the interrupt vectors in AVR GCC has been changed to match the names of the vectors in IAR. This
significantly helps in porting applications from IAR to AVR GCC.

10.4 Intrinsic Routines

IAR has a number of intrinsic routine such as

__enable_interrupts () __disable_interrupts () __watchdog_reset ()

These intrinsic functions compile to specific AVR opcodes (SEI, CLI, WDR).

There are equivalent macros that are used in AVR GCC, however they are not located in a single include file.

AVR GCC has sei () for __enable_interrupts(),and cli() for__disable_interrupts (). Both of
these macros are located in <avr/interrupts.h>.

AVR GCC has the macro wdt_reset () inplace of __watchdog_reset (). However, there is a whole Watchdog
Timer API available in AVR GCC that can be found in <avr/wdt .h>.

10.5 Flash Variables

The C language was not designed for Harvard architecture processors with separate memory spaces. This means that
there are various non-standard ways to define a variable whose data resides in the Program Memory (Flash).

IAR uses a non-standard keyword to declare a variable in Program Memory:

_ _flash int mydatal] = ....

AVR GCC uses Variable Attributes to achieve the same effect:

int mydatal[] __attribute__((progmem))

Note

See the GCC User Manual for more information about Variable Attributes.

avr-libc provides a convenience macro for the Variable Attribute:

#include <avr/pgmspace.h>

int mydata[] PROGMEM = ....

Note

The PROGMEM macro expands to the Variable Attribute of progmem. This macro requires that you include
<avr/pgmspace.h>. This is the canonical method for defining a variable in Program Space.

To read back flash data, use the pgm_read_x*() macros defined in <avr/pgmspace.h>. All Program Memory
handling macros are defined there.

There is also a way to create a method to define variables in Program Memory that is common between the two compilers
(IAR and AVR GCC). Create a header file that has these definitions:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



10.6 Non-Returning main() 47

#if defin VR__) // IAR C Compiler

#define \SH_DECLARE (x) __flash x

#endif

#if defined(__GNUC__) // GNU Compiler

#define FLASH_DECLARE (x) x __attribute__ ((__progmem__))
#endif

This code snippet checks for the IAR compiler or for the GCC compiler and defines a macro FLASH_DECLARE (x)
that will declare a variable in Program Memory using the appropriate method based on the compiler that is being used.
Then you would used it like so:

FLASH_DECLARE (int mydatal[] = ...);

10.6 Non-Returning main()

To declare main() to be a non-returning function in IAR, it is done like this:

__C_task void main(void)
{

// code
}

To do the equivalent in AVR GCC, do this:

void main (void) __attribute__ ((noreturn));

void main (void)
{

/]
}

Note

See the GCC User Manual for more information on Function Attributes.

In AVR GCC, a prototype for main() is required so you can declare the function attribute to specify that the main()
function is of type "noreturn”. Then, define main() as normal. Note that the return type for main() is now void.

10.7 Locking Registers

The IAR compiler allows a user to lock general registers from r15 and down by using compiler options and this keyword
syntax:

__regvar __no_init volatile unsigned int filteredTimeSinceCommutation @14;

This line locks r14 for use only when explicitly referenced in your code thorugh the var name "filteredTimeSince-
Commutation". This means that the compiler cannot dispose of it at its own will.

To do this in AVR GCC, do this:

register unsigned char counter asm("r3");

Typically, it should be possible to use r2 through r15 that way.

Note

Do not reserve r0 or r1 as these are used internally by the compiler for a temporary register and for a zero value.
Locking registers is not recommended in AVR GCC as it removes this register from the control of the compiler,
which may make code generation worse. Use at your own risk.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



11 Building and Installing the GNU Tool Chain 48

11 Building and Installing the GNU Tool Chain

This chapter shows how to build and install, from source code, a complete development environment for the AVR
processors using the GNU toolset. There are two main sections, one for Linux, FreeBSD, and other Unix-like operating
systems, and another section for Windows.

11.1  Building and Installing under Linux, FreeBSD, and Others

The default behaviour for most of these tools is to install every thing under the /usr/local directory. In order to keep
the AVR tools separate from the base system, it is usually better to install everything into /usr/local/avr. If the
/usr/local/avr directory does not exist, you should create it before trying to install anything. You will need root
access to install there. If you don’t have root access to the system, you can alternatively install in your home directory,
for example, in SHOME /1ocal/avr. Where you install is a completely arbitrary decision, but should be consistent for
all the tools.

You specify the installation directory by using the —prefix=dir option with the configure script. It is important
to install all the AVR tools in the same directory or some of the tools will not work correctly. To ensure consistency and
simplify the discussion, we will use SPREF IX to refer to whatever directory you wish to install in. You can set this as an
environment variable if you wish as such (using a Bourne-like shell):

$ PREFIX=S$HOME/local/avr
$ export PREFIX

Note

Be sure that you have your PATH environment variable set to search the directory you install everything in before
you start installing anything. For example, if you use —prefix=$PREFIX, you must have SPREFIX/bin in
your exported PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Warning

If you have CC set to anything other than avr—gcc in your environment, this will cause the configure script to fail.
It is best to not have CC set at all.

Note

It is usually the best to use the latest released version of each of the tools.

11.2 Required Tools

+ GNU Binutils
http://sources.redhat.com/binutils/

Installation

- GCC
http://gcc.gnu.org/

Installation

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://sources.redhat.com/binutils/
http://gcc.gnu.org/

11.3 Optional Tools 49

+ AVR LibC
http://savannah.gnu.org/projects/avr-libc/
Installation

11.3 Optional Tools

You can develop programs for AVR devices without the following tools. They may or may not be of use for you.

- AVRDUDE
http://savannah.nongnu.org/projects/avrdude/
Installation

Usage Notes

- GDB
http://sources.redhat.com/gdb/
Installation

+ SimulAVR
http://savannah.gnu.org/projects/simulavr/

Installation

« AVaRICE

http://avarice.sourceforge.net/

Installation

11.4 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and manipulating object files. Once
installed, your environment will have an AVR assembler (avr—as), linker (avr—1d), and librarian (avr-ar and
avr—-ranlib). In addition, you get tools which extract data from object files (avr—-ob jcopy), dissassemble object
file information (avr—ob jdump), and strip information from object files (avr-strip). Before we can build the C
compiler, these tools need to be in place.

Download and unpack the source files:

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note
Replace <version> with the version of the package you downloaded.
If you obtained a gzip compressed file (.gz), use gunzip instead of bunzip?2.

It is usually a good idea to configure and build binutils in a subdirectory so as not to pollute the source with the
compiled files. This is recommended by the binutils developers.

$ mkdir obj-avr
$ cd obj-avr

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://savannah.gnu.org/projects/avr-libc/
http://savannah.nongnu.org/projects/avrdude/
http://sources.redhat.com/gdb/
http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/

11.5 GCC for the AVR target 50

The next step is to configure and build the tools. This is done by supplying arguments to the configure script that
enable the AVR-specific options.

$ ../configure —-prefix=$PREFIX —--target=avr —--disable-nls

If you don’t specify the —pre fix option, the tools will get installed in the /usr/local hierarchy (i.e. the binaries will
getinstalled in /usr/local/bin, the info pages get installed in /usr/local/info, etc.) Since these tools are
changing frequently, It is preferrable to put them in a location that is easily removed.

When configure isrun, it generates a lot of messages while it determines what is available on your operating system.
When it finishes, it will have created several Makefiles that are custom tailored to your platform. At this point, you
can build the project.

$ make

Note

BSD users should note that the project’s Makefile uses GNU make syntax. This means FreeBSD users may
need to build the tools by using gmake.

If the tools compiled cleanly, you're ready to install them. If you specified a destination that isn’t owned by your account,
you'll need root access to install them. To install:

$ make install

You should now have the programs from binutils installed into $SPREFIX/bin. Don’t forget to set your PATH environ-
ment variable before going to build avr-gcc.

Note

The official version of binutils might lack support for recent AVR devices. A patch that adds more AVR types can be
foundathttp://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevi

11.5 GCC for the AVR target

Warning

You must install avr-binutils and make sure your path is set properly before installing avr-gcc.

The steps to build avr-gcc are essentially same as for binutils:

$ bunzip2 -c gcc-<version>.tar.bz2 | tar xf -

$ cd gcc—-<version>

$ mkdir obj-avr

$ cd obj-avr

$ ../configure —-prefix=$PREFIX --target=avr —--enable-languages=c,c++ \
—-—disable-nls --disable-libssp --with-dwarf2

$ make

$ make install

To save your self some download time, you can alternatively download only the gcc-core-<version>.tar.bz2
and gcc—c++-<version>.tar.bz2 parts of the gcc. Also, if you don't need C++ support, you only need the
core part and should only enable the C language support.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevices

11.6 AVRLibC 51

Note

Early versions of these tools did not support C++.

The stdc++ libs are not included with C++ for AVR due to the size limitations of the devices.

The official version of GCC might lack support for recent AVR devices. A patch that adds more AVR types can be
foundathttp://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch—-newdevices

11.6 AVRLibC

Warning

You must install avr-binutils, avr-gcc and make sure your path is set properly before installing avr-libc.

Note

If you have obtained the latest avr-libc from cvs, you will have to run the boot st rap script before using either of
the build methods described below.

To build and install avr-libc:

gunzip -c avr-libc-<version>.tar.gz | tar xf -

cd avr-libc-<version>

./configure --prefix=$PREFIX --build=‘./config.guess' —--host=avr
make

make install

v v

11.7 AVRDUDE

Note

It has been ported to windows (via MinGW or cygwin), Linux and Solaris. Other Unix systems should be trivial to
port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

# cd /usr/ports/devel/avrdude
# make install

Note

Installation into the default location usually requires root permissions. However, running the program only requires
access permissions to the appropriate ppi (4) device.

Building and installing on other systems should use the configure system, as such:

gunzip -c avrdude-<version>.tar.gz | tar xf -
cd avrdude-<version>

mkdir obj-avr

cd obj-avr

../configure --prefix=$PREFIX

make

make install

O v Ay

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch-newdevices

11.8 GDB for the AVR target 52

11.8 GDB for the AVR target

GDB also uses the configure system, so to build and install:

bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
cd gdb-<version>

mkdir obj-avr

cd obj-avr

../configure —--prefix=$PREFIX --target=avr
make

make install

v »vr A

Note

If you are planning on using avr—gdb, you will probably want to install either simulavr or avarice since avr-gdb
needs one of these to run as a a remote target backend.

11.9 SimulAVR

SimulAVR also uses the configure system, so to build and install:

gunzip -c¢ simulavr-<version>.tar.gz | tar xf -
cd simulavr-<version>

mkdir obj-avr

cd obj-avr

../configure --prefix=$PREFIX

make

make install

O »r Ay

Note

You might want to have already installed avr-binutils, avr-gcc and avr-libc if you want to have the test programs built
in the simulavr source.

11.10 AVaRICE

Note

These install notes are not applicable to avarice-1.5 or older. You probably don’t want to use anything that old
anyways since there have been many improvements and bug fixes since the 1.5 release.

AVaRICE also uses the configure system, so to build and install:

$ gunzip -c avarice-<version>.tar.gz | tar xf -
$ cd avarice-<version>
$ mkdir obj-avr
$ cd obj-avr
$ ../configure —-prefix=$PREFIX
$ make

$ make install

Note

AVaRICE uses the BFD library for accessing various binary file formats. You may need to tell the configure script
where to find the lib and headers for the link to work. This is usually done by invoking the configure script like this
(Replace <hdr_path> with the path to the bfd.h file on your system. Replace <1ib_path> with the path
to 1ibbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



11.11 Building and Installing under Windows 53

11.11 Building and Installing under Windows

Building and installing the toolchain under Windows requires more effort because all of the tools required for building,
and the programs themselves, are mainly designed for running under a POSIX environment such as Unix and Linux.
Windows does not natively provide such an environment.

There are two projects available that provide such an environment, Cygwin and MinGW. There are advantages and
disadvantages to both. Cygwin provides a very complete POSIX environment that allows one to build many Linux based
tools from source with very little or no source modifications. However, POSIX functionality is provided in the form of
a DLL that is linked to the application. This DLL has to be redistributed with your application and there are issues if
the Cygwin DLL already exists on the installation system and different versions of the DLL. On the other hand, MinGW
can compile code as native Win32 applications. However, this means that programs designed for Unix and Linux (i.e.
that use POSIX functionality) will not compile as MinGW does not provide that POSIX layer for you. Therefore most
programs that compile on both types of host systems, usually must provide some sort of abstraction layer to allow an
application to be built cross-platform.

MinGW does provide somewhat of a POSIX environment, called MSYS, that allows you to build Unix and Linux applica-
tions as they woud normally do, with a configure step and amake step. Cygwin also provides such an environment.
This means that building the AVR toolchain is very similar to how it is built in Linux, described above. The main differ-
ences are in what the PATH environment variable gets set to, pathname differences, and the tools that are required to
build the projects under Windows. We'll take a look at the tools next.

11.12 Tools Required for Building the Toolchain for Windows

These are the tools that are currently used to build an AVR tool chain. This list may change, either the version of the
tools, or the tools themselves, as improvements are made.

* MinGW
Download the MinGW Automated Installer, 20100909 (or later) http: //sourceforge.net /projects/mingw/files/—
Automated%20MinGW%20Installer/mingw—get—inst/mingw-get—-inst-20100909/mingw—get—inst—-20.
exe/download

— Run mingw-get-inst-20100909.exe

— In the installation wizard, keep the default values and press the "Next" button for all installer pages except
for the pages explicitly listed below.

In the installer page "Repository Catalogues", select the "Download latest repository catalogues" radio button, and press
the "Next" button

 In the installer page "License Agreement”, select the "l accept the agreement"” radio button, and press the "Next"
button

+ In the installer page "Select Components", be sure to select these items:

C compiler (default checked)

C++ compiler

Ada compiler
MinGW Developer Toolkit (which includes "MSYS Basic System").

« |nstall.

* Install Cygwin

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20100909/mingw-get-inst-20100909.exe/download
http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20100909/mingw-get-inst-20100909.exe/download
http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20100909/mingw-get-inst-20100909.exe/download

11.12 Tools Required for Building the Toolchain for Windows 54

— Install everything, all users, UNIX line endings. This will take a long time. A fat internet pipe is highly
recommended. It is also recommended that you download all to a directory first, and then install from that
directory to your machine.

Note

GMP, MPFR, and MPC are required to build GCC.
GMP is a prequisite for building MPFR. Build GMP first.
MPFR is a prerequisite for building MPC. Build MPFR second.

+ Build GMP for MinGW

Latest Version

http://gmplib.org/
Build script:

./configure 2>&l1
make 2>&1
make check 2>&1
make install 2>&1

tee gmp-configure.log
tee gmp-make.log
tee gmp-make-check.log

|
|
|
| tee gmp-make-install.log

GMP headers will be installed under /usr/local/include and library installed under /usr/local/lib.

+ Build MPFR for MinGW

Latest Version

http://www.mpfr.org/

— Build script:
./configure --with-gmp=/usr/local --disable-shared 2>&1 | tee mpfr-configure.log
make 2>&1 | tee mpfr-make.log
make check 2>&1 | tee mpfr-make-check.log
make install 2>&1 | tee mpfr-make-install.log

MPFR headers will be installed under /usr/local/include and library installed under /usr/local/lib.

+ Build MPC for MinGW

Latest Version

http://www.multiprecision.org/

— Build script:
./configure —--with-gmp=/usr/local —--with-mpfr=/usr/local —--disable-shared 2>&1 | tee mpfr-confic
make 2>&1 | tee mpfr-make.log
make check 2>&1 | tee mpfr-make-check.log
make install 2>&1 | tee mpfr-make-install.log

MPFR headers will be installed under /ust/local/include and library installed under /ust/local/lib.

Note

Doxygen is required to build AVR-LibC documentation.
* Install Doxygen
— Version 1.7.2

— http://www.stack.nl/~dimitri/doxygen/
— Download and install.

NetPBM is required to build graphics in the AVR-LibC documentation.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://gmplib.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://www.stack.nl/~dimitri/doxygen/

11.13 Building the Toolchain for Windows 55

« Install NetPBM

— Version 10.27.0
— From the GNUWIn32 project: http://gnuwin32.sourceforge.net/packages.html
— Download and install.
fig2dev is required to build graphics in the AVR-LibC documentation.
* Install fig2dev

Version 3.2 patchlevel 5¢
From WinFig 4.62: http://www.schmidt-web-berlin.de/winfig/
Download the zip file version of WinFig

Unzip the download file and install fig2dev.exe in a location of your choice, somewhere in the PATH.

You may have to unzip and install related DLL files for fig2dev. In the version above, you have to install
QtCore4.dll and QtGui4.dll.

MikTeX is required to build various documentation.
« Install MiKTeX
— Version 2.9
- http://miktex.org/
— Download and install.
Ghostscript is required to build various documentation.
* Install Ghostscript

Version 9.00
http://www.ghostscript.com

Download and install.
In the \bin subdirectory of the installaion, copy gswin32c.exe to gs.exe.

+ Set the TEMP and TMP environment variables to c¢:\temp or to the short filename version. This helps to avoid
NTVDM errors during building.

11.13  Building the Toolchain for Windows

All directories in the PATH enviornment variable should be specified using their short filename (8.3) version. This will
also help to avoid NTVDM errors during building. These short filenames can be specific to each machine.

Build the tools below in MinGW/MSYS.

« Binutils

— Open source code pacakge and patch as necessary.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:

» <MikTex executables>

- <ghostscript executables>

= /usr/local/bin

= /usr/bin

= /bin

= /mingw/bin

= c:/cygwin/bin

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://gnuwin32.sourceforge.net/packages.html
http://www.schmidt-web-berlin.de/winfig/
http://miktex.org/
http://www.ghostscript.com

11.13 Building the Toolchain for Windows

56

= <install directory>/bin
— Configure

CFLAGS=-D__USE_MINGW_ACCESS \
../$archivedir/configure \
—-prefix=$installdir \
-—target=avr \
-—disable-nls \
--enable-doc \
--datadir=$installdir/doc/binutils \
—--with-gmp=/usr/local \
-—with-mpfr=/usr/local \
2>&1 | tee binutils-configure.log

- Make

make all html install install-html 2>&1 | tee binutils-make.log

— Manually change documentation location.

+ GCC

— Open source code pacakge and patch as necessary.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:

» <MikTex executables>
- <ghostscript executables>
= /usr/local/bin
= /usr/bin
= /bin
* /mingw/bin
= c:/cygwin/bin
= <install directory>/bin
— Configure

LDFLAGS=’-L /usr/local/lib -R /usr/local/lib’ \
CFLAGS='"-D__USE_MINGW_ACCESS’ \
../gcc-Sversion/configure \
—--with-gmp=/usr/local \
—--with-mpfr=/usr/local \
—--with-mpc=/usr/local \
—-prefix=$installdir \
-—target=$target \
——-enable-languages=c, c++ \
——with-dwarf2 \
-—enable—doc \
—--with-docdir=$installdir/doc/$project \
-—disable-shared \
--disable-libada \
--disable-libssp \
2>81 | tee $project-configure.log

— Make

make all html install 2>g&1 tee $package-make.log

« avr-libc

— Open source code package.
— Configure and build at the top of the source code tree.
— Set PATH, in order:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



11.13 Building the Toolchain for Windows

= fusr/local/bin

* /mingw/bin

* /bin

» <MikTex executables>

= <install directory>/bin

= <Doxygen executables>

» <NetPBM executables>

» <fig2dev executable>

» <Ghostscript executables>

= c:/cygwin/bin

— Configure
./configure \

—-host=avr \
—-prefix=$installdir \
-—enable-doc \
—-disable-versioned-doc \
——enable-html-doc \
--enable-pdf-doc \
——enable-man-doc \
—-mandir=$installdir/man \

--datadir=$installdir \
2>&1 | tee $package-configure.log

Make

make all install 2>&1 | tee S$Spackage-make.log

Manually change location of man page documentation.

Move the examples to the top level of the install tree.

Convert line endings in examples to Windows line endings.

Convert line endings in header files to Windows line endings.

+ AVRDUDE

— Open source code package.
— Configure and build at the top of the source code tree.
— Set PATH, in order:
» <MikTex executables>
= [usr/local/bin
= /usr/bin
= /bin
* /mingw/bin
= c:/cygwin/bin
» <install directory>/bin
— Set location of LibUSB headers and libraries

export CPPFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export CFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export LDFLAGS="-L../../libusb-win32-device-bin-$libusb_version/lib/gcc"

— Configure

./configure \
—-prefix=$installdir \
--datadir=$installdir \
—-sysconfdir=$installdir/bin \
-—enable—-doc \
-—disable-versioned-doc \
2>81 | tee $package-configure.log

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



11.13 Building the Toolchain for Windows 58

— Make

make -k all install 2>&1 | tee S$package-make.log

— Convert line endings in avrdude config file to Windows line endings.

— Delete backup copy of avrdude config file in install directory if exists.

* Insight/GDB

— Open source code pacakge and patch as necessary.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:

» <MikTex executables>

= /usr/local/bin

= /usr/bin

= /bin

* /mingw/bin

= c:/cygwin/bin

= <install directory>/bin
— Configure

CFLAGS=-D__USE_MINGW_ACCESS \

LDFLAGS='-static’ \

../$archivedir/configure \
—-prefix=$installdir \
-—-target=avr \
—-—with-gmp=/usr/local \
—--with-mpfr=/usr/local \
-—enable-doc \
2>&1 | tee insight-configure.log

— Make

make all install 2>&1 | tee S$package-make.log

* SRecord

— Open source code package.
— Configure and build at the top of the source code tree.
— Set PATH, in order:

» <MikTex executables>

= /usr/local/bin

= /usr/bin

= /bin

= /mingw/bin

= c:/cygwin/bin

= <install directory>/bin

— Configure
./configure \
—--prefix=$installdir \
-—infodir=$installdir/info \
—--mandir=$installdir/man \
2>§1 | tee $package-configure.log
- Make

make all install 2>&1 | tee S$package-make.log

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12 Using the GNU tools 59

Build the tools below in Cygwin.

« AVaRICE

— Open source code package.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:
» <MikTex executables>
= /usr/local/bin
= /usr/bin
= /bin
= <install directory>/bin
— Set location of LibUSB headers and libraries

export CPPFLAGS=-IS$startdir/libusb-win32-device-bin-$libusb_version/include

export CFLAGS=-IS$startdir/libusb-win32-device-bin-$libusb_version/include

export LDFLAGS="-static -L$startdir/libusb-win32-device-bin-$1libusb_version/lib/gcc "
— Configure

../$archivedir/configure \
——-prefix=$installdir \
--datadir=$installdir/doc \
——mandir=$installdir/man \
——infodir=$installdir/info \
2>&1 tee avarice-configure.log

— Make

make all install 2>&1 | tee avarice-make.log

+ SimulAVR

— Open source code package.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:
= <MikTex executables>
= /usr/local/bin
= /usr/bin
= /bin
» <install directory>/bin
— Configure

export LDFLAGS="-static"
../Sarchivedir/configure \
—--prefix=$installdir \
--datadir=$installdir \
-—disable-tests \
-—disable-versioned-doc \
2>&1 | tee simulavr-configure.log

- Make

make -k all install 2>&1 | tee simulavr-make.log
make pdf install-pdf 2>&1 | tee simulavr-pdf-make.log

12  Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally, the generic documentation of
these tools is fairly large and maintained in texinfo files. Command-line options are explained in detail in the manual

page.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

12.1 Options for the C compiler avr-gcc

12.1.1 Machine-specific options for the AVR

The following machine-specific options are recognized by the C compiler frontend.
macros indicated in the tables below, the preprocessor will define the macros AVR and __AVR (to the value 1) when
compiling for an AVR target. The macro AVR will be defined as well when using the standard levels gnu89 (default) and

gnu99 but not with ¢89 and ¢99.

« —mmcu=architecture

Compile code for architecture. Currently known architectures are

Architecture

PBSMacros

PBSDescription

avri

PBSAVR_ARCH-=1
AVR_ASM_ONLY
AVR_2 BYTE_PC [2]

PBSSimple CPU core,
only assembler support

avr2

PBSAVR_ARCH=2
AVR_2 BYTE_PC [2]

PBS"Classic" CPU core,
up to 8 KB of ROM

avr25 [1]

PBSAVR_ARCH=25
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_2_BYTE_PC [2]

PBS"Classic" CPU core
with 'MOVW’ and 'LPM
Rx, Z[+] instruction, up
to 8 KB of ROM

avr3

PBSAVR_ARCH=3
AVR_MEGA [5]
AVR_HAVE_JMP_CALL [4]
AVR_2 BYTE_PC [2]

PBS"Classic" CPU core,
16 KB to 64 KB of ROM

avr31

PBSAVR_ARCH=31
AVR_MEGA [5]
AVR_HAVE_JMP_CALL [4]
AVR_HAVE_RAMPZ [4]
AVR_HAVE_ELPM [4]
AVR_2 BYTE_PC [2]

PBS"Classic" CPU core,
128 KB of ROM

avr35 [3]

PBSAVR_ARCH=35
AVR_MEGA [5]
AVR_HAVE_JMP_CALL [4]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_2_BYTE_PC [2]

PBS"Classic" CPU core
with '"MOVW’ and 'LPM
Rx, Z[+] instruction, 16
KB to 64 KB of ROM

avrd

PBSAVR_ARCH=4
AVR_ENHANCED [5]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_HAVE_MUL [1]
AVR_2 BYTE_PC [2]

PBS"Enhanced" CPU
core, up to 8 KB of ROM

avrb

PBSAVR_ARCH=5
AVR_MEGA [5]
AVR_ENHANCED [5]
AVR_HAVE_JMP_CALL [4]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_HAVE_MUL [1]

AVR 2 _BYTE_PC [2]

PBS"Enhanced" CPU
core, 16 KB to 64 KB of
ROM

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen

In addition to the preprocessor




12.1 Options for the C compiler avr-gcc 61

avr51 PBSAVR_ARCH=51 PBS"Enhanced”  CPU
AVR_MEGA [5] core, 128 KB of ROM
AVR_ENHANCED [5]
AVR_HAVE_JMP_CALL [4]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_HAVE_MUL [1]
AVR_HAVE_RAMPZ [4]
AVR_HAVE_ELPM [4]
AVR_HAVE_ELPMX [4]
AVR_2 BYTE_PC [2]

avr6 [2] PBSAVR_ARCH=6 PBS'Enhanced”  CPU
AVR_MEGA [5] core, 256 KB of ROM
AVR_ENHANCED [5]
AVR_HAVE_JMP_CALL [4]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_HAVE_MUL [1]
AVR_HAVE_RAMPZ [4]
AVR_HAVE_ELPM [4]
AVR_HAVE_ELPMX [4]
AVR_3 BYTE_PC [2]

avr7 [2] PBSAVR_ARCH=7 PBS"Enhanced" CPU
AVR_MEGA [5] core, 20K of Flash that
AVR_ENHANCED [5] starts at 0x8000

AVR_HAVE_JMP_CALL [4]
AVR_HAVE_MOVW [1]
AVR_HAVE_LPMX [1]
AVR_HAVE_MUL [1]
AVR_2 BYTE_PC [2]

[1] New in GCC 4.2

[2] Unofficial patch for GCC 4.1

[3] New in GCC 4.2.3

[4] New in GCC 4.3

[5] Obsolete.

By default, code is generated for the avr2 architecture.

Note that when only using —mmcu=architecture but no —-mmcu=MCU type, including the file <avr/io.h> cannot
work since it cannot decide which device’s definitions to select.

* —mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table matches them against the corresponding
avr-gcc architecture name, and shows the preprocessor symbol declared by the —mmcu option.

Architecture PBSMCU name PBSMacro

avri PBSat90s1200 PBS AVR _AT90-
S1200

avri PBSattiny11 PBS__AVR_ATtiny11_-

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1

Options for the C compiler avr-gcc

62

avri PBSattiny12 PBS__AVR_ATtiny12_-

avr PBSattiny15 PBS__AVR ATtiny15 -

avri PBSattiny28 PBS__AVR_ATtiny28_-

avr2 PBSat90s2313 PBS__AVR_AT90-
S2313__

avr2 PBSat90s2323 PBS__AVR_AT90-
S2323__

avr2 PBSat90s2333 PBS__AVR_AT90-
S2333__

avr2 PBSat90s2343 PBS__AVR_AT90-
S2343

avr2 PBSattiny22 PBS__AVR_ATtiny22_-

avr2 PBSattiny26 E’BS_AVR_ATtiny26_-

avr2 PBSato0s4414 PBS__AVR_AT90-
S4414

avr2 PBSat90s4433 PBS__AVR_AT90-
S4433__

avr2 PBSat90s4434 PBS AVR_AT90-
S4434

avr2 PBSat90s8515 PBS__AVR_AT90-
S8515_

avr2 PBSat90c8534 PBS__AVR_AT90-
C8534__

avr2 PBSat90s8535 PBS__AVR_AT90-
S8535_

avr2/avr25 [1] | PBSat86rf401 PBS__AVR_AT86R-
F401__

avr2/avr25 [1] | PBSata6289 PBS__AVR_ATA6289_-

avr2/avr25 [1] | PBSata5272 E’BS_AVR_ATA5272_—

avr2/avr25 [1] | PBSattiny13 E’BS_AVR_ATtiny13_-

avr2/avr25 [1] | PBSattiny13a EBS_AVR_ATtiny1 3A-

avr2/avr25 [1] | PBSattiny2313 PBS_AVR A-
Ttiny2313__

avr2/avr25 [1] | PBSattiny2313a PBS__AVR_A-
Ttiny2313A__

avr2/avr25 [1] | PBSattiny24 PBS__AVR_ATtiny24_-

avr2/avr25 [1] | PBSattiny24a E’BS_AVR_ATtiny24A-

avr2/avr25 [1] | PBSattiny25 EBS_AVR_ATtinyZS_-

avr2/avr25 [1] | PBSattiny261 EBS_AVR_ATtiny261 -

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



Options for the C compiler avr-gcc

63

avr2/avr25 [1] | PBSattiny261a PBS__AVR_ATtiny261-
A

avrz2/avr25 [1] | PBSattiny4313 PBS__AVR_A-
Ttiny4313__

avr2/avr25 [1] | PBSattiny43u PBS__AVR_ATtiny43U-

avr2/avr25 [1] | PBSattiny44 %S_AVR_ATtiny44_-

avr2/avr25 [1] | PBSattiny44a I_DBS_AVR_ATtiny44A-

avr2/avr25 [1] | PBSattiny45 PBS__AVR_ATtiny45_-

avr2/avr25 [1] | PBSattiny461 E’BS_AVR_ATtiny461 -

avr2/avr25 [1] | PBSattiny461a HBS_AVR_ATtiny461 -
A

avr2/avr25 [1] | PBSattiny48 PBS__AVR_ATtiny48_-

avrz2/avr25 [1] | PBSattiny828 E’BS_AVR_ATtiny828-

avr2/avr25 [1] | PBSattiny84 HBS_AVR_ATtiny84_—

avr2/avr25 [1] | PBSattiny84a E’BS_AVR_ATtiny84A-

avr2/avr25 [1] | PBSattiny841 ﬁBS_AVR_ATtiny841 -

avr2/avr25 [1] | PBSattiny85 PBS__AVR_ATtiny85 -

avr2/avr25 [1] | PBSattiny861 E’BS_AVR_ATtiny861 -

avr2/avr25 [1] | PBSattiny861a HBS_AVR_ATtiny861 -
A

avr2/avr25 [1] | PBSattiny87 PBS__AVR_ATtiny87_-

avr2/avr25 [1] | PBSattiny88 E’BS_AVR_ATtiny88_-

avr3 PBSatmega603 PBS__AVR_A-
Tmega603__

avr3 PBSat43usb355 PBS__AVR_AT43US-
B355__

avr3/avr31 [3] | PBSatmega103 PBS__AVR_A-
Tmega103__

avr3/avr31 [3] | PBSat43usb320 PBS__AVR_AT43US-
B320__

avr3/avr35 [2] | PBSat90usb82 PBS__AVR_AT90US-
B82

avr3/avr35 [2] | PBSat90usb162 PBS__AVR_AT90US-
B162__

avr3/avr35 [2] | PBSata5505 PBS__AVR_ATA5505 -

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

64

avr3/avr35 [2] | PBSatmega8u2 PBS__AVR_ATmega8-
uz__

avr3/avr35 [2] | PBSatmegai6u2 PBS__AVR_ATmegai6-
ua__

avr3/avr35 [2] | PBSatmega32u2 PBS__AVR_ATmega32-
ua__

avr3/avr35 [2] | PBSattiny167 PBS__AVR_ATtiny167-

avr3/avr35 [2] | PBSattiny1634 PBS__AVR A-
Ttiny1634__

avr3 PBSat76c711 PBS__AVR_AT76C711-

avrd PBSata6285 PBS__AVR ATA6285_-

avr4 PBSata6286 E’BS_AVR_ATA6286_-

avr4 PBSatmega48 E’BS_AVR_ATmega48-

avr4 PBSatmega48a HBS_AVR_ATmega48—
A_

avrd PBSatmega48pa PBS__AVR_ATmega48-
PA__

avrd PBSatmega48p PBS__AVR_ATmega48-
P__

avr4 PBSatmega8 PBS__AVR_ATmega8 -

avrd PBSatmegasa PBS__AVR_ATmega8A-

avr4 PBSatmega8515 HBS_AVR_A—
Tmega8515__

avrd PBSatmega8535 PBS__AVR_A-
Tmega8535_

avr4 PBSatmega88 PBS__AVR_ATmega88-

avr4 PBSatmega88a HBS_AVR_ATmegaBS—
A_

avr4 PBSatmega88p PBS__AVR_ATmega88-
P__

avrd PBSatmega88pa PBS__AVR_ATmega88-
PA_

avr4 PBSatmega8hva PBS__AVR_ATmega8-
HVA_

avr4 PBSat90pwm1 PBS__AVR_AT90PW-
M1__

avrd PBSat90pwm2 PBS__AVR_AT90PW-
M2__

avr4 PBSat90pwm?2b PBS__AVR_AT90PW-
M2B__

avr4 PBSat90pwm3 PBS__AVR_AT90PW-
M3__

avr4 PBSat90pwm3b PBS__AVR_AT90PW-
M3B__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

65

avr4 PBSat90pwm81 PBS__AVR_AT90PW-
M81__

avrb PBSat90can32 PBS__AVR_AT90CA-
N32_

avrb PBSat90can64 PBS__AVR_AT90CA-
N64__

avrs PBSat90pwm161 PBS__AVR_AT90PW-
M161_

avrb PBSat90pwm216 PBS__AVR_AT90PW-
M216__

avrb PBSat90pwm316 PBS__AVR_AT90PW-
M316__

avrb PBSat90scr100 PBS AVR_AT90SC-
R100__

avrb PBSat90usb646 PBS__AVR_AT90US-
B646__

avrb PBSat90usb647 PBS__AVR_AT90US-
B647__

avrb PBSat94k PBS__AVR_AT94K_

avrb PBSatmegai16 PBS__AVR_ATmegal6-

avrb PBSata5790 PBS__AVR_ATA5790_-

avrb PBSata5790n PBS__AVR_ATA5790N-

avrb PBSata5795 PBS__AVR_ATA5795 -

avrb PBSatmega161 PBS AVR_A-
Tmegal61__

avrb PBSatmega162 PBS__AVR_A-
Tmegai62__

avrb PBSatmegai163 PBS__AVR_A-
Tmegal63__

avrb PBSatmegai64a PBS__AVR_A-
Tmegal64A__

avrb PBSatmegai164p PBS__AVR_A-
Tmegal164P__

avrb PBSatmega164pa PBS__AVR_A-
Tmegal164PA__

avrb PBSatmegai165 PBS__AVR_A-
Tmegal65__

avrb PBSatmegai65a PBS__AVR_A-
Tmegal65A__

avrb PBSatmega165p PBS__AVR_A-
Tmegal165P__

avrb PBSatmega165pa PBS__AVR_A-
Tmegal165PA__

avrb PBSatmegai168 PBS__AVR_A-
Tmegal68__

avrb PBSatmega168a PBS AVR_A-
Tmegal168A__

avrb PBSatmega168p PBS__AVR_A-
Tmegal168P__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

66

avrb PBSatmega168pa PBS__AVR_A-
Tmegal168PA__

avrb PBSatmega169 PBS__AVR_A-
Tmegal69__

avrb PBSatmegai169a PBS__AVR_A-
Tmegal69A__

avrb PBSatmega169p PBS__AVR_A-
Tmegal69P__

avrb PBSatmegai69pa PBS__AVR_A-
Tmegal169PA__

avrb PBSatmegai6a PBS__AVR_ATmegal6-
A

avrb PBSatmegai6hva PBS__AVR_ATmegai6-
HVA

avrb PBSatmegai16hva2 PBS__AVR_ATmegai6-
HVA2__

avrb PBSatmegai6hvb PBS__AVR_ATmegal6-
HVB__

avrb PBSatmegai6hvbrevb PBS__AVR_ATmegai6-
HVBREVB__

avrb PBSatmegai6m1 PBS__AVR_ATmegal6-
M1

avrb PBSatmegai6u4 PBS__AVR_ATmegal6-
U4

avrd PBSatmega26hvg PBS__AVR_ATmega26-
HVG_

avrb PBSatmega32 PBS__AVR_ATmega32-

avrb PBSatmega32a PBS__AVR_ATmega32-
A

avrb PBSatmega323 PBS__AVR_A-
Tmega323_

avrb PBSatmega324a PBS__AVR_A-
Tmega324A__

avrb PBSatmega324p PBS__AVR_A-
Tmega324P__

avrb PBSatmega324pa PBS__AVR_A-
Tmega324PA__

avrb PBSatmega325 PBS__AVR_A-
Tmega325__

avrb PBSatmega325a PBS__AVR_A-
Tmega325A__

avrb PBSatmega325p PBS__AVR_A-
Tmega325P__

avrb PBSatmega325pa PBS__AVR_A-
Tmega325PA__

avrb PBSatmega3250 PBS__AVR_A-
Tmega3250__

avrb PBSatmega3250a PBS__AVR_A-
Tmega3250A__

avrb PBSatmega3250p PBS__AVR_A-
Tmega3250P__

avrb PBSatmega3250pa PBS__AVR_A-
Tmega3250PA__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

67

avrb PBSatmega328 PBS__AVR_A-
Tmega328_

avrb PBSatmega328p PBS__AVR_A-
Tmega328P___

avrb PBSatmega329 PBS__AVR_A-
Tmega329_

avrb PBSatmega329a PBS__AVR_A-
Tmega329A_

avrb PBSatmega329p PBS__AVR_A-
Tmega329P__

avrb PBSatmega329pa PBS__AVR_A-
Tmega329PA_

avrb PBSatmega3290 PBS_AVR_A-
Tmega3290

avrb PBSatmega3290a PBS__AVR_A-
Tmega3290A_

avrb PBSatmega3290p PBS__AVR_A-
Tmega3290P___

avrb PBSatmega3290pa PBS__AVR_A-
Tmega3290PA__

avrb PBSatmega32c1 PBS__AVR_ATmega32-
C1

avrb PBSatmega32hvb PBS__AVR_ATmega32-
HVB_

avrb PBSatmega32hvbrevb PBS__AVR_ATmega32-
HVBREVB___

avrb PBSatmega32m1 PBS__AVR_ATmega32-
M1

avrb PBSatmega32u4 PBS__AVR_ATmega32-
U4

avrb PBSatmega32u6 PBS__AVR_ATmega32-
ue__

avrb PBSatmega406 PBS__AVR_A-
Tmegad06___

avrd PBSatmega48hvf PBS__AVR_ATmega48-
HVF__

avrb PBSatmega64rfa2 PBS__AVR_ATmega64-
RFA2__

avrb PBSatmega64rfr2 PBS__AVR_ATmega64-
RFR2__

avrb PBSatmega64 PBS__AVR_ATmega64-

avrb PBSatmega64a PBS__AVR_ATmega64-
A

avrb PBSatmega640 PBS AVR_A-
Tmegab40___

avrb PBSatmega644 PBS__AVR_A-
Tmegab644

avrb PBSatmega644a PBS__AVR_A-
Tmegab44A___

avrb PBSatmega644p PBS__AVR_A-
Tmegab644P___

avrb PBSatmega644pa PBS__AVR_A-
Tmega644PA__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

avrb PBSatmega645 PBS__AVR_A-
Tmegab45

avrb PBSatmega645a PBS__AVR_A-
Tmegab45A

avrb PBSatmega645p PBS__AVR_A-
Tmegab645P

avrb PBSatmega6450 PBS__AVR_A-
Tmegab450

avrb PBSatmega6450a PBS__AVR_A-
Tmega6450A__

avrb PBSatmega6450p PBS__AVR_A-
Tmegab450P___

avrb PBSatmega649 PBS_AVR_A-
Tmegab49

avrb PBSatmega649a PBS__AVR_A-
Tmegab49A

avrb PBSatmega6490 PBS__AVR_A-
Tmegab490

avrb PBSatmega6490a PBS__AVR_A-
Tmega6490A__

avrb PBSatmega6490p PBS__AVR_A-
Tmega6490P___

avrb PBSatmega649p PBS__AVR_A-
Tmegab49P__

avrb PBSatmega64c1 PBS__AVR_ATmega64-
C1

avrb PBSatmega64hve PBS__AVR_ATmega64-
HVE__

avrb PBSatmega64m1 PBS__AVR_ATmega64-
M1

avrb PBSm3000 PBS__AVR_M3000__

avr5/avr51 [3] | PBSat90can128 PBS__AVR_AT90CA-
N128__

avrb/avrb51 [3] | PBSat90usb1286 PBS__AVR_AT90US-
B1286_

avr5/avr51 [3] | PBSat90usb1287 PBS__AVR_AT90US-
B1287__

avr5/avr51 [3] | PBSatmegai28 PBS__AVR_A-
Tmegal28

avrb/avr51 [3] | PBSatmegai28a PBS__AVR_A-
Tmegal28A__

avr5/avr51 [3] | PBSatmegai280 PBS__AVR_A-
Tmegal280_

avr5/avr51 [3] | PBSatmegai281 PBS__AVR_A-
Tmegal281__

avr5/avr51 [3] | PBSatmegai284 PBS__AVR_A-
Tmegal284__

avr5/avr51 [3] | PBSatmegai284p PBS__AVR_A-
Tmegal284P__

avr5/avr51 [3] | PBSatmegai28rfa2 PBS__AVR_A-
Tmegal128RFA2__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



Options for the C compiler avr-gcc

69

avr5/avr51 [3] | PBSatmegail28rfr2 PBS__AVR_A-
Tmegal128RFR2__
avré PBSatmega2560 PBS__AVR_A-
Tmega2560__
avré PBSatmega2561 PBS__AVR_A-
Tmega2561__
avré PBSatmega256rfa2 PBS AVR_A-
Tmega256RFA2___
avré PBSatmega256rfr2 PBS__AVR_A-
Tmega256RFR2__
avr7 PBSata5831 PBS__AVR_ATA5831_-
avrxmegaz2 PBSatmxt112sl PBS__AVR_ATMX-
T112SL__
avrxmega2 PBSatmxt224 PBS__AVR_ATMX-
T224
avrxmega2 PBSatmxt224e PBS__AVR_ATMX-
T224E__
avrxmegaz2 PBSatmxt336s PBS__AVR_ATMX-
T336S__
avrxmega2 PBSatxmegai6a4 PBS__AVR_A-
Txmegai16A4__
avrxmega2 PBSatxmegal6adu PBS__AVR_A-
Txmegai16A4U__
avrxmegaz2 PBSatxmega16c4 PBS__AVR_A-
Txmegal16C4_
avrxmega2 PBSatxmega16d4 PBS__AVR_A-
Txmegal16D4__
avrxmega2 PBSatxmega32a4 PBS__AVR_A-
Txmega32A4___
avrxmega2 PBSatxmega32a4u PBS__AVR_A-
Txmega32A4U__
avrxmega2 PBSatxmega32c4 PBS__AVR_A-
Txmega32C4___
avrxmegaz2 PBSatxmega32d4 PBS__AVR_A-
Txmega32D4__
avrxmega2 PBSatxmega32e5 PBS__AVR_A-
Txmega32E5__
avrxmega2 PBSatxmega32x1 PBS__AVR_A-
Txmega32X1__
avrxmega4 PBSatxmega64a3 PBS__AVR_A-
Txmegab4A3___
avrxmega4 PBSatxmega64a3u PBS__AVR_A-
Txmega64A3U__
avrxmega4 PBSatxmega64a4u PBS__AVR_A-
Txmega64A4U__
avrxmega4 PBSatxmega64b1 PBS__AVR_A-
Txmega64B1__
avrxmega4 PBSatxmega64b3 PBS__AVR_A-
Txmega64B3__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc

70

avrxmega4 PBSatxmega64c3 PBS__AVR_A-
Txmegab4C3___
avrxmega4 PBSatxmega64d3 PBS__AVR_A-
Txmega64D3__
avrxmega4 PBSatxmega64d4 PBS__AVR_A-
Txmega64D4_
avrxmegab PBSatxmega64a1 PBS__AVR_A-
Txmegab4A1__
avrxmegab PBSatxmega64aiu PBS__AVR_A-
Txmega64A1U__
avrxmega6é PBSatmxt540s PBS__AVR_ATmxt540-
S
avrxmega6t PBSatmxt540sreva PBS__AVR_ATmxt540-
SREVA_
avrxmega6é PBSatxmegai128a3 PBS__AVR_A-
Txmegal128A3__
avrxmega6é PBSatxmega128a3u PBS__AVR_A-
Txmega128A3U_
avrxmega6t PBSatxmegai28b1 PBS__AVR_A-
Txmegai128B1__
avrxmega6é PBSatxmega128b3 PBS__AVR_A-
Txmegal128B3__
avrxmega6t PBSatxmega128c3 PBS__AVR_A-
Txmegal128C3__
avrxmega6 PBSatxmega128d3 PBS__AVR_A-
Txmegai128D3__
avrxmega6é PBSatxmegai128d4 PBS__AVR_A-
Txmegai28D4__
avrxmega6t PBSatxmega192a3 PBS__AVR_A-
Txmegai192A3__
avrxmega6é PBSatxmega192a3u PBS__AVR_A-
Txmega192A3U__
avrxmega6é PBSatxmega192c3 PBS__AVR_A-
Txmega192C3__
avrxmega6t PBSatxmega192d3 PBS__AVR_A-
Txmegal192D3__
avrxmega6é PBSatxmega256a3 PBS__AVR_A-
Txmega256A3__
avrxmega6b PBSatxmega256a3u PBS__AVR_A-
Txmega256A3U__
avrxmega6 PBSatxmega256a3b PBS__AVR_A-
Txmega256A3B__
avrxmega6é PBSatxmega256a3bu PBS__AVR_A-
Txmega256A3BU__
avrxmega6é PBSatxmega256¢3 PBS__AVR_A-
Txmega256C3__
avrxmega6é PBSatxmega256d3 PBS__AVR_A-
Txmega256D3__
avrxmegaé PBSatxmega384c3 PBS__AVR_A-
Txmega384C3__

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc 71

avrxmega6é PBSatxmega384d3 PBS__AVR_A-
Txmega384D3
avrxmega7’ PBSatxmegai28al PBS__AVR_A-
Txmegai128A1__
avrxmega? PBSatxmegai28aiu PBS__AVR_A-
Txmegal128A1U__
avrxmega7 PBSatxmegai128a4u PBS__AVR_A-
Txmegal128A4U__
avrtiny10 PBSattiny4 PBS__AVR_ATtiny4
avrtiny10 PBSattiny5 PBS__AVR_ATtiny5
avrtiny10 PBSattiny9 PBS__AVR_ATtiny9_
avrtiny10 PBSattiny10 PBS__AVR_ATtiny10_-
avrtiny10 PBSattiny20 E’BS_AVR_ATtinyZO_-
avrtiny10 PBSattiny40 E’BS_AVR_ATtiny40_—

[1] ’avr25’ architecture is new in GCC 4.2
[2] 'avr35’ architecture is new in GCC 4.2.3

[3] ’avr31’ and "avr51’ architectures is new in GCC 4.3

e —morderl

e —morder?2

Change the order of register assignment. The default is

r24, r25, r18, r19, r20, r21, r22, r23, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14,r13, r12, r11, r10, r9, r8, r7, 16, r5, r4,
r3, r2, r0, r1

Order 1 uses

r18, r19, r20, r21, r22, r23, r24, r25, r30, r31, r26, r27, r28, r29, r17,r16, r15, r14, r13, r12, r11, r10, r9, r8, 17, 16, 15, r4,
r3, r2, r0, r1

Order 2 uses
r25, r24, r23, r22, r21, r20, r19, r18, r30, r31, r26, r27, r28, r29, r17,r16, r15, r14, r13, r12, r11, r10, r9, 8, 17, 16, r5, r4,
r3,r2,r1, r0

e —mint8

Assume int to be an 8-bit integer. Note that this is not really supported by avr-1ibc, so it should normally not be
used. The default is to use 16-bit integers.

* -mno—-interrupts

Generates code that changes the stack pointer without disabling interrupts. Normally, the state of the status register
SREG is saved in a temporary register, interrupts are disabled while changing the stack pointer, and SREG is restored.

Specifying this option will define the preprocessor macro NO_INTERRUPTS to the value 1.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc 72

* -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use many registers (that needs to be
saved/restored on function entry/exit), this saves some space at the cost of a slightly increased execution time.

* -mtiny-stack
Change only the low 8 bits of the stack pointer.

* -mno-tablejump
Deprecated, use —fno—-jump-tables instead.

* -mshort-calls
Use rjmp/rcall (limited range) on >8K devices. On avr2 and avr4 architectures (less than 8 KB or flash mem-
ory), this is always the case. On avr3 and avr5 architectures, calls and jumps to targets outside the current function
will by default use jmp/call instructions that can cover the entire address range, but that require more flash ROM
and execution time.

e —mrtl

Dump the internal compilation result called "RTL" into comments in the generated assembler code. Used for debugging
avr-gcc.

e —msize

Dump the address, size, and relative cost of each statement into comments in the generated assembler code. Used for
debugging avr-gcc.

» —mdeb

Generate lots of debugging information to stderr.

12.1.2 Selected general compiler options
The following general gcc options might be of some interest to AVR users.
e —0On

Optimization level n. Increasing n is meant to optimize more, an optimization level of 0 means no optimization at all,
which is the default if no —0O option is present. The special option —Os is meant to turn on all —02 optimizations that are
not expected to increase code size.

Note that at —03, gcc attempts to inline all "simple” functions. For the AVR target, this will normally constitute a large pes-
simization due to the code increasement. The only other optimization turned on with -03 is ~frename-registers,
which could rather be enabled manually instead.

A simple —O option is equivalent to —O1.

Note also that turning off all optimizations will prevent some warnings from being issued since the generation of those
warnings depends on code analysis steps that are only performed when optimizing (unreachable code, unused vari-
ables).

See also the appropriate FAQ entry for issues regarding debugging optimized code.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.1 Options for the C compiler avr-gcc 73

* —Wa, assembler-options

* —W1, linker-options

Pass the listed options to the assembler, or linker, respectively.

g

Generate debugging information that can be used by avr-gdb.

e —ffreestanding

Assume a "freestanding" environment as per the C standard. This turns off automatic builtin functions (though they can
still be reached by prepending __builtin_ to the actual function name). It also makes the compiler not complain
when main () is declared with a void return type which makes some sense in a microcontroller environment where
the application cannot meaningfully provide a return value to its environment (in most cases, main () won't even return
anyway). However, this also turns off all optimizations normally done by the compiler which assume that functions known
by a certain name behave as described by the standard. E. g., applying the function strlen() to a literal string will normally
cause the compiler to immediately replace that call by the actual length of the string, while with —ffreestanding, it
will always call strlen() at run-time.

» —funsigned-char

Make any unqualfied char type an unsigned char. Without this option, they default to a signed char.

« —funsigned-bitfields

Make any unqualified bitfield type unsigned. By default, they are signed.

¢ —fshort—-enums

Allocate to an enum type only as many bytes as it needs for the declared range of possible values. Specifically, the
enum type will be equivalent to the smallest integer type which has enough room.

» —fpack-struct

Pack all structure members together without holes.

e —fno-jump-tables

Do not generate tablejump instructions. By default, jump tables can be used to optimize switch statements. When
turned off, sequences of compare statements are used instead. Jump tables are usually faster to execute on average,
but in particular for switch statements, where most of the jumps would go to the default label, they might waste a bit
of flash memory.

NOTE: The tablejump instructions use the LPM assembler instruction for access to jump tables. Always use
-fno-jump-tables switch, if compiling a bootloader for devices with more than 64 KB of code memory.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.2 Options for the assembler avr-as 74

12.2 Options for the assembler avr-as
12.2.1 Machine-specific assembler options

* —mmcu=architecture

e —mmcu=MCU name

avr-as understands the same —mmcu= options as avr-gcc. By default, avr2 is assumed, but this can be altered by using
the appropriate .arch pseudo-instruction inside the assembler source file.

* -mall-opcodes
Turns off opcode checking for the actual MCU type, and allows any possible AVR opcode to be assembled.
* -mno-skip-bug

Don’t emit a warning when trying to skip a 2-word instruction with a CPSE/SBIC/SBIS/SBRC/SBRS instruction.
Early AVR devices suffered from a hardware bug where these instructions could not be properly skipped.

¢ —-mno—wrap

For RJMP /RCALL instructions, don’t allow the target address to wrap around for devices that have more than 8 KB of
memory.

* —gstabs

Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb to trace through assembler source
files. This option must not be used when assembling sources that have been generated by the C compiler; these files
already contain the appropriate line number information from the C source files.

¢ —a[cdhlmns=file]
Turn on the assembler listing. The sub-options are:

» c omit false conditionals

» d omit debugging directives
+ h include high-level source
* 1 include assembly

« minclude macro expansions
» n omit forms processing

* s include symbols

+ =file set the name of the listing file

The various sub-options can be combined into a single —a option list; =file must be the last one in that case.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.3 Controlling the linker avr-Id 75

12.2.2 Examples for assembler options passed through the C compiler

Remember that assembler options can be passed from the C compiler frontend using —Wa (see above), so in order to
include the C source code into the assembler listing in file foo.1st, when compiling foo. c, the following compiler
command-line can be used:

$ avr-gcc -c¢ -0 foo.c -o foo.o -Wa,-ahls=foo.lst

In order to pass an assembler file through the C preprocessor first, and have the assembler generate line number
debugging information for it, the following command can be used:

$ avr-gcc -c —-x assembler-with-cpp -o foo.o foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file name with the suffix .S (upper-
case letter S) will make the compiler automatically assume —x assembler-with-cpp, while using .s would pass
the file directly to the assembler (no preprocessing done).

12.3 Controlling the linker avr-ld
12.3.1 Selected linker options

While there are no machine-specific options for avr-Id, a number of the standard options might be of interest to AVR
users.

« —1name

Locate the archive library named 1ibname. a, and use it to resolve currently unresolved symbols from it. The library
is searched along a path that consists of builtin pathname entries that have been specified at compile time (e. g.
/usr/local/avr/1lib on Unix systems), possibly extended by pathname entries as specified by —L options (that
must precede the —1 options on the command-line).

* —Lpath
Additional location to look for archive libraries requested by —1 options.
+ —defsym symbol=expr
Define a global symbol symbol using expr as the value.
.« M
Print a linker map to stdout.
* —Map mapfile
Print a linker map to mapfile.
» —cref

Output a cross reference table to the map file (in case —Map is also present), or to stdout.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



12.3 Controlling the linker avr-Id 76

« —section-start sectionname=org
Start section sectionname at absolute address org.

» —Tbss org
» —Tdata org

« —Ttext org
Start the bss, data, or text section at org, respectively.
« —T scriptfile

Use scriptfile as the linker script, replacing the default linker script. Default linker scripts are stored in a system-specific
location (e. g. under /usr/local/avr/lib/ldscripts on Unix systems), and consist of the AVR architecture
name (avr2 through avr5) with the suffix .x appended. They describe how the various memory sections will be linked
together.

12.3.2 Passing linker options from the C compiler

By default, all unknown non-option arguments on the avr-gcc command-line (i. e., all filename arguments that don'’t
have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus, all files ending in .o (object files) and .a
(object libraries) are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the —1 option which uses an abbre-
viated form of the archive filename (see above). avr-libc ships two system libraries, 1ibc.a, and 1ibm.a. While
the standard library 1ibc . a will always be searched for unresolved references when the linker is started using the C
compiler frontend (i. e., there’s always at least one implied —1c option), the mathematics library 1ibm. a needs to be
explicitly requested using —1m. See also the entry in the FAQ explaining this.

Conventionally, Makefiles use the make macro LDLIBS to keep track of —1 (and possibly —L) options that should only
be appended to the C compiler command-line when linking the final binary. In contrast, the macro LDFLAGS is used
to store other command-line options to the C compiler that should be passed as options during the linking stage. The
difference is that options are placed early on the command-line, while libraries are put at the end since they are to be
used to resolve global symbols that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using the —W1 compiler option, see above. This
option requires that there be no spaces in the appended linker option, while some of the linker options above (like —Map
or —defsym) would require a space. In these situations, the space can be replaced by an equal sign as well. For
example, the following command-line can be used to compile foo. c into an executable, and also produce a link map
that contains a cross-reference list in the file foo.map:

$ avr-gcc -O -o foo.out -W1l,-Map=foo.map -Wl,--cref foo.c

Alternatively, a comma as a placeholder will be replaced by a space before passing the option to the linker. So for a
device with external SRAM, the following command-line would cause the linker to place the data segment at address
0x2000 in the SRAM:

$ avr-gcc -mmcu=atmegal28 -o foo.out -Wl,-Tdata,0x802000

See the explanation of the data section for why 0x800000 needs to be added to the actual value. Note that the stack
will still remain in internal RAM, through the symbol ___stack that is provided by the run-time startup code. This is
probably a good idea anyway (since internal RAM access is faster), and even required for some early devices that had

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



13 Compiler optimization 77

hardware bugs preventing them from using a stack in external RAM. Note also that the heap for malloc () will still be
placed after all the variables in the data section, so in this situation, no stack/heap collision can occur.

In order to relocate the stack from its default location at the top of interns RAM, the value of the symbol ___stack can
be changed on the linker command-line. As the linker is typically called from the compiler frontend, this can be achieved
using a compiler option like

-Wl,--defsym=__stack=0x8003ff

The above will make the code use stack space from RAM address Ox3ff downwards. The amount of stack space
available then depends on the bottom address of internal RAM for a particular device. It is the responsibility of the
application to ensure the stack does not grow out of bounds, as well as to arrange for the stack to not collide with
variable allocations made by the compiler (sections .data and .bss).

13 Compiler optimization

13.1 Problems with reordering code

Author

Jan Waclawek

Programs contain sequences of statements, and a naive compiler would execute them exactly in the order as they are
written. But an optimizing compiler is free to reorder the statements - or even parts of them - if the resulting "net effect”
is the same. The "measure" of the "net effect" is what the standard calls "side effects", and is accomplished exclusively
through accesses (reads and writes) to variables qualified as volatile. So, as long as all volatile reads and writes
are to the same addresses and in the same order (and writes write the same values), the program is correct, regardless
of other operations in it. (One important point to note here is, that time duration between consecutive volatile accesses
is not considered at all.)

Unfortunately, there are also operations which are not covered by volatile accesses. An example of this in avr-gcc/avr-libc
are the cli() and sei() macros defined in <avr/interrupt.h>, which convert directly to the respective assembler mnemonics
through the asm() statement. These don’t constitute a variable access at all, not even volatile, so the compiler is free
to move them around. Although there is a "volatile" qualifier which can be attached to the asm() statement, its effect on
(re)ordering is not clear from the documentation (and is more likely only to prevent complete removal by the optimiser),
as it (among other) states:

Note that even a volatile asm instruction can be moved relative to other code, including across jump instructions. [...]
Similarly, you can’t expect a sequence of volatile asm instructions to remain perfectly consecutive.

See also

http://gcc.gnu.org/onlinedocs/gcc—4.3.4/gcc/Extended-Asm.html

There is another mechanism which can be used to achieve something similar: memory barriers. This is accomplished
through adding a special "memory" clobber to the inline asm statement, and ensures that all variables are flushed from
registers to memory before the statement, and then re-read after the statement. The purpose of memory barriers is
slightly different than to enforce code ordering: it is supposed to ensure that there are no variables "cached" in registers,
so that it is safe to change the content of registers e.g. when switching context in a multitasking OS (on "big" processors
with out-of-order execution they also imply usage of special instructions which force the processor into "in-order" state
(this is not the case of AVRs)).

However, memory barrier works well in ensuring that all volatile accesses before and after the barrier occur in the given
order with respect to the barrier. However, it does not ensure the compiler moving non-volatile-related statements across
the barrier. Peter Dannegger provided a nice example of this effect:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/Extended-Asm.html

14 Using the avrdude program 78

#define cli() __asm volatile( "

#define sei() __asm volatile( "sei" ::: "memory" )

'cli"™ ::: "memory" )

unsigned int ivar;
void test2( unsigned int wval )
( val = 655350 / val;

cli();

ivar = val;

sei();

}

compiles with optimisations switched on (-Os) to

00000112 <test2>:

112: bc 01 movw r22, r24

114: £8 94 cli

116: 8f ef 1di r24, OxFF ; 255

118: 9f ef 1di r25, OxFF ; 255

lla: Oe 94 96 00 call 0x12c ; 0x12c <__udivmodhid>
lle: 70 93 01 02 sts 0x0201, r23

122: 60 93 00 02 sts 0x0200, r22

126: 78 94 sei

128: 08 95 ret

where the potentially slow division is moved across cli(), resulting in interrupts to be disabled longer than intended.
Note, that the volatile access occurs in order with respect to cli() or sei(); so the "net effect" required by the standard
is achieved as intended, it is "only" the timing which is off. However, for most of embedded applications, timing is an
important, sometimes critical factor.

See also

https://www.mikrocontroller.net/topic/65923

Unfortunately, at the moment, in avr-gcc (nor in the C standard), there is no mechanism to enforce complete match of
written and executed code ordering - except maybe of switching the optimization completely off (-O0), or writing all the
critical code in assembly.

To sum it up:

* memory barriers ensure proper ordering of volatile accesses

« memory barriers don’t ensure statements with no volatile accesses to be reordered across the barrier

14 Using the avrdude program

Note

This section was contributed by Brian Dean [ bsd@bsdhome . com].
The avrdude program was previously called avrprog. The name was changed to avoid confusion with the avrprog
program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories of Atmel AVR microcontrollers
on FreeBSD Unix. It supports the Atmel serial programming protocol using the PC’s parallel port and can upload either
a raw binary file or an Intel Hex format file. It can also be used in an interactive mode to individually update EEPROM
cells, fuse bits, and/or lock bits (if their access is supported by the Atmel serial programming protocol.) The main flash

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


https://www.mikrocontroller.net/topic/65923
mailto:bsd@bsdhome.com

14 Using the avrdude program 79

instruction memory of the AVR can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire memory (using avrdude’s —e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

# cd /usr/ports/devel/avrdude
# make install

Once installed, avrdude can program processors using the contents of the .hex file specified on the command line. In
this example, the file main.hex is burned into the flash memory:

# avrdude -p 2313 -e -m flash -1 main.hex
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101

avrdude: erasing chip

avrdude: done.

avrdude: reading input file "main.hex"

avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:

1749 0x00

avrdude: 1750 bytes of flash written

avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:

1749 0x00

avrdude: verifying

avrdude: 1750 bytes of flash verified

avrdude done. Thank you.

The —-p 2313 option lets avrdude know that we are operating on an AT90S2313 chip. This option spec-
ifies the device id and is matched up with the device of the same id in avrdude’s configuration file (
/usr/local/etc/avrdude.conf). To list valid parts, specify the —v option. The —e option instructs avrdude
to perform a chip-erase before programming; this is almost always necessary before programming the flash. The —m
flash option indicates that we want to upload data into the flash memory, while -1 main.hex specifies the name
of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use —m eeprom instead of —m
flash.

To use interactive mode, use the —t option:

# avrdude -p 2313 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101

avrdude>

The ’7?’ command displays a list of valid
commands :

avrdude> ?
>>> ?
Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>

read : alias for dump

write : write memory : write <memtype> <addr> <bl> <b2> ... <bN>
erase : perform a chip erase

sig : display device signature bytes

part : display the current part information

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



15 Release Numbering and Methodology 80

send : send a raw command : send <bl> <b2> <b3> <b4>
help : help
? : help
quit ¢ quit

Use the ’part’ command to display valid memory types for use with the
"dump’ and ’‘write’ commands.

avrdude>

15 Release Numbering and Methodology

15.1 Release Version Numbering Scheme
Release numbers consist of three parts, a major number, a minor number, and a revision number, each separated by a
dot.

The major number is currently 1 (and has always been). It will only be bumped in case a new version offers a major
change in the API that is not backwards compatible.

In the past (up to 1.6.x), even minor numbers have been used to indicate "stable" releases, and odd minor numbers have
been reserved for development branches/versions. As the latter has never really been used, and maintaining a stable
branch that eventually became effectively the same as the development version has proven to be just a cumbersome
and tedious job, this scheme has given up in early 2010, so starting with 1.7.0, every minor number will be used. Minor
numbers will be bumped upon judgement of the development team, whenever it seems appropriate, but at least in cases
where some AP| was changed.

Starting with version 1.4.0, a file <avr/version.h> indicates the library version of an installed library tree.

15.2 Releasing AVR Libc
The information in this section is only relevant to AVR Libc developers and can be ignored by end users.

Note

In what follows, | assume you know how to use SVN and how to checkout multiple source trees in a single directory
without having them clobber each other. If you don’t know how to do this, you probably shouldn’t be making releases
or cutting branches.

15.2.1 Creating an SVN branch

The following steps should be taken to cut a branch in SVN (assuming $username is set to your savannah username):

1. Check out a fresh source tree from SVN trunk.

2. Update the NEWS file with pending release number and commit to SVN trunk:

Change Changes since avr-libc-<last_release>: to Changes in avr-libc-<this_relelase>.

3. Set the branch-point tag (setting <major> and <minor> accordingly):

svn copy svn+ssh://$Susername@svn.savannah.nongnu.org/avr—-libc/trunk svn+ssh-
://$username@svn.savannah.nongnu.org/avr-libc/tags/avr-libc—<major>_<minor>-branchpoint

4. Create the branch:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



15.2 Releasing AVR Libc 81

svn copy svn+ssh://$username@svn.savannah.nongnu.org/avr—-libc/trunk svn+ssh-
://$usernamelsvn.savannah.nongnu.org/avr—-libc/branches/avr-1libc—-<major>_-
<minor>-branch

5. Update the package version in configure.ac and commit configure.ac to SVN trunk:

Change minor number to next odd value.

6. Update the NEWS file and commit to SVN trunk:

Add Changes since avr-libc-< this_release>:

7. Check out a new tree for the branch:

svn co svn+ssh://$username@svn.savannah.nongnu.org/avr-libc/branches/avr-1libc—<major>-
_<minor>-branch

8. Update the package version in configure.ac and commit configure.ac to SVN branch:

Change the patch number to 90 to denote that this now a branch leading up to a release. Be sure to leave the
<date> part of the version.

9. Bring the build system up to date by running bootstrap and configure.

10. Perform a 'make distcheck’ and make sure it succeeds. This will create the snapshot source tarball. This should
be considered the first release candidate.

11. Upload the snapshot tarball to savannah.
12. Update the bug tracker interface on Savannah: Bugs —> Edit field values —> Release / Fixed Release

13. Announce the branch and the branch tag to the avr-libc-dev list so other developers can checkout the branch.

15.2.2 Making a release

A stable release will only be done on a branch, not from the SVN trunk.

The following steps should be taken when making a release:

1. Make sure the source tree you are working from is on the correct branch:

svn switch svn+ssh://Susername@svn.savannah.nongnu.org/avr-libc/branches/avr-1libc-<majc
_<minor>-branch

2. Update the package version in configure.ac and commit it to SVN.
3. Update the gnu tool chain version requirements in the README and commit to SVN.

4. Update the Changelog file to note the release and commit to SVN on the branch:

Add Released avr-libc-<this_release>.

5. Update the NEWS file with pending release number and commit to SVN:

Change Changes since avr-libc-<last_release>: to Changes in avr-libc-<this_relelase> .
6. Bring the build system up to date by running bootstrap and configure.

7. Perform a’make distcheck’ and make sure it succeeds. This will create the source tarball.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



15.2 Releasing AVR Libc 82

8. Tag the release:

svn copy . svn+ssh://S$Susername@svn.savannah.nongnu.org/avr-libc/tags/avr-libc-<major>-
_<minor>_<patch>-release

or

svn copy svn+ssh://S$Susername@svn.savannah.nongnu.org/avr-libc/branches/avr—-1ibc—-<major>
_<minor>-branch svn+ssh://$username@svn.savannah.nongnu.org/avr—-libc/tags/avr—-1libc-<maj
_<minor>_<patch>-release

9. Upload the tarball to savannah.

10. Update the NEWS file, and commit to SVN:
Add Changes since avr-libc-<major>_<minor>_<patch>:

11. Update the bug tracker interface on Savannah: Bugs —> Edit field values —> Release / Fixed Release
12. Generate the latest documentation and upload to savannah.

13. Announce the release.

The following hypothetical diagram should help clarify version and branch relationships.

HEAD 1.0 Branch 1.2 Branch
cvs tag avr-libc-1_0-branchpoint ﬁ

set version to 1.1.0.<date>
cvs tag —b avr-libc-1_0-branch

set version to 0.90.90.<date>

set versionto 1.0
cvs tag avr-libc-1_0-release

set version to 1.0.0.<date>

'

L set versionto 1.0.1 ]
V.

s tag avr-libc-1_0_1-release

\J
cvs tag avr-libc-1_2-branchpoint

set version to 1.3.0.<date> cvs tag —b avr-libc-1_2-branch
set version to 1.1.90.<date>
set versionto 1.2
cvs tag avr-libc-1_2-release
cvs tag avr-libc-2.0-branchpoint +

set version to 2.1.0.<date>

'

Figure 4: Release tree

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



16 Acknowledgments

83

16 Acknowledgments

This document tries to tie together the labors of a large group of people. Without these individuals’ efforts, we wouldn’t

have a terrific, free set of tools to develop AVR projects. We all owe thanks to:

— The GCC Team, which produced a very capable set of development tools for
an amazing number of platforms and processors.

— Denis Chertykov [ denisc@overta.ru ] for making the AVR-specific changes
to the GNU tools.

— Denis Chertykov and Marek Michalkiewicz [ marekm@linux.org.pl ] for
developing the standard libraries and startup code for \b AVR-GCC.

- Uros Platise for developing the AVR programmer tool, \b uisp.

— Joerg Wunsch [ joerg@FreeBSD.ORG ] for adding all the AVR development
tools to the FreeBSD [ http://www.freebsd.org ] ports tree and for
providing the basics for the \ref demo_project "demo project".

- Brian Dean [ bsd@bsdhome.com ] for developing \b avrdude (an alternative
to <b>uisp</b>) and for contributing \ref using_avrprog "documentation"
which describes how to use it. \b Avrdude was previously called

\b avrprog.

- Eric Weddington [ eweddington@cso.atmel.com ] for maintaining the \b WinAVR
package and thus making the continued improvements to the
open source AVR toolchain available to many users.

- Rich Neswold for writing the original avr-tools document (which he
graciously allowed to be merged into this document) and his
improvements to the \ref demo_project "demo project".

— Theodore A. Roth for having been a long-time maintainer of

many of the tools (\b AVR-Libc, the AVR port of \b GDB, \b AVaRICE,
\b uisp, \b avrdude) .

- All the people who currently maintain the tools, and/or
have submitted suggestions, patches and bug reports.

(See the AUTHORS files of the various tools.)

- And lastly, all the users who use the software. If nobody used the
software, we would probably not be very motivated to continue to develop
it. Keep those bug reports coming. ;-)

17 Todo List

Group avr_boot

From email with Marek: On smaller devices (all except ATmega64/128), _ SPM_REG is in the I/O space, accessible
with the shorter "in" and "out" instructions - since the boot loader has a limited size, this could be an important

optimization.

18 Deprecated List

Global cbi (port, bit)

Global enable_external_int (mask)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



19 Module Index 84

Global inb (port)

Global inp (port)

Global INTERRUPT (sighame)

Global ISR_ALIAS (vector, target_vector)
For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Global outb (port, val)

Global outp (val, port)

Global sbi (port, bit)

Global SIGNAL (vector)
Do not use SIGNAL() in new code. Use ISR() instead.

Global timer_enable_int (unsigned char ints)

19 Module Index

19.1 Modules

Here is a list of all modules:
<alloca.h>: Allocate space in the stack 90
<assert.h>: Diagnostics 91
<ctype.h>: Character Operations 92
<errno.h>: System Errors 94
<inttypes.h>: Integer Type conversions 95
<math.h>: Mathematics 105
<setjmp.h>: Non-local goto 115
<stdint.h>: Standard Integer Types 117
<stdio.h>: Standard 10 facilities 127
<stdlib.h>: General utilities 140
<string.h>: Strings 149
<avr/boot.h>: Bootloader Support Utilities 159

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



19.1 Modules 85

<avr/cpufunc.h>: Special AVR CPU functions 165
<avr/eeprom.h>: EEPROM handling 166
<avr/fuse.h>: Fuse Support 170
<avr/interrupt.h>: Interrupts 173
<avr/io.h>: AVR device-specific 10 definitions 191
<avr/lock.h>: Lockbit Support 192
<avr/pgmspace.h>: Program Space Utilities 195
<avr/power.h>: Power Reduction Management 207
<avr/sfr_defs.h>: Special function registers 258

Additional notes from <avr/sfr_defs.h> 257
<avr/signature.h>: Signature Support 260
<avt/sleep.h>: Power Management and Sleep Modes 261
<avr/version.h>: avr-libc version macros 263
<avr/wdt.h>: Watchdog timer handling 265
<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 268
<util/crc16.h>: CRC Computations 271
<util/delay_basic.h>: Basic busy-wait delay loops 274
<util/parity.h>: Parity bit generation 275
<util/setbaud.h>: Helper macros for baud rate calculations 276
<util/twi.h>: TWI bit mask definitions 278
<compat/deprecated.h>: Deprecated items 282
<compat/ina90.h>: Compatibility with IAR EWB 3.x 285
Demo projects 286

Combining C and assembly source files 287

A simple project 290

A more sophisticated project 303

Using the standard 10 facilities 309

Example using the two-wire interface (TWI) 315

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



20 Data Structure Index 86

20 Data Structure Index

20.1 Data Structures

Here are the data structures with brief descriptions:
div_t 319
Idiv_t 319

21 File Index

21.1 File List

Here is a list of all documented files with brief descriptions:
alloca.h ??
assert.h 320
atoi.S 320
atol.S 320
atomic.h 320
boot.h 320
cpufunc.h 325
crc16.h 325
ctype.h 325
defines.h ??
delay_basic.h 326
deprecated.h ?2?
dtoa_conv.h ?2?
eedef.h ??
eeprom.h ??
errno.h 326
fdevopen.c 326
ffs.S 327
ffsl.S 327
fisll.S 327

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



21.1 File List 87

fuse.h 327
hd44780.h ?2?
ina90.h 2?
interrupt.h 327
inttypes.h 328
io.h 330
iocompat.h 29
Icd.h 2?
lock.h 330
math.h 330
memccpy.S 332
memchr.S 332
memchr_P.S 332
memcmp.S 332
memcmp_P.S 332
memcmp_PF.S 332
memcpy.S 332
memcpy_P.S 332
memmem.S 332
memmove.S 333
memrchr.S 333
memrchr_P.S 333
memset.S 333
parity.h 333
pgmspace.h 333
portpins.h ?2?
power.h 343
project.h ??
setbaud.h 343
setjmp.h 343

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



21.1 File List 88

sfr_defs.h ?2?
signal.h ??
signature.h 343
sleep.h 344
stdint.h 344
stdio.h 347
stdio_private.h ?2?
stdlib.h 348
stdlib_private.h ??
strcasecmp.S 350
strcasecmp_P.S 350
strcasestr.S 350
strcat.S 350
strcat_P.S 350
strchr.S 350
strchr_P.S 350
strchrnul.S 350
strchrnul_P.S 350
stremp.S 350
strcmp_P.S 350
strcpy.S 350
strcpy_P.S 351
strcspn.S 351
strcspn_P.S 351
strdup.c 351
string.h 351
stricat.S 352
stricat_P.S 352
stricpy.S 352
stricpy_P.S 352

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



21.1 File List 89

strlen.S 352
strlen_P.S 352
strlwr.S 352
strncasecmp.S 353
strncasecmp_P.S 353
strncat.S 353
strncat_P.S 353
strncmp.S 353
strncmp_P.S 353
strncpy.S 353
strncpy_P.S 353
strnlen.S 353
strnlen_P.S 353
strpbrk.S 353
strpbrk_P.S 353
strrchr.S 353
strrchr_P.S 354
strrev.S 354
strsep.S 354
strsep_P.S 354
strspn.S 354
strspn_P.S 354
strstr.S 354
strstr_ P.S 354
strtok.c 354
strtok_P.c 354
strtok_r.S 355
strtok_rP.S 355
strupr.S 355
util/twi.h 355

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22 Module Documentation 90

compat/twi.h 29
uart.h 29
version.h 2?
wdt.h 356
xtoa_fast.h ?2?

22 Module Documentation

22.1 <alloca.h>: Allocate space in the stack

Functions

 void * alloca (size_t __size)

22.1.1 Detailed Description
22.1.2 Function Documentation

22.1.21 voidx alloca ( size_t __size )

Allocate __size bytes of space in the stack frame of the caller.

This temporary space is automatically freed when the function that called alloca() returns to its caller. Avr-libc defines
the alloca() as a macro, which is translated into the inlined __builtin_alloca () function. The fact that the code
is inlined, means that it is impossible to take the address of this function, or to change its behaviour by linking with a
different library.

Returns

alloca() returns a pointer to the beginning of the allocated space. If the allocation causes stack overflow, program
behaviour is undefined.

Warning

Avoid use alloca() inside the list of arguments of a function call.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.2 <assert.h>: Diagnostics 91

22.2 <assert.h>: Diagnostics
Macros

+ #define assert(expression)

22.2.1 Detailed Description

#include <assert.h>

This header file defines a debugging aid.

As there is no standard error output stream available for many applications using this library, the generation of a printable
error message is not enabled by default. These messages will only be generated if the application defines the macro

__ASSERT_USE_STDERR

before including the <assert .h> header file. By default, only abort() will be called to halt the application.

22.2.2 Macro Definition Documentation

22.2.21 #define assert( expression )

Parameters

\ expression | Expression to test for.

The assert() macro tests the given expression and if it is false, the calling process is terminated. A diagnostic message
is written to stderr and the function abort() is called, effectively terminating the program.

If expression is true, the assert() macro does nothing.

The assert() macro may be removed at compile time by defining NDEBUG as a macro (e.g., by using the compiler option
-DNDEBUG).

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.3 <ctype.h>: Character Operations

92

22.3 <ctype.h>: Character Operations

Character classification routines

These functions perform character classification. They return true or false status depending whether the character
passed to the function falls into the function’s classification (i.e. isdigit() returns true if its argument is any value ’0’

though ’'9’, inclusive). If the input is not an unsigned char value, all of this function return false.

Charac

intisalnum (int __c)
intisalpha (int __c)
int isascii (int __c)
int isblank (int __c)
intiscntrl (int __c)
int isdigit (int __c)
int isgraph (int __c)
int islower (int __c)
int isprint (int __c)
intispunct (int __c)
int isspace (int __c)
int isupper (int __c)
int isxdigit (int __c)

ter convertion routines

This realization permits all possible values of integer argument. The toascii() function clears all highest bits. The

tolower() and toupper() functions return an input argument as is, if it is not an unsigned char value.

22.3.1

These functions perform various operations on characters.

int toascii (int __c)
int tolower (int __c)
int toupper (int __c)

Detailed Description

#include <ctype.h>

22.3.2 Function Documentation

22.3.2.1

Checks for an alphanumeric character. It is equivalentto (isalpha (c) || isdigit (c)).

22.3.2.2

Checks for an alphabetic character. It is equivalent to (isupper (c)

22.3.2.3

int isalnum ( int __c )

int isalpha ( int __c )

int isascii ( int __c )

|| islower (c)).

Checks whether c is a 7-bit unsigned char value that fits into the ASCII character set.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.3 <ctype.h>: Character Operations 93

22.3.2.4 intisblank ( int__c)

Checks for a blank character, that is, a space or a tab.
22.3.2.5 intiscntrl( int __c)

Checks for a control character.

22.3.2.6 intisdigit( int __c)

Checks for a digit (0 through 9).

22.3.2.7 intisgraph( int __c )

Checks for any printable character except space.
22.3.2.8 intislower ( int__c )

Checks for a lower-case character.

22.3.2.9 intisprint( int__c)

Checks for any printable character including space.
22.3.2.10 intispunct( int__c)

Checks for any printable character which is not a space or an alphanumeric character.
22.3.2.11 intisspace ( int__c)

Checks for white-space characters. For the avr-libc library, these are: space, form-feed ('\f’), newline ('\n’), carriage
return (\r’), horizontal tab (\t'), and vertical tab ("\v’).

22.3.2.12 intisupper ( int__c)

Checks for an uppercase letter.

22.3.2.13 intisxdigit ( int __c )

Checks for a hexadecimal digits, i.e. oneof0123456789abcdefABCDEF

22.3.2.14 int toascii ( int __c )

Converts c to a 7-bit unsigned char value that fits into the ASCII character set, by clearing the high-order bits.

Warning

Many people will be unhappy if you use this function. This function will convert accented letters into random
characters.

22.3.2.15 int tolower ( int __c )
Converts the letter c to lower case, if possible.
22.3.2.16 int toupper ( int __c )

Converts the letter c to upper case, if possible.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.4 <errno.h>: System Errors 94

22.4 <errno.h>: System Errors

Macros
« #define EDOM 33
« ##define ERANGE 34

22.41 Detailed Description

#include <errno.h>

Some functions in the library set the global variable errno when an error occurs. The file, <errno.h>, provides
symbolic names for various error codes.

Warning

The errno global variable is not safe to use in a threaded or multi-task system. A race condition can occur if a task
is interrupted between the call which sets error and when the task examines errno. If another task changes
errno during this time, the result will be incorrect for the interrupted task.

22.4.2 Macro Definition Documentation
22.4.2.1 #define EDOM 33

Domain error.

22.4.2.2 #define ERANGE 34

Range error.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

95

22,5 <inttypes.h>: Integer Type conversions
Far pointers for memory access >64K

 typedef int32_t int_farptr_t
« typedef uint32_t uint_farptr_t

macros for printf and scanf format specifiers
For C++, these are only included if __STDC_LIMIT_MACROS is defined before including <inttypes.h>.

« #define PRId8 "d"

* #define PRIALEAST8 "d"
« #define PRIAFASTS8 "d"

* #define PRIi8 "i"

- #tdefine PRIILEASTS8 "i"

- #tdefine PRIIFASTS8 "i"
 #define PRId16 "d"

- #tdefine PRIJLEAST16 "d"
- #tdefine PRIJFAST16 "d"
- #tdefine PRIi16 "i"

« #tdefine PRIILEAST16 "i"

« #tdefine PRIIFAST16 "i"

« #tdefine PRIdA32 "Id"

« #tdefine PRIALEAST32 "Id"
« #tdefine PRIDFAST32 "Id"
« #tdefine PRIi32 "li"

« #tdefine PRIILEAST32 "li"
« #define PRIIFAST32 "li"

« #define PRIJPTR PRId16
« #define PRIIPTR PRIi16

« #define PRIo8 "o"

« #define PRIOLEASTS8 "0"
« #define PRIOFAST8 "o"

* #define PRIu8 "u"

« #define PRIULEASTS8 "u"
« #define PRIUFAST8 "u"

* #define PRIx8 "x"

* #define PRIXLEASTS8 "x"

« #define PRIXFAST8 "x"

« #define PRIX8 "X"

« #define PRIXLEASTS8 "X"
« #define PRIXFAST8 "X"
 #define PRIo16 "0"
 #define PRIOLEAST16 "0"
 #define PRIOFAST16 "o"
» #define PRIu16 "u"

- #tdefine PRIULEAST16 "u"
- #tdefine PRIUFAST16 "u"
« #tdefine PRIx16 "x"

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

96

#define PRIXLEAST16 "x"
#define PRIXFAST16 "x"
#define PRIX16 "X"
#define PRIXLEAST16 "X"
#define PRIXFAST16 "X"
#define PRIo32 "lo"
#define PRIOLEAST32 "lo"
#define PRIOFAST32 "lo"
#define PRIu32 "lu"
#define PRIULEAST32 "lu"
#define PRIUFAST32 "lu"
#define PRIx32 "Ix"
#define PRIXLEAST32 "Ix"
#define PRIXFAST32 "Ix"
#define PRIX32 "IX"

« #define PRIXLEAST32 "IX"
* #define PRIXFAST32 "IX"
- #define PRIOPTR PRIlo16
« #tdefine PRIUPTR PRIu16
« #define PRIXPTR PRIx16

« #define PRIXPTR PRIX16
* #define SCNd16 "d"
 #define SCNALEAST16 "d"
* #define SCNdFAST16 "d"
» #define SCNi16 "i"

« #define SCNILEAST16 "i"

« #tdefine SCNIFAST16 "i"

* #define SCNd32 "Id"

* #define SCNdALEAST32 "Id"
« #tdefine SCNdFAST32 "Id"
« #define SCNi32 "li"

« #define SCNILEAST32 "li"
- f#tdefine SCNIFAST32 "li"

« #define SCNAPTR SCNd16
« #define SCNIPTR SCNi16
« #define SCNo16 "o"
 #define SCNoLEAST16 "o"
« #define SCNoFAST16 "0"
 #define SCNu16 "u"

« #define SCNULEAST16 "u"
« #tdefine SCNUFAST16 "u"
» #define SCNx16 "x"
 #define SCNXLEAST16 "x"
« f#tdefine SCNxFAST16 "x"

* #define SCNo32 "lo"

« #define SCNoLEAST32 "lo"
» #define SCNoFAST32 "lo"
* #define SCNu32 "lu"

« #define SCNULEAST32 "lu"
» #define SCNUFAST32 "lu"
« #define SCNx32 "Ix"

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions 97

« #define SCNxLEAST32 "Ix"
« #define SCNxFAST32 "Ix"

« #define SCNoPTR SCNo16
- #define SCNuPTR SCNu16
« #tdefine SCNxPTR SCNx16

22.5.1 Detailed Description

#include <inttypes.h>

This header file includes the exact-width integer definitions from <stdint.h>, and extends them with additional
facilities provided by the implementation.

Currently, the extensions include two additional integer types that could hold a "far" pointer (i.e. a code pointer that can
address more than 64 KB), as well as standard names for all printf and scanf formatting options that are supported by
the <stdio.h>: Standard |0 facilities. As the library does not support the full range of conversion specifiers from ISO
9899:1999, only those conversions that are actually implemented will be listed here.

The idea behind these conversion macros is that, for each of the types defined by <stdint.h>, a macro will be supplied
that portably allows formatting an object of that type in printf() or scanf() operations. Example:

#include <inttypes.h>

uint8_t smallval;
int32_t longval;

printf ("The hexadecimal value of smallval is %" PRIx8
", the decimal value of longval is %" PRId32 ".\n“,
smallval, longval);

22.5.2 Macro Definition Documentation

22.5.2.1 #define PRId16 "d”

decimal printf format for int16_t
22,5.2.2 #define PRId32 "Id”

decimal printf format for int32_t
22,5.2.3 #define PRId8 "d”

decimal printf format for int8_t
22,5.2.4 #define PRIIFAST16 "d”
decimal printf format for int_fast16_t
22,5.2.5 #define PRIIFAST32 "Id”
decimal printf format for int_fast32_t
22,5.2.6 #define PRIDFASTS "d”
decimal printf format for int_fast8_t
22,5.2.7 #define PRIILEAST16 "d”

decimal printf format for int_least16_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

98

22,5.2.8 #define PRIDLEAST32 "Id”
decimal printf format for int_least32_t
22,5.2.9 #define PRIILEASTS "d”
decimal printf format for int_least8_t
22,5.2.10 #define PRIPTR PRId16
decimal printf format for intptr_t
22,5.2.11 #define PRIi16 "i”

integer printf format for int16_t
22,5.2.12 #define PRIi32 "Ii”

integer printf format for int32_t
22.5.2.13 #define PRIi8 ”i”

integer printf format for int8_t
225.2.14 #define PRIIFAST16 ”i”
integer printf format for int_fast16_t
225.2.15 #define PRIIFAST32 "Ii”
integer printf format for int_fast32_t
225.2.16 #define PRIIFASTS ”i”
integer printf format for int_fast8_t
22.5.2.17 #define PRIILEAST16 "i”
integer printf format for int_least16_t
22.5.2.18 #define PRIILEAST32 "Ii”
integer printf format for int_least32_t
22,5.2.19 #define PRIILEASTS "i”
integer printf format for int_least8_t
22,5.2.20 #define PRIIPTR PRIi16
integer printf format for intptr_t
22.5.2.21 #define PRIo16 "0”

octal printf format for uint16_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

99

22,5.2.22 #define PRI032 "l0”

octal printf format for uint32_t
22,5.2.23 f#define PRIo8 "0”

octal printf format for uint8_t
22,5.2.24 f#define PRIOFAST16 "0”
octal printf format for uint_fast16_t
22,5.2.25 #define PRIOFAST32 "lo”
octal printf format for uint_fast32_t
22,5.2.26 #define PRIOFAST8 "0”
octal printf format for uint_fast8_t
22.5.2.27 #define PRIOLEAST16 "0”
octal printf format for uint_least16_t
225.2.28 #define PRIOLEAST32 "lo”
octal printf format for uint_least32_t
22.5.2.29 #define PRIOLEASTS "0”
octal printf format for uint_least8_t
22.5.2.30 #define PRIOPTR PRIo16
octal printf format for uintptr_t
22.5.2.31 #define PRIu16 "u”

decimal printf format for uint16_t
22.5.2.32 #define PRIu32 "lu”
decimal printf format for uint32_t
22.5.2.33 #define PRIu8 "u”

decimal printf format for uint8_t
22.5.2.34 #define PRIUFAST16 "u”
decimal printf format for uint_fast16_t
22,5.2.35 #define PRIUFAST32 "lu”

decimal printf format for uint_fast32_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

100

22,5.2.36 #define PRIUFAST8 "u”

decimal printf format for uint_fast8_t

22,5.2.37 #define PRIULEAST16 "u”

decimal printf format for uint_least16_t

22,5.2.38 #define PRIULEAST32 "lu”

decimal printf format for uint_least32_t

22,5.2.39 f#define PRIULEASTS "u”

decimal printf format for uint_least8_t

22,5.2.40 #define PRIUPTR PRIu16

decimal printf format for uintptr_t

22.5.2.41 #define PRIx16 "x”

hexadecimal printf format for uint16_t

22.5.2.42 #define PRIX16 ”X”

uppercase hexadecimal printf format for uint16_t
22.5.2.43 #define PRIx32 ”Ix”

hexadecimal printf format for uint32_t

22.5.2.44 #define PRIX32 "IX”

uppercase hexadecimal printf format for uint32_t
22.5.2.45 #define PRIx8 "x”

hexadecimal printf format for uint8_t

22.5.2.46 #define PRIX8 "X”

uppercase hexadecimal printf format for uint8_t
22,5.2.47 #define PRIXFAST16 "x”

hexadecimal printf format for uint_fast16_t

22.5.2.48 #define PRIXFAST16 X"

uppercase hexadecimal printf format for uint_fast16_t

22.5.2.49 #define PRIXFAST32 "Ix”

hexadecimal printf format for uint_fast32_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions 101

22.5.2.50 #define PRIXFAST32 "IX”

uppercase hexadecimal printf format for uint_fast32_t
22.5.2.51 #define PRIXFAST8 "x”

hexadecimal printf format for uint_fast8_t

22.5.2.52 #define PRIXFAST8 "X”

uppercase hexadecimal printf format for uint_fast8_t
22.5.2.53 #define PRIXLEAST16 "x”

hexadecimal printf format for uint_least16_t

22.5.2.54 #define PRIXLEAST16 "X”

uppercase hexadecimal printf format for uint_least16_t
22.5.2.55 #define PRIXLEAST32 "Ix”

hexadecimal printf format for uint_least32_t

22.5.2.56 #define PRIXLEAST32 "IX”

uppercase hexadecimal printf format for uint_least32_t
22.5.2.57 #define PRIXLEASTS "x”

hexadecimal printf format for uint_least8_t

22.5.2.58 #define PRIXLEAST8 X"

uppercase hexadecimal printf format for uint_least8_t
22.5.2.59 #define PRIXPTR PRIx16

hexadecimal printf format for uintptr_t

22.5.2.60 #define PRIXPTR PRIX16

uppercase hexadecimal printf format for uintptr_t
225.2.61 #define SCNd16 "d”

decimal scanf format for int16_t

225.2.62 #define SCNd32 "1d”

decimal scanf format for int32_t

22,5.2.63 #define SCNAFAST16 "d”

decimal scanf format for int_fast16_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

102

22.5.2.64 #define SCNdFAST32 "Id”

decimal scanf format for int_fast32_t
22.5.2.65 #define SCNALEAST16 "d”

decimal scanf format for int_least16_t
22.5.2.66 #define SCNALEAST32 "Id”

decimal scanf format for int_least32_t
22.5.2.67 #define SCNdPTR SCNd16

decimal scanf format for intptr_t

22.5.2.68 #define SCNi16 "i”

generic-integer scanf format for int16_t
22.5.2.69 #define SCNi32 "li”

generic-integer scanf format for int32_t
225.2.70 #define SCNiFAST16 ”i”
generic-integer scanf format for int_fast16_t
22.5.2.71 #define SCNiIFAST32 "Ii”
generic-integer scanf format for int_fast32_t
225.2.72 #define SCNILEAST16 "i”
generic-integer scanf format for int_least16_t
225.2.73 #define SCNILEAST32 "li”
generic-integer scanf format for int_least32_t
225.2.74 #define SCNiPTR SCNi16
generic-integer scanf format for intptr_t
22.5.2.75 #define SCNo16 "0”

octal scanf format for uint16_t

225.2.76 #define SCNo32 "l0”

octal scanf format for uint32_t

22.5.2.77 #define SCNoFAST16 "0”

octal scanf format for uint_fast16_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions

103

22.5.2.78 #define SCNoFAST32 "lo”
octal scanf format for uint_fast32_t
22.5.2.79 #define SCNoLEAST16 "0”
octal scanf format for uint_least16_t
22.5.2.80 #define SCNoLEAST32 "lo”
octal scanf format for uint_least32_t
22.5.2.81 #define SCNoPTR SCNo16
octal scanf format for uintptr_t
22.5.2.82 #define SCNu16 "u”

decimal scanf format for uint16_t
22.5.2.83 #define SCNu32 "lu”

decimal scanf format for uint32_t
22.5.2.84 #define SCNuFAST16 "u”
decimal scanf format for uint_fast16_t
225.2.85 #define SCNuUFAST32 "lu”
decimal scanf format for uint_fast32_t
22.5.2.86 #define SCNULEAST16 "u”
decimal scanf format for uint_least16_t
22.5.2.87 #define SCNULEAST32 "lu”
decimal scanf format for uint_least32_t
22.5.2.88 #define SCNuPTR SCNu16
decimal scanf format for uintptr_t
22.5.2.89 #define SCNx16 "x”
hexadecimal scanf format for uint16_t
22.5.2.90 #define SCNx32 "Ix”
hexadecimal scanf format for uint32_t
225.2.91 #define SCNXFAST16 "x”

hexadecimal scanf format for uint_fast16_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22,5 <inttypes.h>: Integer Type conversions 104

22.5.2.92 #define SCNXFAST32 "Ix”
hexadecimal scanf format for uint_fast32_t
22.5.2.93 #define SCNXLEAST16 "x”
hexadecimal scanf format for uint_least16_t
22.5.2.94 #define SCNXLEAST32 "Ix”
hexadecimal scanf format for uint_least32_t
22.5.2.95 #define SCNXxPTR SCNx16

hexadecimal scanf format for uintptr_t

22.5.3 Typedef Documentation

225.3.1 typedef int32_t int_farptr_t

signed integer type that can hold a pointer > 64 KB
225.3.2 typedef uint32_t uint_farptr_t

unsigned integer type that can hold a pointer > 64 KB

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics

105

22.6 <math.h>: Mathematics

Macros

* #define M_E 2.7182818284590452354

* #define M_LOG2E 1.4426950408889634074 /x log_2 e */
+ #define M_LOG10E 0.43429448190325182765 /* log_10 € */
« #define M_LN2 0.69314718055994530942 /x log_e 2 */

* #define M_LN10 2.30258509299404568402 /* log_e 10 */
+ #define M_PI 3.14159265358979323846 /x pi */

« #define M_PI_2 1.57079632679489661923 /x pi/2 */

* #define M_PI_4 0.78539816339744830962 /« pi/4 */

* #define M_1_P1 0.31830988618379067154 /x 1/pi */

« #define M_2_P10.63661977236758134308 /x 2/pi */

* #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
* #define M_SQRT2 1.41421356237309504880 /x sqrt(2) */
 #define M_SQRT1_2 0.70710678118654752440 /x 1/sqrt(2) */
« #define NAN __builtin_nan("")

* #define INFINITY __builtin_inf()

« #define cosf cos

« #define sinf sin

* #define tanf tan

« #define fabsf fabs

« #define fmodf fmod

« #define sqrtf sqrt

« #define cbrtf cbrt

« #define hypotf hypot

« #define squaref square

* #define floorf floor

« #define ceilf cell

« #define frexpf frexp

« #define Idexpf Idexp

* #define expf exp

« #define coshf cosh

* #define sinhf sinh

* #define tanhf tanh

« #define acosf acos

* #define asinf asin

* #define atanf atan

« #define atan2f atan2

« #define logf log

« #define log10f log10

+ #define powf pow

* #define isnanf isnan

* #define isinff isinf

« #define isfinitef isfinite

« #define copysignf copysign

« #define signbitf signbit

« #define fdimf fdim

 #define fmaf fma

« #define fmaxf fmax

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 106

« #define fminf fmin

« #define truncf trunc

« #define roundf round
« #define Iroundf Iround
« #define Irintf Irint

Functions

 double cos (double _ x)

+ double sin (double __ x)

+ double tan (double _ x)

+ double fabs (double _ x)

+ double fmod (double __x, double __y)

+ double modf (double __x, double *__iptr)
« float modff (float __x, float x__iptr)
 double sqrt (double _ x)

* double cbrt (double __ x)

» double hypot (double __x, double __y)
 double square (double __ x)

« double floor (double __x)

« double ceil (double _ x)

* double frexp (double __x, int *__pexp)
 double Idexp (double __x, int __exp)
 double exp (double __ x)

 double cosh (double __ x)

* double sinh (double __ x
* double tanh (double __ x
+ double acos (double __x)

* double asin (double __ x)

+ double atan (double __ x)

» double atan2 (double __y, double _ x)

 double log (double _ x)

+ double log10 (double _ x)

+ double pow (double __x, double __y)

* intisnan (double _ x)

* intisinf (double _ x)

« static int isfinite (double __ x)

« static double copysign (double __ x, double __y)
* int signbit (double __ x)

+ double fdim (double __x, double __y)

» double fma (double __x, double __y, double __z)
+ double fmax (double __x, double __y)

+ double fmin (double __x, double __y)

 double trunc (double __ x)

+ double round (double __ x)

* long Iround (double __ x)

* long Irint (double __x)

<

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 107

22.6.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Notes:

* In order to access the functions declared herein, it is usually also required to additionally link against the library
libm.a. See also the related FAQ entry.

» Math functions do not raise exceptions and do not change the errno variable. Therefore the majority of them
are declared with const attribute, for better optimization by GCC.

22.6.2 Macro Definition Documentation

22.6.2.1 #define acosf acos
The alias for acos().

22.6.2.2 #define asinf asin
The alias for asin().

22.6.2.3 #define atan2f atan2
The alias for atan2().
22.6.2.4 #define atanf atan
The alias for atan().

22.6.2.5 #define cbrif cbrt
The alias for cbrt().

22.6.2.6 #define ceilf ceil
The alias for ceil().

22.6.2.7 #define copysignf copysign
The alias for copysign().
22.6.2.8 #define cosf cos
The alias for cos().

22.6.2.9 #define coshf cosh
The alias for cosh().
22.6.2.10 #define expf exp

The alias for exp().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics

108

22.6.2.11 #define fabsf fabs
The alias for fabs().

22.6.2.12  #define fdimf fdim
The alias for fdim().

22.6.2.13 #define floorf floor
The alias for floor().

22.6.2.14 #define fmaf fma
The alias for fma().

22.6.2.15 #define fmaxf fmax
The alias for fmax().
22.6.2.16 #define fminf fmin
The alias for fmin().

22.6.2.17 #define fmodf fmod
The alias for fmod().
22.6.2.18 #define frexpf frexp
The alias for frexp().
22.6.2.19 #define hypotf hypot

The alias for hypot().

22.6.2.20 #define INFINITY __builtin_inf()

INFINITY constant.

22.6.2.21 #define isfinitef isfinite

The alias for isfinite().
22.6.2.22 #define isinff isinf
The alias for isinf().

22.6.2.23 #define isnanf isnan
The alias for isnan().
22.6.2.24 #define Idexpf Idexp

The alias for Idexp().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics

109

22.6.2.25 #define log10f log10

The alias for log10().

22.6.2.26 #define logf log

The alias for log().

22.6.2.27 #define Irintf Irint

The alias for Irint().

22.6.2.28 #define Iroundf Iround

The alias for Iround().

22.6.2.29 #define M_1_P1 0.31830988618379067154 / 1/pi =/
The constant 1/pi.

22.6.2.30 #define M_2_PI 0.63661977236758134308 /x 2/pi </

The constant 2/pi.

22.6.2.31 #define M_2_SQRTPI 1.12837916709551257390 /+ 2/sqrt(pi) */

The constant 2/sqrt(pi).

22.6.2.32 #define M_E 2.7182818284590452354

The constant e.

22,6.2.33 #define M_LN10 2.30258509299404568402 / log_e 10 x/
The natural logarithm of the 10.

22.6.2.34 #define M_LN2 0.69314718055994530942 /x log_e 2 x/
The natural logarithm of the 2.

22.6.2.35 #define M_LOG10E 0.43429448190325182765 / log_10 e /
The logarithm of the e to base 10.

22.6.2.36 #define M_LOG2E 1.4426950408889634074 / log_2 e /
The logarithm of the e to base 2.

22.6.2.37 #define M_PI 3.14159265358979323846 / pi /

The constant pi.

22.6.2.38 #define M_P1_2 1.57079632679489661923 / pi/2 /

The constant pi/2.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics

22.6.2.39 #define M_P1_4 0.78539816339744830962 / pi/4 /
The constant pi/4.

22.6.2.40 #define M_SQRT1_2 0.70710678118654752440 /< 1/sqrt(2) =/
The constant 1/sqgrt(2).

22.6.2.41 #define M_SQRT2 1.41421356237309504880 /« sqrt(2) =/
The square root of 2.

22.6.2.42 #define NAN __builtin_nan(””)

NAN constant.

22.6.2.43 #define powf pow

The alias for pow().

22.6.2.44 #define roundf round

The alias for round().

22.6.2.45 #define signbitf signbit

The alias for signbit().

22.6.2.46 #define sinf sin

The alias for sin().

22.6.2.47 #define sinhf sinh

The alias for sinh().

22.6.2.48 #define sqrtf sqrt

The alias for sqrt().

22.6.2.49 #define squaref square

The alias for square().

22.6.2.50 #define tanf tan

The alias for tan().

22.6.2.51 #define tanhf tanh

The alias for tanh().

22.6.2.52 #define truncf trunc

The alias for trunc().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 111

22.6.3 Function Documentation

22.6.3.1 double acos ( double __x )

The acos() function computes the principal value of the arc cosine of __x. The returned value is in the range [0, pi]
radians. A domain error occurs for arguments not in the range [-1, +1].

22.6.3.2 double asin ( double __x )

The asin() function computes the principal value of the arc sine of __x. The returned value is in the range [-pi/2, pi/2]
radians. A domain error occurs for arguments not in the range [-1, +1].

22.6.3.3 double atan ( double __x )

The atan() function computes the principal value of the arc tangent of __x. The returned value is in the range [-pi/2, pi/2]
radians.

22.6.3.4 double atan2 ( double __y, double __x )

The atan2() function computes the principal value of the arc tangent of __y/__ x, using the signs of both arguments to
determine the quadrant of the return value. The returned value is in the range [-pi, +pi] radians.

22.6.3.5 double cbrt( double __x )
The cbrt() function returns the cube root of __ x.
22.6.3.6 double ceil ( double __x )

The ceil() function returns the smallest integral value greater than or equal to __ x, expressed as a floating-point number.

22.6.3.7 static double copysign ( double __x, double __y ) [static]

The copysign() function returns __ x but with the sign of __y. They work even if __xor __y are NaN or zero.
22.6.3.8 double cos ( double __x )

The cos() function returns the cosine of __x, measured in radians.

22.6.3.9 double cosh ( double __x )

The cosh() function returns the hyperbolic cosine of __ x.

22.6.3.10 double exp ( double _x )

The exp() function returns the exponential value of __ x.

22.6.3.11 double fabs ( double __x )

The fabs() function computes the absolute value of a floating-point number __ x.
22.6.3.12 double fdim ( double __x, double __y )

The fdim() function returns max(_x-__y, 0). If __xor __y or both are NaN, NaN is returned.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 112

22.6.3.13 double floor ( double __x )
The floor() function returns the largest integral value less than or equal to __x, expressed as a floating-point number.
22.6.3.14 double fma ( double __x, double __y, double __z )

The fma() function performs floating-point multiply-add. This is the operation (__x x __y) + __z, but the intermediate
result is not rounded to the destination type. This can sometimes improve the precision of a calculation.

22.6.3.15 double fmax ( double __x, double __y )

The fmax() function returns the greater of the two values __x and __y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

22.6.3.16 double fmin ( double __x, double __y )

The fmin() function returns the lesser of the two values __ x and __y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

22.6.3.17 double fmod ( double __x, double __y )
The function fmod() returns the floating-point remainder of __x/__y.
22.6.3.18 double frexp ( double __x, int x __pexp )

The frexp() function breaks a floating-point number into a normalized fraction and an integral power of 2. It stores the
integer in the int object pointed to by __pexp.

If __xis a normal float point number, the frexp() function returns the value v, such that v has a magnitude in the interval
[1/2, 1) or zero, and __ x equals v times 2 raised to the power __pexp. If __xis zero, both parts of the result are zero. If
__xis not a finite number, the frexp() returns __x as is and stores 0 by ___pexp.

Note

This implementation permits a zero pointer as a directive to skip a storing the exponent.

22.6.3.19 double hypot ( double __x, double __y )

The hypot() function returns sqgri(xxx + yxy). This is the length of the hypotenuse of a right triangle with sides of length
__xand __y, or the distance of the point (__x, __y) from the origin. Using this function instead of the direct formula is
wise, since the error is much smaller. No underflow with small __xand __y. No overflow if result is in range.

22.6.3.20 static int isfinite ( double _x ) [static]

The isfinite() function returns a nonzero value if __x is finite: not plus or minus infinity, and not NaN.

22.6.3.21 intisinf( double __x)

The function isinf() returns 1 if the argument __ x is positive infinity, -1 if __x is negative infinity, and 0 otherwise.

Note

The GCC 4.3 can replace this function with inline code that returns the 1 value for both infinities (gcc bug #35509).

22.6.3.22 intisnan ( double __x )

The function isnan() returns 1 if the argument __ x represents a "not-a-number" (NaN) object, otherwise 0.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 113

22.6.3.23 double Idexp ( double __x, int __exp )

The Idexp() function multiplies a floating-point number by an integral power of 2. It returns the value of __ x times 2
raised to the power __exp.

22.6.3.24 double log ( double __x )

The log() function returns the natural logarithm of argument __ x.
22.6.3.25 double log10 ( double __x )

The log10() function returns the logarithm of argument __ x to base 10.
22.6.3.26 long Irint ( double __x )

The Irint() function rounds __ x to the nearest integer, rounding the halfway cases to the even integer direction. (That is
both 1.5 and 2.5 values are rounded to 2). This function is similar to rint() function, but it differs in type of return value
and in that an overflow is possible.

Returns

The rounded long integer value. If __x s not a finite number or an overflow was, this realization returns the LONG-
_MIN value (0x80000000).
22.6.3.27 long Iround ( double __x )

The Iround() function rounds __ x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). This function is similar to round() function, but it differs in type of return value and in that an
overflow is possible.

Returns

The rounded long integer value. If __x s not a finite number or an overflow was, this realization returns the LONG-
_MIN value (0x80000000).
22.6.3.28 double modf ( double __x, double x __iptr )

The modf() function breaks the argument __ x into integral and fractional parts, each of which has the same sign as the
argument. It stores the integral part as a double in the object pointed to by __iptr.

The modf() function returns the signed fractional part of __ x.

Note

This implementation skips writing by zero pointer. However, the GCC 4.3 can replace this function with inline code
that does not permit to use NULL address for the avoiding of storing.

22.6.3.29 float modff ( float __x, float x __iptr )
The alias for modf().
22.6.3.30 double pow ( double __x, double __y )

The function pow() returns the value of __ x to the exponent __y.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.6 <math.h>: Mathematics 114

22.6.3.31 double round ( double __x )

The round() function rounds __ x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). Overflow is impossible.

Returns

The rounded value. If __xis an integral or infinite, __ x itself is returned. If __xis NaN, then NaN is returned.

22.6.3.32 int signbit ( double __x )

The signbit() function returns a nonzero value if the value of __x has its sign bit set. This is not the same as‘__ x < 0.0’,
because IEEE 754 floating point allows zero to be signed. The comparison ‘-0.0 < 0.0’ is false, but ‘signbit (-0.0)" will
return a nonzero value.

22.6.3.33 double sin ( double __x )

The sin() function returns the sine of __x, measured in radians.

22.6.3.34 double sinh ( double __x )

The sinh() function returns the hyperbolic sine of __ x.

22.6.3.35 double sqrt ( double __x )

The sqrt() function returns the non-negative square root of __ x.

22.6.3.36 double square ( double __x )

The function square() returns __ x* __ x.

Note

This function does not belong to the C standard definition.

22.6.3.37 double tan ( double __x )

The tan() function returns the tangent of __ x, measured in radians.
22.6.3.38 double tanh ( double __x )

The tanh() function returns the hyperbolic tangent of __ x.

22.6.3.39 double trunc ( double __x )

The trunc() function rounds __ x to the nearest integer not larger in absolute value.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.7 <setjmp.h>: Non-local goto 115

22.7 <setjmp.h>: Non-local goto
Functions

* int setjmp (jmp_buf __jmpb)
+ void longjmp (jmp_buf __jmpb, int __ret) _ ATTR_NORETURN__

22.7.1 Detailed Description

While the C language has the dreaded goto statement, it can only be used to jump to a label in the same (local)
function. In order to jump directly to another (non-local) function, the C library provides the setjmp() and longjmp()
functions. setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in a low-level subroutine
of a program.

Note

setjmp() and longjmp() make programs hard to understand and maintain. If possible, an alternative should be used.
longjmp() can destroy changes made to global register variables (see faq_regbind).

For a very detailed discussion of setjmp()/longjmp(), see Chapter 7 of Advanced Programming in the UNIX Environment,
by W. Richard Stevens.

Example:

#include <setjmp.h>
jmp_buf env;

int main (void)
{
if (setjmp (env))
{
. handle error ...

}

while (1)
{
. main processing loop which calls foo() some where ...

}

void foo (void)
{
. blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

22.7.2 Function Documentation

22.7.2.1 void longjmp ( jmp_buf __jmpb, int __ret )
Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last call of setjmp() with the corresponding __jmpb argument. After
longjmp() is completed, program execution continues as if the corresponding call of setjmp() had just returned the value
__ret.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.7 <setjmp.h>: Non-local goto 116

Note
longjmp() cannot cause 0 to be returned. If longjmp() is invoked with a second argument of 0, 1 will be returned
instead.
Parameters
__jmpb | Information saved by a previous call to setjmp().
__ret | Value to return to the caller of setjmp().
Returns

This function never returns.

22.7.2.2 int setjmp ( jmp_buf __jmpb )
Save stack context for non-local goto.

#include <setjmp.h>

setjmp() saves the stack context/environment in __jmpb for later use by longjmp(). The stack context will be invalidated
if the function which called setjmp() returns.

Parameters

__jmpb | Variable of type jmp_buf which holds the stack information such that the environment can be
restored.

Returns

setjmp() returns 0 if returning directly, and non-zero when returning from longjmp() using the saved context.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types

117

22.8 <stdint.h>: Standard Integer Types
Exact-width integer types
Integer types having exactly the specified width

« typedef signed char int8_t

* typedef unsigned char uint8_t

* typedef signed int int16_t

* typedef unsigned int uint16_t

* typedef signed long int int32_t

* typedef unsigned long int uint32_t

« typedef signed long long int int64_t

« typedef unsigned long long int uint64_t

Integer types capable of holding object pointers
These allow you to declare variables of the same size as a pointer.

 typedef int16_t intptr_t
« typedef uint16_t uintptr_t

Minimum-width integer types
Integer types having at least the specified width

 typedef int8_tint_least8_t

« typedef uint8_t uint_least8_t
 typedefint16_tint_least16_t

* typedef uint16_t uint_least16_t
 typedef int32_t int_least32_t

« typedef uint32_t uint_least32_t
 typedef int64_tint_least64 t

« typedef uint64_t uint_least64_t

Fastest minimum-width integer types
Integer types being usually fastest having at least the specified width

+ typedef int8_tint_fast8_t

+ typedef uint8_t uint_fast8_t
 typedefint16_tint_fast16_t

« typedef uint16_t uint_fast16_t
 typedef int32_t int_fast32_t

« typedef uint32_t uint_fast32_t
 typedef int64_t int_fast64_t

« typedef uint64_t uint_fast64 t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 118

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in the corresponding signed or
unsigned category

* typedef int64_t intmax_t
« typedef uint64_t uintmax_t

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before <stdint.h>
is included

* #define INT8_MAX 0x7f

+ #define INT8_MIN (-INT8_MAX - 1)

« #define UINT8_MAX (__CONCAT(INT8_MAX, U) * 2U + 1U)

* #define INT16_MAX 0x7fff

+ #define INT16_MIN (-INT16_MAX - 1)

+ #define UINT16_MAX (__CONCAT(INT16_MAX, U) * 2U + 1U)

+ #define INT32_MAX Ox7fffffffL

+ #define INT32_MIN (-INT32_MAX - 1L)

« #define UINT32_MAX (__CONCAT(INT32_MAX, U) * 2UL + 1UL)
+ #define INT64_MAX Ox7fffffffffffffffLL

+ #define INT64_MIN (-INT64_MAX - 1LL)

+ #define UINT64_MAX (__CONCAT(INT64_MAX, U) * 2ULL + 1ULL)

Limits of minimum-width integer types

* #define INT_LEAST8_MAX INT8_MAX

* #define INT_LEAST8_MIN INT8_MIN

« #define UINT_LEAST8_MAX UINT8_MAX

+ #define INT_LEAST16_MAX INT16_MAX

« #define INT_LEAST16_MIN INT16_MIN

+ #define UINT_LEAST16_MAX UINT16_MAX
+ #define INT_LEAST32_MAX INT32_MAX

+ #define INT_LEAST32_MIN INT32_MIN

+ #define UINT_LEAST32_MAX UINT32_MAX
+ #define INT_LEAST64_MAX INT64_MAX

+ #define INT_LEAST64_MIN INT64_MIN

+ #define UINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

+ #define INT_FAST8_MAX INT8_MAX

+ #define INT_FAST8_MIN INT8_MIN

+ #define UINT_FAST8_MAX UINT8_MAX

+ #define INT_FAST16_MAX INT16_MAX

+ #define INT_FAST16_MIN INT16_MIN

+ #define UINT_FAST16_MAX UINT16_MAX

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 119

« #define INT_FAST32_MAX INT32_MAX

+ #define INT_FAST32_MIN INT32_MIN

+ #define UINT_FAST32_MAX UINT32_MAX
+ #define INT_FAST64_MAX INT64_MAX

+ #define INT_FAST64_MIN INT64_MIN

+ #define UINT_FAST64_MAX UINT64_MAX

Limits of integer types capable of holding object pointers

* #define INTPTR_MAX INT16_MAX
* #define INTPTR_MIN INT16_MIN
« #define UINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

+ #define INTMAX_MAX INT64_MAX
+ #define INTMAX_MIN INT64_MIN
« #define UINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before <stdint.h>
is included

+ #define PTRDIFF_MAX INT16_MAX

+ #define PTRDIFF_MIN INT16_MIN

+ #define SIG_ATOMIC_MAX INT8_MAX

+ #define SIG_ATOMIC_MIN INT8_MIN

+ #define SIZE_MAX (__CONCAT(INT16_MAX, U))

Macros for integer constants

C++ implementations should define these macros only when _ STDC_CONSTANT_MACROS is defined before
<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined as integer constant without suffix

+ #define INT8_C(value) ((int8_t) value)

+ #define UINT8_C(value) ((uint8_t) _ CONCAT (value, U))
« #define INT16_C(value) value

+ #define UINT16_C(value) _ CONCAT (value, U)

+ #define INT32_C(value) _ CONCAT (value, L)

+ #define UINT32_C(value) _ CONCAT (value, UL)

+ #define INT64_C(value) _ CONCAT(value, LL)

« #define UINT64_C(value) _ CONCAT(value, ULL)

+ #define INTMAX_C(value) _ CONCAT(value, LL)

+ #define UINTMAX_C(value) __CONCAT(value, ULL)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 120

22.8.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling your own typedefs.

22.8.2 Macro Definition Documentation

22.8.2.1 #define INT16_C( value ) value

define a constant of type int16_t

22.8.2.2 #define INT16_MAX 0x7fff

largest positive value an int16_t can hold.
22.8.2.3 #define INT16_MIN (-INT16_MAX - 1)
smallest negative value an int16_t can hold.
22.8.2.4 #define INT32_C( value ) __CONCAT(value, L)
define a constant of type int32_t

22.8.2.5 #define INT32_MAX Ox7fffffffL

largest positive value an int32_t can hold.
22.8.2.6 #define INT32_MIN (-INT32_MAX - 1L)
smallest negative value an int32_t can hold.
22.8.2.7 #define INT64_C( value ) _CONCAT(value, LL)
define a constant of type int64_t

22.8.2.8 #define INT64_MAX Ox7ffffffffiffffffLL
largest positive value an int64_t can hold.
22.8.2.9 #define INT64_MIN (-INT64_MAX - 1LL)
smallest negative value an int64_t can hold.
22.8.2.10 #define INT8_C( value ) ((int8_t) value)
define a constant of type int8_t

22.8.2.11 #define INT8_MAX Ox7f

largest positive value an int8_t can hold.
22.8.2.12 #define INT8_MIN (-INT8_MAX - 1)

smallest negative value an int8_t can hold.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types

121

22.8.2.13 #define INT_FAST16_MAX INT16_MAX
largest positive value an int_fast16_t can hold.
22.8.2.14 #define INT_FAST16_MIN INT16_MIN
smallest negative value an int_fast16_t can hold.
22.8.2.15 #define INT_.FAST32_MAX INT32_MAX
largest positive value an int_fast32_t can hold.
22.8.2.16 #define INT_FAST32_MIN INT32_MIN
smallest negative value an int_fast32_t can hold.
22.8.2.17 #define INT_FAST64_MAX INT64_MAX
largest positive value an int_fast64_t can hold.
22.8.2.18 #define INT_FAST64_MIN INT64_MIN
smallest negative value an int_fast64_t can hold.
22.8.2.19 #define INT_FAST8_MAX INT8_MAX
largest positive value an int_fast8_t can hold.
22.8.2.20 #define INT_FAST8_MIN INT8_MIN
smallest negative value an int_fast8_t can hold.
22.8.2.21 #define INT_.LEAST16_MAX INT16_MAX
largest positive value an int_least16_t can hold.

22.8.2.22 #define INT_.LEAST16_MIN INT16_MIN

smallest negative value an int_least16_t can hold.

22.8.2.23 #define INT_LEAST32_MAX INT32_MAX
largest positive value an int_least32_t can hold.

22.8.2.24 #define INT_.LEAST32_MIN INT32_MIN

smallest negative value an int_least32_t can hold.

22.8.2.25 #define INT_LEAST64_MAX INT64_MAX
largest positive value an int_least64_t can hold.

22.8.2.26 #define INT_.LEAST64_MIN INT64_MIN

smallest negative value an int_least64_t can hold.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 122

22.8.2.27 #define INT_LEAST8_MAX INT8_MAX

largest positive value an int_least8_t can hold.
22.8.2.28 #define INT_LEAST8_MIN INT8_MIN

smallest negative value an int_least8_t can hold.
22.8.2.29 #define INTMAX_C( value ) __CONCAT(value, LL)
define a constant of type intmax_t

22.8.2.30 #define INTMAX_MAX INT64_MAX

largest positive value an intmax_t can hold.

22.8.2.31 #define INTMAX_MIN INT64_MIN

smallest negative value an intmax_t can hold.
22.8.2.32 #define INTPTR_MAX INT16_MAX

largest positive value an intptr_t can hold.

22.8.2.33 #define INTPTR_MIN INT16_MIN

smallest negative value an intptr_t can hold.

22.8.2.34 #define PTRDIFF_MAX INT16_MAX

largest positive value a ptrdiff_t can hold.

22.8.2.35 #define PTRDIFF_MIN INT16_MIN

smallest negative value a ptrdiff_t can hold.

22.8.2.36 #define SIG_ATOMIC_MAX INT8_MAX

largest positive value a sig_atomic_t can hold.
22.8.2.37 #define SIG_ATOMIC_MIN INT8_MIN

smallest negative value a sig_atomic_t can hold.
22.8.2.38 #define SIZE_MAX (__CONCAT(INT16_MAX, U))
largest value a size_t can hold.

22.8.2.39 #define UINT16_C( value ) __CONCAT(value, U)
define a constant of type uint16_t

22.8.2.40 #define UINT16_MAX (__CONCAT(INT16_MAX, U) = 2U + 1U)

largest value an uint16_t can hold.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 123

22.8.2.41 #define UINT32_C( value ) _CONCAT(value, UL)

define a constant of type uint32_t

22.8.2.42 #define UINT32_MAX (__.CONCAT(INT32_MAX, U)  2UL + 1UL)
largest value an uint32_t can hold.

22.8.2.43 #define UINT64_C( value ) _CONCAT(value, ULL)

define a constant of type uint64_t

22.8.2.44 #define UINT64_MAX (__CONCAT(INT64_MAX, U)  2ULL + 1ULL)
largest value an uint64_t can hold.

22.8.2.45 #define UINT8_C( value ) ((uint8_t) __CONCAT(value, U))
define a constant of type uint8_t

22.8.2.46 #define UINT8_MAX (__CONCAT(INT8_MAX, U) + 2U + 1U)
largest value an uint8_t can hold.

22.8.2.47 #define UINT_FAST16_MAX UINT16_MAX

largest value an uint_fast16_t can hold.

22.8.2.48 #define UINT_FAST32_MAX UINT32_MAX

largest value an uint_fast32_t can hold.

22.8.2.49 #define UINT_FAST64_MAX UINT64_MAX

largest value an uint_fast64_t can hold.

22.8.2.50 #define UINT_FAST8_MAX UINT8_MAX

largest value an uint_fast8_t can hold.

22.8.2.51 #define UINT_LEAST16_MAX UINT16_MAX

largest value an uint_least16_t can hold.

22.8.2.52 #define UINT_LEAST32_MAX UINT32_MAX

largest value an uint_least32_t can hold.

22.8.2.53 #define UINT_LEAST64_MAX UINT64_MAX

largest value an uint_least64 _t can hold.

22.8.2.54 #define UINT_LEAST8_MAX UINT8_MAX

largest value an uint_least8_t can hold.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 124

22.8.2.55 #define UINTMAX_C( value ) __CONCAT(value, ULL)
define a constant of type uintmax_t

22.8.2.56 #define UINTMAX_MAX UINT64_MAX

largest value an uintmax_t can hold.

22.8.2.57 #define UINTPTR_MAX UINT16_MAX

largest value an uintptr_t can hold.

22.8.3 Typedef Documentation

22.8.3.1 typedef signed int int16_t

16-bit signed type.

22.8.3.2 typedef signed long int int32_t
32-bit signed type.

22.8.3.3 typedef signed long long int int64_t
64-bit signed type.

Note

This type is not available when the compiler option -mint8 is in effect.

22.8.3.4 typedef signed char int8_t
8-bit signed type.

22.8.3.5 typedefint16_tint_fast16_t
fastest signed int with at least 16 bits.
22.8.3.6 typedefint32_tint_fast32_t
fastest signed int with at least 32 bits.
22.8.3.7 typedefint64_tint_fast64 t
fastest signed int with at least 64 bits.

Note
This type is not available when the compiler option -mint8 is in effect.
22.8.3.8 typedefint8_t int_fast8_t
fastest signed int with at least 8 bits.
22.8.3.9 typedefint16_tint_least16_t

signed int with at least 16 bits.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 125

22.8.3.10 typedefint32_t int_least32_t
signed int with at least 32 bits.
22.8.3.11 typedef int64_t int_least64_t

signed int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

22.8.3.12 typedef int8_t int_least8_t
signed int with at least 8 bits.

22.8.3.13 typedef int64_t intmax_t

largest signed int available.

22.8.3.14 typedefint16_t intptr_t

Signed pointer compatible type.

22.8.3.15 typedef unsigned int uint16_t
16-bit unsigned type.

22.8.3.16 typedef unsigned long int uint32_t
32-bit unsigned type.

22.8.3.17 typedef unsigned long long int uint64_t

64-bit unsigned type.

Note

This type is not available when the compiler option -mint8 is in effect.

22.8.3.18 typedef unsigned char uint8_t
8-bit unsigned type.

22.8.3.19 typedef uint16_t uint_fast16_t
fastest unsigned int with at least 16 bits.
22.8.3.20 typedef uint32_t uint_fast32_t
fastest unsigned int with at least 32 bits.
22.8.3.21 typedef uint64_t uint_fast64_t

fastest unsigned int with at least 64 bits.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.8 <stdint.h>: Standard Integer Types 126

Note

This type is not available when the compiler option -mint8 is in effect.

22.8.3.22 typedef uint8_t uint_fast8_t
fastest unsigned int with at least 8 bits.
22.8.3.23 typedef uint16_t uint_least16_t
unsigned int with at least 16 bits.

22.8.3.24 typedef uint32_t uint_least32_t
unsigned int with at least 32 bits.

22.8.3.25 typedef uint64_t uint_least64_t

unsigned int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

22.8.3.26 typedef uint8_t uint_least8_t
unsigned int with at least 8 bits.
22.8.3.27 typedef uint64_t uintmax_t
largest unsigned int available.

22.8.3.28 typedef uint16_t uintptr_t

Unsigned pointer compatible type.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 127

22.9 <stdio.h>: Standard 10 facilities

Macros

« #define FILE struct __file

« #define stdin (__iob[0])

« #define stdout (__iob[1])

* #define stderr (__iob[2])

* #define EOF (-1)

« #define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)
+ #define fdev_get_udata(stream) ((stream)->udata)

« #define fdev_setup_stream(stream, put, get, rwflag)

+ #define _FDEV_SETUP_READ __SRD

« #define _FDEV_SETUP_WRITE _ SWR

» #define _FDEV_SETUP_RW (__SRD|__SWR)

« #define _FDEV_ERR (-1)

« #define _FDEV_EOF (-2)

 #define FDEV_SETUP_STREAM(put, get, rwflag)
« #define fdev_close()

« #define putc(__c, _ stream) fputc(__c, _ stream)
* #define putchar(__c) fputc(__c, stdout)

« #define getc(__stream) fgetc(__stream)

« #define getchar() fgetc(stdin)

Functions

« int fclose (FILE *__stream)

« int viprintf (FILE *__stream, const char x__fmt, va_list __ap)

« int vfprintf_P (FILE %__stream, const char *__fmt, va_list __ap)

« int fputc (int __c, FILE *__stream)

« int printf (const char *__fmt,...)

« int printf_P (const char *__fmt,...)

* int vprintf (const char x__fmt, va_list __ap)

* int sprintf (char x__s, const char «__fmt,...)

« int sprintf_P (char *__s, const char x__fmt,...)

* int snprintf (char x__s, size_t __n, const char x__fmt,...)

* int snprintf_P (char x__s, size_t __n, const char *__fmt,...)

* int vsprintf (char x__s, const char x__fmt, va_list ap)

« int vsprintf_P (char x__s, const char x__fmt, va_list ap)

* int vsnprintf (char x__s, size_t __n, const char x__fmt, va_list ap)
* int vsnprintf_P (char x__s, size_t __n, const char x__fmt, va_list ap)
« int fprintf (FILE *__stream, const char x__fmt,...)

« int fprintf_P (FILE *__stream, const char *__fmt,...)

* int fputs (const char *__str, FILE x__stream)

« int fputs_P (const char x__str, FILE *__stream)

* int puts (const char x__str)

* int puts_P (const char x__str)

* size_t fwrite (const void x__ptr, size_t __size, size_t __nmemb, FILE *x__stream)
« int fgetc (FILE *__stream)

* intungetc (int __c, FILE x__stream)

* char x fgets (char x__str, int __size, FILE x__stream)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 128

* char x gets (char x__str)

* size_t fread (void x__ptr, size_t __size, size_t __nmemb, FILE x__stream)
« void clearerr (FILE *__stream)

« int feof (FILE *__stream)

« int ferror (FILE *__stream)

« int viscanf (FILE x__stream, const char x__fmt, va_list __ap)

« int viscanf_P (FILE *__stream, const char «__fmt, va_list __ap)
« int fscanf (FILE x__stream, const char x__fmt,...)

« int fscanf_P (FILE x__stream, const char x__fmt,...)

+ int scanf (const char *__fmt,...)

* int scanf_P (const char x__fmt,...)

« int vscanf (const char x__fmt, va_list __ap)

« int sscanf (const char x__buf, const char x__fmt,...)

« int sscanf_P (const char x__buf, const char «__fmt,...)

« int fflush (FILE xstream)

» FILE * fdevopen (int(xput)(char, FILE *), int(xget)(FILE x))

22.9.1 Detailed Description

#include <stdio.h>

Introduction to the Standard 10 facilities

This file declares the standard |0 facilities that are implemented in avr—1ibc. Due to the nature of the underlying
hardware, only a limited subset of standard 10 is implemented. There is no actual file implementation available, so only
device 10 can be performed. Since there’s no operating system, the application needs to provide enough details about
their devices in order to make them usable by the standard IO facilities.

Due to space constraints, some functionality has not been implemented at all (like some of the print f conversions that
have been left out). Nevertheless, potential users of this implementation should be warned: the print f and scanf
families of functions, although usually associated with presumably simple things like the famous "Hello, world!" program,
are actually fairly complex which causes their inclusion to eat up a fair amount of code space. Also, they are not fast due
to the nature of interpreting the format string at run-time. Whenever possible, resorting to the (sometimes non-standard)
predetermined conversion facilities that are offered by avr-libc will usually cost much less in terms of speed and code
Size.

Tunable options for code size vs. feature set

In order to allow programmers a code size vs. functionality tradeoff, the function vfprintf() which is the heart of the
printf family can be selected in different flavours using linker options. See the documentation of vfprintf() for a detailed
description. The same applies to vfscanf() and the scanf family of functions.

Outline of the chosen API

The standard streams stdin, stdout, and stderzr are provided, but contrary to the C standard, since avr-libc has
no knowledge about applicable devices, these streams are not already pre-initialized at application startup. Also, since
there is no notion of "file" whatsoever to avr-libc, there is no function fopen () that could be used to associate a stream
to some device. (See note 1.) Instead, the function fdevopen () is provided to associate a stream to a device, where
the device needs to provide a function to send a character, to receive a character, or both. There is no differentiation
between "text" and "binary" streams inside avr-libc. Character \n is sent literally down to the device’s put () function.
If the device requires a carriage return (\ r) character to be sent before the linefeed, its put () routine must implement
this (see note 2).

As an alternative method to fdevopen(), the macro fdev_setup_stream() might be used to setup a user-supplied FILE
structure.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 129

It should be noted that the automatic conversion of a newline character into a carriage return - newline sequence breaks
binary transfers. If binary transfers are desired, no automatic conversion should be performed, but instead any string
that aims to issue a CR-LF sequence must use "\ r\n" explicitly.

For convenience, the first call to fdevopen () that opens a stream for reading will cause the resulting stream to be
aliased to stdin. Likewise, the first call to fdevopen () that opens a stream for writing will cause the resulting
stream to be aliased to both, stdout, and stderr. Thus, if the open was done with both, read and write intent,
all three standard streams will be identical. Note that these aliases are indistinguishable from each other, thus calling
fclose () onsuch a stream will also effectively close all of its aliases (note 3).

It is possible to tie additional user data to a stream, using fdev_set_udata(). The backend put and get functions can then
extract this user data using fdev_get_udata(), and act appropriately. For example, a single put function could be used to
talk to two different UARTSs that way, or the put and get functions could keep internal state between calls there.

Format strings in flash ROM

All the printf and scanf family functions come in two flavours: the standard name, where the format string is
expected to be in SRAM, as well as a version with the suffix "_P" where the format string is expected to reside in
the flash ROM. The macro PSTR (explained in <avr/pgmspace.h>: Program Space Utilities) becomes very handy for
declaring these format strings.

Running stdio without malloc()

By default, fdevopen() requires malloc(). As this is often not desired in the limited environment of a microcontroller, an
alternative option is provided to run completely without malloc().

The macro fdev_setup_stream() is provided to prepare a user-supplied FILE buffer for operation with stdio.

Example
#include <stdio.h>
static int uart_putchar (char c, FILE *stream);
static FILE mystdout = FDEV_SETUP_STREAM (uart_putchar,
NULL,

_FDEV_SETUP_WRITE
)i
static int
uvart_putchar (char ¢, FILE xstream)

{

if (c == ’\\:\’)

uart_putchar (' \r’, stream);
loop_until_bit_is_set (UCSRA, UDRE);
UDR = c;

return 0;
}

int

main (void)

{
init_uart();
stdout = &mystdout;
printf ("Hello, worldl\n") ;

This example uses the initializer form FDEV_SETUP_STREAM() rather than the function-like fdev_setup_stream(), so
all data initialization happens during C start-up.

If streams initialized that way are no longer needed, they can be destroyed by first calling the macro fdev_close(), and
then destroying the object itself. No call to fclose() should be issued for these streams. While calling fclose() itself is
harmless, it will cause an undefined reference to free() and thus cause the linker to link the malloc module into the
application.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 130

Notes
Note 1:

It might have been possible to implement a device abstraction that is compatible with fopen () but since this would
have required to parse a string, and to take all the information needed either out of this string, or out of an additional
table that would need to be provided by the application, this approach was not taken.

Note 2:

This basically follows the Unix approach: if a device such as a terminal needs special handling, it is in the domain of
the terminal device driver to provide this functionality. Thus, a simple function suitable as put () for fdevopen ()
that talks to a UART interface might look like this:

int
uart_putchar (char ¢, FILE *stream)

{

if (c == "\n")
uart_putchar ("\r’);
loop_until _bit_is_set (UCSRA, UDRE);
UDR = c;
return 0;

}

Note 3:

This implementation has been chosen because the cost of maintaining an alias is considerably smaller than the
cost of maintaining full copies of each stream. Yet, providing an implementation that offers the complete set of
standard streams was deemed to be useful. Not only that writing print f () instead of fprint f (mystream,

. ) saves typing work, but since avr-gcc needs to resort to pass all arguments of variadic functions on the stack
(as opposed to passing them in registers for functions that take a fixed number of parameters), the ability to pass
one parameter less by implying st din or stdout will also save some execution time.

22.9.2 Macro Definition Documentation

22921 #define ‘FDEV_EOF (-2)

Return code for an end-of-file condition during device read.

To be used in the get function of fdevopen().
22.9.2.2 #define _FDEV_ERR (-1)

Return code for an error condition during device read.

To be used in the get function of fdevopen().
22.9.2.3 #define FDEV_SETUP_READ __SRD
fdev_setup_stream() with read intent

22.9.2.4 #define FDEV_SETUP_RW (__SRD|__SWR)
fdev_setup_stream() with read/write intent
22.9.25 #define _FDEV_SETUP_WRITE _SWR

fdev_setup_stream() with write intent

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 131

22926 #define EOF (-1)

EOF declares the value that is returned by various standard 1O functions in case of an error. Since the AVR platform
(currently) doesn’t contain an abstraction for actual files, its origin as "end of file" is somewhat meaningless here.

22.9.2.7 #define fdev_close( )

This macro frees up any library resources that might be associated with st ream. It should be called if st ream is no
longer needed, right before the application is going to destroy the st ream object itself.

(Currently, this macro evaluates to nothing, but this might change in future versions of the library.)
22.9.2.8 #define fdev_get_udata( stream ) ((stream)->udata)

This macro retrieves a pointer to user defined data from a FILE stream object.

22.9.2.9 #define fdev_set_udata( stream, u )do { (stream)->udata = u; } while(0)

This macro inserts a pointer to user defined data into a FILE stream object.

The user data can be useful for tracking state in the put and get functions supplied to the fdevopen() function.
22.9.2.10 #define fdev_setup_stream( stream, put, get, rwflag )

Setup a user-supplied buffer as an stdio stream.

This macro takes a user-supplied buffer st ream, and sets it up as a stream that is valid for stdio operations, similar to
one that has been obtained dynamically from fdevopen(). The buffer to setup must be of type FILE.

The arguments put and get are identical to those that need to be passed to fdevopen().

The rwflag argument can take one of the values _FDEV_SETUP_READ, FDEV_SETUP_WRITE, or _FDEV_SET-
UP_RW, for read, write, or read/write intent, respectively.

Note

No assignments to the standard streams will be performed by fdev_setup_stream(). If standard streams are to be
used, these need to be assigned by the user. See also under Running stdio without malloc().
22.9.2.11 #define FDEV_SETUP_STREAM( put, get, rwflag )

Initializer for a user-supplied stdio stream.
This macro acts similar to fdev_setup_stream(), but it is to be used as the initializer of a variable of type FILE.

The remaining arguments are to be used as explained in fdev_setup_stream().

22.9.2.12 #define FILE struct _ file

FILE is the opaque structure that is passed around between the various standard 10 functions.
22.9.2.13 #define getc( __stream ) fgetc(__stream)

The macro get c used to be a "fast" macro implementation with a functionality identical to fgetc(). For space constraints,
inavr—libc,itis justan alias for fgetc.

22.9.2.14 #define getchar( void ) fgetc(stdin)

The macro getchar reads a character from stdin. Return values and error handling is identical to fgetc().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 132

22.9.2.15 #define putc( __c, __stream )fputc(__c, __stream)

The macro put c used to be a "fast" macro implementation with a functionality identical to fputc(). For space constraints,
in avr—-1ibc, itis just an alias for fputc.

22.9.2.16 #define putchar( __c ) fputc(__c, stdout)
The macro putchar sends character c to stdout.
22.9.2.17 #define stderr (__iob[2])

Stream destined for error output. Unless specifically assigned, identical to st dout.

If stderr should point to another stream, the result of another fdevopen () must be explicitly assigned to it without
closing the previous stderr (since this would also close stdout).

22.9.2.18 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take a st ream argument.

The first stream opened with read intent using fdevopen () will be assigned to stdin.
22.9.2.19 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don’t take a st ream argument.

The first stream opened with write intent using fdevopen () will be assigned to both, stdin, and stderr.

22.9.3 Function Documentation

22.9.3.1 void clearerr ( FILE x __stream )
Clear the error and end-of-file flags of st ream.
22.9.3.2 intfclose ( FILE x __stream )

This function closes st ream, and disallows and further 10O to and from it.
When using fdevopen() to setup the stream, a call to fclose() is needed in order to free the internal resources allocated.
If the stream has been set up using fdev_setup_stream() or FDEV_SETUP_STREAM(), use fdev_close() instead.

It currently always returns 0 (for success).
22.9.3.3 FILE= fdevopen ( int(x)(char, FILE %) put, int(x)(FILE x) get )

This function is a replacement for fopen ().

It opens a stream for a device where the actual device implementation needs to be provided by the application. If
successful, a pointer to the structure for the opened stream is returned. Reasons for a possible failure currently include
that neither the put nor the get argument have been provided, thus attempting to open a stream with no IO intent at
all, or that insufficient dynamic memory is available to establish a new stream.

If the put function pointer is provided, the stream is opened with write intent. The function passed as put shall take
two arguments, the first a character to write to the device, and the second a pointer to FILE, and shall return 0 if the
output was successful, and a nonzero value if the character could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The function passed as get shall take
a pointer to FILE as its single argument, and return one character from the device, passed as an int type. If an error
occurs when trying to read from the device, it shall return _FDEV_ERR. If an end-of-file condition was reached while

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 133

reading from the device, _FDEV_EOF shall be returned.
If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assigned to st din, and the first one opened with write intent is assigned to
both, stdout and stderr.

fdevopen() uses calloc() (und thus malloc()) in order to allocate the storage for the new stream.

Note
If the macro ___STDIO_FDEVOPEN_COMPAT_12 is declared before including <stdio.h>, a function prototype for

fdevopen() will be chosen that is backwards compatible with avr-libc version 1.2 and before. This is solely intented
for providing a simple migration path without the need to immediately change all source code. Do not use for new
code.

22.9.3.4 intfeof ( FILE * __stream )

Test the end-of-file flag of st ream. This flag can only be cleared by a call to clearerr().

22.9.3.5 intferror ( FILE * __stream )

Test the error flag of st ream. This flag can only be cleared by a call to clearerr().

22.9.3.6 intfflush ( FILE x stream )

Flush stream.

This is a null operation provided for source-code compatibility only, as the standard IO implementation currently does
not perform any buffering.

22.9.3.7 intfgetc ( FILE x __stream )

The function fgetc reads a character from stream. It returns the character, or EOF in case end-of-file was en-
countered or an error occurred. The routines feof() or ferror() must be used to distinguish between both situations.

22.9.3.8 charx fgets ( char x __str, int __size, FILE x __stream )

Read at most size - 1 bytes from stream, until a newline character was encountered, and store the characters in
the buffer pointed to by st r. Unless an error was encountered while reading, the string will then be terminated with a
NUL character.

If an error was encountered, the function returns NULL and sets the error flag of st ream, which can be tested using
ferror(). Otherwise, a pointer to the string will be returned.

22.9.3.9 intfprintf ( FILE x __stream, const char x __fmt, ... )

The function fprint £ performs formatted output to st ream. See vEfprintf () for details.
22.9.3.10 int fprintf_P ( FILE x __stream, const char x __fmt, ... )

Variant of fprintf () that uses a fmt string that resides in program memory.

22.9.3.11 intfputc ( int __c, FILE x __stream )

The function fputc sends the character c (though given as type int) to st ream. It returns the character, or EOF in
case an error occurred.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 134

22.9.3.12 int fputs ( const char x __str, FILE *x __stream )

Write the string pointed to by st r to stream stream.

Returns 0 on success and EOF on error.

22.9.3.13 int fputs_P ( const char x __str, FILE * __stream )

Variant of fputs() where st r resides in program memory.

22.9.3.14 size_tfread ( void x __ptr, size_t __size, size_t _nmemb, FILE x __stream )

Read nmemb objects, size bytes each, from st ream, to the buffer pointed to by ptr.

Returns the number of objects successfully read, i. e. nmemb unless an input error occured or end-of-file was encoun-
tered. feof() and ferror() must be used to distinguish between these two conditions.

22.9.3.15 intfscanf ( FILE * __stream, const char x __fmf, ... )

The function fscanf performs formatted input, reading the input data from st ream.

See vfscanf() for details.

22.9.3.16 intfscanf_P ( FILE «x __stream, const char x __fmt, ... )

Variant of fscanf() using a £mt string in program memory.

22.9.3.17 size_t fwrite ( const void x« __ptr, size_t __size, size_.t __nmemb, FILE x __stream )

Write nmemb objects, size bytes each, to st ream. The first byte of the first object is referenced by pt r.

Returns the number of objects successfully written, i. e. nmemb unless an output error occured.
22.9.3.18 charx gets ( char x __sir )

Similar to fgets() except that it will operate on stream stdin, and the trailing newline (if any) will not be stored in the
string. It is the caller’s responsibility to provide enough storage to hold the characters read.

22.9.3.19 int printf ( const char x __fmt, ... )

The function print £ performs formatted output to stream stdout. See viprintf () for details.
22.9.3.20 int printf_P ( const char x __fmt, ... )

Variant of print £ () that uses a fmt string that resides in program memory.

22.9.3.21 int puts ( const char x __str )

Write the string pointed to by st r, and a trailing newline character, to stdout.

22.9.3.22 int puts_P ( const char x __str )

Variant of puts() where st r resides in program memory.

22.9.3.23 int scanf( const char x __fmt, ... )

The function scanf performs formatted input from stream stdin.

See vfscanf() for details.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 135

22.9.3.24 intscanf_P ( constchar x __fmt, ... )
Variant of scanf() where fmt resides in program memory.
22.9.3.25 int snprintf ( char x __s, size_t __n, const char x __fmt, ... )

Like sprintf (), butinstead of assuming s to be of infinite size, no more than n characters (including the trailing NUL
character) will be converted to s.

Returns the number of characters that would have been written to s if there were enough space.
22.9.3.26 int snprintf_P ( char x __s, size_t _n, const char x __fmt, ... )

Variant of snprintf () that uses a fmt string that resides in program memory.

22.9.3.27 int sprintf ( char x __s, const char x __fmt, ... )

Variant of print £ () that sends the formatted characters to string s.

22.9.3.28 int sprintf_P ( char x __s, const char x __fmt, ... )

Variant of sprintf () that uses a fmt string that resides in program memory.

22.9.3.29 int sscanf ( const char x __buf, const char x __fmt, ... )

The function sscanf performs formatted input, reading the input data from the buffer pointed to by bu £.

See vfscanf() for details.

22.9.3.30 int sscanf_P ( const char x __buf, const char x __fmt, ... )

Variant of sscanf() using a fmt string in program memory.

22.9.3.31 intungetc ( int __c, FILE x __stream )

The ungetc() function pushes the character ¢ (converted to an unsigned char) back onto the input stream pointed to by
stream. The pushed-back character will be returned by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

The ungetc() function returns the character pushed back after the conversion, or EOF if the operation fails. If the value
of the argument c character equals EOF, the operation will fail and the stream will remain unchanged.

22.9.3.32 int vfprintf ( FILE x __stream, const char x __fmf, va_list __ap )
viprintf is the central facility of the print £ family of functions. It outputs values to st ream under control of a
format string passed in fmt. The actual values to print are passed as a variable argument list ap.

viprint £ returns the number of characters written to st ream, or EOF in case of an error. Currently, this will only
happen if st ream has not been opened with write intent.

The format string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent arguments.
Each conversion specification is introduced by the % character. The arguments must properly correspond (after type
promotion) with the conversion specifier. After the %, the following appear in sequence:

+ Zero or more of the following flags:

— # The value should be converted to an "alternate form". For ¢, d, i, s, and u conversions, this option has no
effect. For o conversions, the precision of the number is increased to force the first character of the output

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 136

string to a zero (except if a zero value is printed with an explicit precision of zero). For x and X conversions,
a non-zero result has the string ‘0x’ (or ‘0X’ for X conversions) prepended to it.

— 0 (zero) Zero padding. For all conversions, the converted value is padded on the left with zeros rather than
blanks. If a precision is given with a numeric conversion (d, i, o, u, i, X, and X), the 0 flag is ignored.

— — A negative field width flag; the converted value is to be left adjusted on the field boundary. The converted
value is padded on the right with blanks, rather than on the left with blanks or zeros. A - overrides a 0 if both
are given.

— '’ (space) A blank should be left before a positive number produced by a signed conversion (d, or i).

— + A sign must always be placed before a number produced by a signed conversion. A + overrides a space
if both are used.

» An optional decimal digit string specifying a minimum field width. If the converted value has fewer characters than
the field width, it will be padded with spaces on the left (or right, if the left-adjustment flag has been given) to fill
out the field width.

» An optional precision, in the form of a period . followed by an optional digit string. If the digit string is omitted, the
precision is taken as zero. This gives the minimum number of digits to appear for d, i, 0, u, x, and X conversions,
or the maximum number of characters to be printed from a string for s conversions.

» An optional 1 or h length modifier, that specifies that the argument for the d, i, o, u, x, or X conversionisa "long
int " rather than int. The hisignored, as "short int" is equivalentto int.

« A character that specifies the type of conversion to be applied.

The conversion specifiers and their meanings are:

» diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal (x and X) notation. The letters "abcdef" are used for x conversions;
the letters "ABCDEF" are used for X conversions. The precision, if any, gives the minimum number of digits that
must appear; if the converted value requires fewer digits, it is padded on the left with zeros.

* pThe void *argumentis taken as an unsigned integer, and converted similarly as a % #x command would do.
* ¢ The int argument is converted to an "unsigned char", and the resulting character is written.

* s The "char %" argument is expected to be a pointer to an array of character type (pointer to a string). Char-
acters from the array are written up to (but not including) a terminating NUL character; if a precision is specified,
no more than the number specified are written. If a precision is given, no null character need be present; if
the precision is not specified, or is greater than the size of the array, the array must contain a terminating NUL
character.

* % A % is written. No argument is converted. The complete conversion specification is "%%".

» eE The double argument is rounded and converted in the format " [-]1d.ddde+dd" where there is one digit
before the decimal-point character and the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero, no decimal-point character appears. An E conversion uses the
letter * E’ (rather than ’ e’) to introduce the exponent. The exponent always contains two digits; if the value is
zero, the exponent is 00.

+ fF The double argument is rounded and converted to decimal notation in the format " [-]ddd.ddd", where
the number of digits after the decimal-point character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is explicitly zero, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 137

* gG The double argument is converted in style £ or e (or F or E for G conversions). The precision specifies the
number of significant digits. If the precision is missing, 6 digits are given; if the precision is zero, it is treated as 1.
Style e is used if the exponent from its conversion is less than -4 or greater than or equal to the precision. Trailing
zeros are removed from the fractional part of the result; a decimal point appears only if it is followed by at least
one digit.

+ S Similar to the s format, except the pointer is expected to point to a program-memory (ROM) string instead of a
RAM string.

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a conversion is
wider than the field width, the field is expanded to contain the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three different flavours of vfprintf()
can be selected using linker options. The default vfprintf() implements all the mentioned functionality except floating
point conversions. A minimized version of vfprintf() is available that only implements the very basic integer and string
conversion facilities, but only the # additional option can be specified using conversion flags (these flags are parsed
correctly from the format specification, but then simply ignored). This version can be requested using the following
compiler options:

-Wl, -u,viprintf -lprintf min

If the full functionality including the floating point conversions is required, the following options should be used:
-Wl,-u,vfprintf -lprintf_ flt -1m

Limitations:

» The specified width and precision can be at most 255.

Notes:

« For floating-point conversions, if you link default or minimized version of vfprintf(), the symbol ? will be output
and double argument will be skiped. So you output below will not be crashed. For default version the width
field and the "pad to left" ( symbol minus ) option will work in this case.

» The hh length modifier is ignored (char argument is promouted to int). More exactly, this realization does
not check the number of h symbols.

» But the 11 length modifier will to abort the output, as this realization does not operate 1ong 1ong arguments.
» The variable width or precision field (an asterisk * symbol) is not realized and will to abort the output.

22.9.3.33 int viprintf_P ( FILE x __stream, const char x __fmt, va_list __ap )
Variant of vEfprint £ () that uses a fmt string that resides in program memory.
22.9.3.34 int vfscanf ( FILE x stream, const char x fmt, va_list ap )

Formatted input. This function is the heart of the scanf family of functions.

Characters are read from stream and processed in a way described by fmt. Conversion results will be assigned to the
parameters passed via ap.

The format string fmtis scanned for conversion specifications. Anything that doesn’t comprise a conversion specification
is taken as text that is matched literally against the input. White space in the format string will match any white space in
the data (including none), all other characters match only itself. Processing is aborted as soon as the data and format
string no longer match, or there is an error or end-of-file condition on stream.

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the character %. Possible options can follow the %:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



229

<stdio.h>: Standard 10 facilities 138

a * indicating that the conversion should be performed but the conversion result is to be discarded; no parameters
will be processed from ap,

the character h indicating that the argument is a pointer to short int (rather than int),
the 2 characters hh indicating that the argument is a pointer to char (rather than int).

the character 1 indicating that the argument is a pointer to 1long int (rather than int, for integer type conver-
sions), or a pointer to double (for floating point conversions),

In addition, a maximal field width may be specified as a nonzero positive decimal integer, which will restrict the conver-
sion to at most this many characters from the input stream. This field width is limited to at most 255 characters which is
also the default value (except for the ¢ conversion that defaults to 1).

The following conversion flags are supported:

% Matches a literal $ character. This is not a conversion.
d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is read in base 16
if it begins with 0x or 0X, in base 8 if it begins with 0, and in base 10 otherwise. Only characters that correspond
to the base are used.

o Matches an octal integer; the next pointer must be a pointer to unsigned int.

u Matches an optionally signed decimal integer; the next pointer must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer; the next pointer must be a pointer to unsigned int.
£ Matches an optionally signed floating-point number; the next pointer must be a pointer to float.

e, g, F, E, GEquivalentto £.

s Matches a sequence of non-white-space characters; the next pointer must be a pointer to char, and the array
must be large enough to accept all the sequence and the terminating NUL character. The input string stops at
white space or at the maximum field width, whichever occurs first.

c Matches a sequence of width count characters (default 1); the next pointer must be a pointer to char, and
there must be enough room for all the characters (no terminating NUL is added). The usual skip of leading white
space is suppressed. To skip white space first, use an explicit space in the format.

[ Matches a nonempty sequence of characters from the specified set of accepted characters; the next pointer
must be a pointer to char, and there must be enough room for all the characters in the string, plus a terminating
NUL character. The usual skip of leading white space is suppressed. The string is to be made up of characters in
(or not in) a particular set; the set is defined by the characters between the open bracket [ character and a close
bracket ] character. The set excludes those characters if the first character after the open bracket is a circumflex .
To include a close bracket in the set, make it the first character after the open bracket or the circumflex; any other
position will end the set. The hyphen character — is also special; when placed between two other characters, it
adds all intervening characters to the set. To include a hyphen, make it the last character before the final close
bracket. For instance, ["]0-9-] means the set of everything except close bracket, zero through nine, and
hyphen. The string ends with the appearance of a character not in the (or, with a circumflex, in) set or when the
field width runs out. Note that usage of this conversion enlarges the stack expense.

p Matches a pointer value (as printed by p in printf()); the next pointer must be a pointer to void.

n Nothing is expected; instead, the number of characters consumed thus far from the input is stored through the
next pointer, which must be a pointer to int. This is not a conversion, although it can be suppressed with the x
flag.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.9 <stdio.h>: Standard IO facilities 139

These functions return the number of input items assigned, which can be fewer than provided for, or even zero, in
the event of a matching failure. Zero indicates that, while there was input available, no conversions were assigned;
typically this is due to an invalid input character, such as an alphabetic character for a d conversion. The value
EOF is returned if an input failure occurs before any conversion such as an end-of-file occurs. If an error or
end-of-file occurs after conversion has begun, the number of conversions which were successfully completed is
returned.

By default, all the conversions described above are available except the floating-point conversions and the width
is limited to 255 characters. The float-point conversion will be available in the extended version provided by the
library 1ibscanf_f1lt.a. Also in this case the width is not limited (exactly, it is limited to 65535 characters).
To link a program against the extended version, use the following compiler flags in the link stage:

-Wl,-u,vfscanf -lscanf_flt -1m

A third version is available for environments that are tight on space. In addition to the restrictions of the standard
one, this version implements no % [ specification. This version is provided in the library 1ibscanf_min.a, and
can be requested using the following options in the link stage:

-W1l,-u,vfscanf -lscanf_min -1lm

22.9.3.35 intvfscanf_P ( FILE x __stream, const char x __fmt, va_list __ap )
Variant of vfscanf() using a £mt string in program memory.
22.9.3.36 int vprintf ( const char x __fmt, va_list __ap )

The function vprint £ performs formatted output to stream stdout, taking a variable argument list as in vfprintf().

See vfprintf() for details.
22.9.3.37 int vscanf ( const char x __fmt, va_list __ap )

The function vscanf performs formatted input from stream st din, taking a variable argument list as in vfscanf().

See vfscanf() for details.
22.9.3.38 int vsnprintf ( char x __s, size_t __n, const char x __fmt, va_list ap )

Like vsprintf (), but instead of assuming s to be of infinite size, no more than n characters (including the trailing
NUL character) will be converted to s.

Returns the number of characters that would have been written to s if there were enough space.
22.9.3.39 int vsnprintf_P ( char x __s, size_t __n, const char x __fmt, va_list ap )

Variant of vsnprintf () that uses a fmt string that resides in program memory.

22.9.3.40 int vsprintf ( char x __s, const char x __fmi, va_list ap )

Like sprintf () but takes a variable argument list for the arguments.

22.9.3.41 intvsprintf_P ( char x __s, const char x __fmf, va_list ap )

Variant of vsprint f () that uses a fmt string that resides in program memory.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 140

22.10 <stdlib.h>: General utilities

Data Structures

* struct div_t
* struct Idiv_t

Macros

+ #define RAND_MAX 0x7FFF

Typedefs

* typedef int(x __compar_fn_t )(const void *, const void )

Functions

+ void abort (void) _ ATTR_NORETURN__

+ intabs (int __i)

* long labs (long __i)

» void *x bsearch (const void x__key, const void x__base, size_t _ nmemb, size_t __size, int(x__compar)(const
void *, const void x*))

o div_tdiv (int __num, int __denom)__asm__("__divmodhi4")

« Idiv_t Idiv (long __num, long __denom) __asm__("__divmodsi4")

« void gsort (void *__base, size_t __nmemb, size_t __size, _ _compar_fn_t __compar)

« long strtol (const char *__nptr, char xx__endptr, int __base)

« unsigned long strtoul (const char x__nptr, char xx__endptr, int __base)

* long atol (const char x__s) _ ATTR_PURE___

« int atoi (constchar x__s) _ ATTR_PURE__

« void exit (int __status) _ ATTR_NORETURN__

+ void * malloc (size_t __size) _ ATTR_MALLOC___

+ void free (void x__ptr)

+ void * calloc (size_t __nele, size_t __size) _ ATTR_MALLOC__

+ void * realloc (void *__ptr, size_t __size) _ ATTR_MALLOC__

+ double strtod (const char x__nptr, char xx__endptr)

+ double atof (const char x__nptr)

* int rand (void)

+ void srand (unsigned int __seed)

« intrand_r (unsigned long *__ctx)

Variables
* size_t __malloc_margin

» char x __malloc_heap_start
» char x __malloc_heap_end

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 141

Non-standard (i.e. non-ISO C) functions.

* char x ltoa (long int __val, char x__s, int __radix)

 char * utoa (unsigned int __val, char x__s, int __radix)

* char * ultoa (unsigned long int __val, char *__s, int __radix)
* long random (void)

+ void srandom (unsigned long __seed)

* long random_r (unsigned long *__ctx)

» char x itoa (int __val, char *__s, int __radix)

+ #define RANDOM_MAX 0x7FFFFFFF

Conversion functions for double arguments.

Note that these functions are not located in the default library, 1ibc. a, but in the mathematical library, 1ibm.a. So
when linking the application, the —1m option needs to be specified.

* char x dtostre (double __val, char x__s, unsigned char __prec, unsigned char __flags)
* char x dtostrf (double __val, signed char __width, unsigned char __prec, char x__s)

+ #define DTOSTR_ALWAYS_SIGN 0x01 /* put '+ or’’ for positives */

+ #define DTOSTR_PLUS_SIGN 0x02 /x put '+ rather than’’ %/

+ #define DTOSTR_UPPERCASE 0x04 /x put 'E’ rather e’ */

22.10.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard, plus some AVR-specific exten-
sions.

22.10.2 Macro Definition Documentation

22.10.2.1 #define DTOSTR_ALWAYS_SIGN 0x01 / put '+ or’’ for positives /
Bit value that can be passed in f1ags to dtostre().

22.10.2.2 #define DTOSTR_PLUS_SIGN 0x02 / put '+ rather than ’’ x/

Bit value that can be passed in f1ags to dtostre().

22.10.2.3 #define DTOSTR_UPPERCASE 0x04 /> put 'E’ rather ’e’ «/

Bit value that can be passed in f1ags to dtostre().

22.10.2.4 #define RAND_MAX Ox7FFF

Highest number that can be generated by rand().

22.10.2.5 #define RANDOM_MAX 0x7FFFFFFF

Highest number that can be generated by random().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 142

22.10.3 Typedef Documentation

22.10.3.1 typedef int(x __compar_fn_t)(const void x, const void )

Comparision function type for gsort(), just for convenience.

22.10.4 Function Documentation

22.10.4.1 void abort ( void )

The abort() function causes abnormal program termination to occur. This realization disables interrupts and jumps to
_exit() function with argument equal to 1. In the limited AVR environment, execution is effectively halted by entering an
infinite loop.

22.10.4.2 intabs (int__i)
The abs() function computes the absolute value of the integer 1.

Note

The abs() and labs() functions are builtins of gcc.

22.10.4.3 double atof ( const char  nptr )

The atof() function converts the initial portion of the string pointed to by nptrto double representation.

It is equivalent to calling

strtod(nptr, (char xx)0);

22.10.4.4 int atoi ( constchar x s )

Convert a string to an integer.

The atoi() function converts the initial portion of the string pointed to by s to integer representation. In contrast to

(int)strtol (s, (char %x)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is not predictable), uses smaller
memory (flash and stack) and works more quickly.

22.10.4.5 long atol ( const char x s )

Convert a string to a long integer.

The atol() function converts the initial portion of the string pointed to by s to long integer representation. In contrast to

strtol (s, (char *%)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is not predictable), uses smaller
memory (flash and stack) and works more quickly.

22.10.4.6 voidx bsearch ( const void  __key, const void x __base, size_t _nmemb, size_t __size, int(x)(const void x, const void )
__compar )

The bsearch() function searches an array of nmemb objects, the initial member of which is pointed to by base, for a
member that matches the object pointed to by key. The size of each member of the array is specified by size.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 143

The contents of the array should be in ascending sorted order according to the comparison function referenced by
compar. The compar routine is expected to have two arguments which point to the key object and to an array
member, in that order, and should return an integer less than, equal to, or greater than zero if the key object is found,
respectively, to be less than, to match, or be greater than the array member.

The bsearch() function returns a pointer to a matching member of the array, or a null pointer if no match is found. If two
members compare as equal, which member is matched is unspecified.

22.10.4.7 voidx calloc ( size_t __nele, size_t __size )

Allocate nele elements of size each. Identical to callingmalloc () usingnele x size asargument, exceptthe
allocated memory will be cleared to zero.

22.10.4.8 div_tdiv( int __num, int __denom )

The div() function computes the value num/denom and returns the quotient and remainder in a structure named div—
_t that contains two int members named quot and rem.

22.10.4.9 charx dtostre ( double __val, char x __s, unsigned char __prec, unsigned char __flags )
The dtostre() function converts the double value passed in val into an ASCII representation that will be stored under
s. The caller is responsible for providing sufficient storage in s.

Conversion is done in the format " [-]d.ddde+dd" where there is one digit before the decimal-point character and
the number of digits after it is equal to the precision prec; if the precision is zero, no decimal-point character appears.
If flags has the DTOSTRE_UPPERCASE bit set, the letter ' E’ (rather than " e’ ) will be used to introduce the
exponent. The exponent always contains two digits; if the value is zero, the exponentis "00".

If flags has the DTOSTRE_ALWAYS_SIGN bit set, a space character will be placed into the leading position for
positive numbers.

If f1ags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be used instead of a space character in this case.

The dtostre() function returns the pointer to the converted string s.
22.10.4.10 charx dtostrf ( double __val, signed char __width, unsigned char __prec, char x __s )

The dtostrf() function converts the double value passed in val into an ASCII representationthat will be stored under s.
The caller is responsible for providing sufficient storage in s.

Conversion is done in the format " [-]d.ddd". The minimum field width of the output string (including the ’ ” and the
possible sign for negative values) is given in width, and prec determines the number of digits after the decimal sign.
width is signed value, negative for left adjustment.

The dtostrf() function returns the pointer to the converted string s.
22.10.4.11 void exit ( int __status )

The exit() function terminates the application. Since there is no environment to return to, status is ignored, and code
execution will eventually reach an infinite loop, thereby effectively halting all code processing. Before entering the infinite
loop, interrupts are globally disabled.

In a C++ context, global destructors will be called before halting execution.
22.10.4.12 void free ( void x __pir )

The free() function causes the allocated memory referenced by pt r to be made available for future allocations. If ptr
is NULL, no action occurs.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 144

22.10.4.13 charx itoa ( int __val, char x __s, int __radix )

Convert an integer to a string.

The function itoa() converts the integer value from val into an ASCII representation that will be stored under s. The
caller is responsible for providing sufficient storage in s.

Note
The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you need to
supply a buffer with a minimal length of 8 x sizeof (int) + 1 characters, i.e. one character for each bit plus one for
the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to 36. If
radizx is greater than 10, the next digit after * 97 will be the letter 7 a” .

If radix is 10 and val is negative, a minus sign will be prepended.

The itoa() function returns the pointer passed as s.
22.10.4.14 longlabs ( long __i )
The labs() function computes the absolute value of the long integer i.

Note

The abs() and labs() functions are builtins of gcc.

22.10.4.15 Idiv_t Idiv ( long __num, long __denom )

The Idiv() function computes the value num/denom and returns the quotient and remainder in a structure named
1div_t that contains two long integer members named quot and rem.

22.10.4.16 charx Itoa ( long int __val, char x __s, int __radix )

Convert a long integer to a string.

The function Itoa() converts the long integer value from val into an ASCII representation that will be stored under s.
The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you need to
supply a buffer with a minimal length of 8 x sizeof (long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.
Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to 36. If
radix is greater than 10, the next digit after * 97 will be the letter " a’ .
If radix is 10 and val is negative, a minus sign will be prepended.

The Itoa() function returns the pointer passed as s.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 145

22.10.4.17 voidx malloc ( size_t __size )

The malloc() function allocates size bytes of memory. If malloc() fails, a NULL pointer is returned.
Note that malloc() does not initialize the returned memory to zero bytes.

See the chapter about malloc() usage for implementation details.
22.10.4.18 void gsort ( void « __base, size_t __nmemb, size_t __size, __compar_fn_t __compar )

The gsort() function is a modified partition-exchange sort, or quicksort.

The gsort() function sorts an array of nmemb objects, the initial member of which is pointed to by base. The size of each
object is specified by size. The contents of the array base are sorted in ascending order according to a comparison
function pointed to by compar, which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument is considered
to be respectively less than, equal to, or greater than the second.

22.10.4.19 intrand ( void )

The rand() function computes a sequence of pseudo-random integers in the range of 0 to RAND_MAX (as defined by
the header file <stdlib.h>).

The srand() function sets its argument seed as the seed for a new sequence of pseudo-random numbers to be returned
by rand(). These sequences are repeatable by calling srand() with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operate on int arguments. Since the underlying algorithm already
uses 32-bit calculations, this causes a loss of precision. See random () for an alternate set of functions that retains
full 32-bit precision.

22.10.4.20 int rand_r ( unsigned long x __ctx )

Variant of rand() that stores the context in the user-supplied variable located at ct x instead of a static library variable
so the function becomes re-entrant.

22.10.4.21 long random ( void )
The random() function computes a sequence of pseudo-random integers in the range of 0 to RANDOM_MAX (as defined

by the header file <stdlib.h>).

The srandom() function sets its argument seed as the seed for a new sequence of pseudo-random numbers to be
returned by rand(). These sequences are repeatable by calling srandom() with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.
22.10.4.22 long random_r ( unsigned long * __ctx )

Variant of random() that stores the context in the user-supplied variable located at ct x instead of a static library variable
so the function becomes re-entrant.

22.10.4.23 void: realloc ( void x __ptr, size_t __size )

The realloc() function tries to change the size of the region allocated at pt r to the new size value. It returns a pointer
to the new region. The returned pointer might be the same as the old pointer, or a pointer to a completely different
region.

The contents of the returned region up to either the old or the new size value (whatever is less) will be identical to the
contents of the old region, even in case a new region had to be allocated.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 146

It is acceptable to pass pt r as NULL, in which case realloc() will behave identical to malloc().

If the new memory cannot be allocated, realloc() returns NULL, and the region at pt r will not be changed.
22.10.4.24 void srand ( unsigned int __seed )

Pseudo-random number generator seeding; see rand().

22.10.4.25 void srandom ( unsigned long __seed )

Pseudo-random number generator seeding; see random().

22.10.4.26 double strtod ( const char x nptr, char xx endptr )

The strtod() function converts the initial portion of the string pointed to by nptrto double representation.

The expected form of the string is an optional plus ( * +’ ) or minus sign ( =’ ) followed by a sequence of digits
optionally containing a decimal-point character, optionally followed by an exponent. An exponent consists of an ' E’ or
" e’ followed by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.
The strtod() function returns the converted value, if any.

If endptris not NULL, a pointer to the character after the last character used in the conversion is stored in the location
referenced by endptr.

If no conversion is performed, zero is returned and the value of nptris stored in the location referenced by endptr.

If the correct value would cause overflow, plus or minus INFINITY is returned (according to the sign of the value),
and ERANGE is stored in errno. If the correct value would cause underflow, zero is returned and ERANGE is stored in
errno.

22.10.4.27 long strtol ( const char x« __nptr, char *x __endptr, int __base )

The strtol() function converts the string in npt r to a long value. The conversion is done according to the given base,
which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by isspace()) followed by a single optional
"+’ or ' =’ sign. If base is zero or 16, the string may then include a "0x" prefix, and the number will be read in
base 16; otherwise, a zero base is taken as 10 (decimal) unless the next character is * 07, in which case it is taken as
8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping at the first character which is
not a valid digit in the given base. (In bases above 10, the letter A’ in either upper or lower case represents 10, ' B’
represents 11, and so forth, with 7 Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in xendptr. If there were no digits at
all, however, strtol() stores the original value of nptr in xendptzr. (Thus, if *xnptr is not * \0’ but *xendptr is
"\ 0’ on return, the entire string was valid.)

The strtol() function returns the result of the conversion, unless the value would underflow or overflow. If no conversion
could be performed, 0 is returned. If an overflow or underflow occurs, errno is set to ERANGE and the function return
value is clamped to LONG_MIN or LONG_MAX, respectively.

22.10.4.28 unsigned long strtoul ( const char x __nptr, char xx __endptr, int __base )

The strtoul() function converts the string in npt r to an unsigned long value. The conversion is done according to the
given base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by isspace()) followed by a single optional
"+’ or ' -’ sign. If base is zero or 16, the string may then include a "0x" prefix, and the number will be read in

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 147

base 16; otherwise, a zero base is taken as 10 (decimal) unless the next character is * 07, in which case it is taken as
8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious manner, stopping at the first character
which is not a valid digit in the given base. (In bases above 10, the letter * A’ in either upper or lower case represents
10, ' B’ represents 11, and so forth, with 7 zZ’ representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in xendptr. If there were no digits at
all, however, strtoul() stores the original value of nptr in xendptr. (Thus, if xnptr is not  \0’ but xxendptr is
"\ 0’ on return, the entire string was valid.)

The strtoul() function return either the result of the conversion or, if there was a leading minus sign, the negation of
the result of the conversion, unless the original (non-negated) value would overflow; in the latter case, strtoul() returns
ULONG_MAX, and errno is set to ERANGE. If no conversion could be performed, 0 is returned.

22.10.4.29 charsx ultoa ( unsigned long int __val, char x __s, int __radix )

Convert an unsigned long integer to a string.

The function ultoa() converts the unsigned long integer value from val into an ASCII representation that will be stored
under s. The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you need to
supply a buffer with a minimal length of 8 * sizeof (unsigned long int) + 1 characters, i.e. one character for each bit
plus one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning
If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to 36. If
radix is greater than 10, the next digit after * 97 will be the letter " a’ .

The ultoa() function returns the pointer passed as s.
22.10.4.30 charx utoa ( unsigned int __val, char x __s, int __radix )

Convert an unsigned integer to a string.

The function utoa() converts the unsigned integer value from val into an ASCII representation that will be stored under
s. The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you need to
supply a buffer with a minimal length of 8 x sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus
one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning
If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to 36. If
radix is greater than 10, the next digit after ¥ 97 will be the letter 7 a’ .

The utoa() function returns the pointer passed as s.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.10 <stdlib.h>: General utilities 148

22.10.5 Variable Documentation

22.10.5.1 charx __malloc_heap_end
malloc () tunable.

22.10.5.2 charx __malloc_heap_start
malloc () tunable.

22.10.5.3 size_t __malloc_margin

malloc () tunable.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 149

2211 <string.h>: Strings
Macros

. #define FFS(x)

Functions

« int ffs (int _val)

« int ffsl (long __val)

« int ffsll (long long __val)

* void * memccpy (void *, const void x, int, size_t)

« void * memchr (const void , int, size_t) _ ATTR_PURE__

+ int memcmp (const void *, const void *, size_t) _ ATTR_PURE__

+ void * memcpy (void *, const void *, size_t)

+ void * memmem (const void *, size_t, const void *, size_t) _ ATTR_PURE__
+ void * memmove (void *, const void *, size_t)

« void * memrchr (const void *, int, size_t) _ ATTR_PURE___

* void * memset (void %, int, size_t)

* int strcasecmp (const char *, const char x) _ ATTR_PURE__

» char x strcasestr (const char *, const char x) _ ATTR_PURE__

» char x strcat (char x, const char )

* char * strchr (const char *, int) _ ATTR_PURE__

 char x strchrnul (const char %, int) _ ATTR_PURE__

* int strcmp (const char *, const char x) _ ATTR_PURE__

* char x strcpy (char *, const char x)

* size_t strcspn (const char x__s, const char x__reject) _ ATTR_PURE__
 char x strdup (const char xs1)

* size_t strlcat (char *, const char x, size_t)

* size_t stricpy (char *, const char *, size_t)

* size_t strlen (const char x) _ ATTR_PURE___

+ char * strlwr (char *)

« int strncasecmp (const char x, const char *, size_t) _ ATTR_PURE__

» char x strncat (char *, const char x, size_t)

« int strncmp (const char *, const char *, size_t) _ ATTR_PURE__

» char x strncpy (char %, const char x, size_t)

* size_t strnlen (const char x, size_t) _ ATTR_PURE__

» char x strpbrk (const char *__s, const char x__accept) _ ATTR_PURE___
 char * strrchr (const char , int) __ ATTR_PURE___

» char x strrev (char *)

« char * strsep (char *x, const char %)

* size_t strspn (const char x__s, const char *__accept) _ ATTR_PURE__
* char * strstr (const char %, const char x) _ ATTR_PURE___

« char x strtok (char *, const char )

* char x strtok_r (char *, const char *, char xx)

* char x strupr (char x)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 150

22.11.1 Detailed Description
#include <string.h>
The string functions perform string operations on NULL terminated strings.

Note

If the strings you are working on resident in program space (flash), you will need to use the string functions described
in <avr/pgmspace.h>: Program Space Utilities.

22.11.2 Macro Definition Documentation

22.11.21 #define _FFS( x )

This macro finds the first (least significant) bit set in the input value.

This macro is very similar to the function ffs() except that it evaluates its argument at compile-time, so it should only
be applied to compile-time constant expressions where it will reduce to a constant itself. Application of this macro to
expressions that are not constant at compile-time is not recommended, and might result in a huge amount of code
generated.

Returns

The _FFS() macro returns the position of the first (least significant) bit set in the word val, or 0 if no bits are set. The
least significant bit is position 1. Only 16 bits of argument are evaluted.

22.11.3 Function Documentation

22.11.3.1 intffs ( int val )
This function finds the first (least significant) bit set in the input value.

Returns

The ffs() function returns the position of the first (least significant) bit set in the word val, or 0 if no bits are set. The
least significant bit is position 1.

Note

For expressions that are constant at compile time, consider using the _FFS macro instead.

22.11.3.2 intffsl( long __val )

Same as ffs(), for an argument of type long.

22.11.3.3 intffsll ( long long __val )

Same as ffs(), for an argument of type long long.

22.11.3.4 void x memccpy ( void * dest, const void  src, int val, size_t len )

Copy memory area.

The memccpy() function copies no more than 1en bytes from memory area src to memory area dest, stopping when
the character val is found.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 151

Returns

The memccpy() function returns a pointer to the next character in dest after val, or NULL if val was not found
in the first 1en characters of src.

22.11.3.5 void x memchr ( const void * src, int val, size_t len )

Scan memory for a character.

The memchr() function scans the first len bytes of the memory area pointed to by src for the character val. The first byte
to match val (interpreted as an unsigned character) stops the operation.

Returns

The memchr() function returns a pointer to the matching byte or NULL if the character does not occur in the given
memory area.

22.11.3.6 int mememp ( const void x s1, const void x s2, size_t len )

Compare memory areas.

The memcmp() function compares the first len bytes of the memory areas s1 and s2. The comparision is performed
using unsigned char operations.

Returns
The memcmp() function returns an integer less than, equal to, or greater than zero if the first len bytes of s1 is
found, respectively, to be less than, to match, or be greater than the first len bytes of s2.

Note
Be sure to store the result in a 16 bit variable since you may get incorrect results if you use an unsigned char or
char due to truncation.

Warning

This function is not -mint8 compatible, although if you only care about testing for equality, this function should be
safe to use.

22.11.3.7 void  memcpy ( void * dest, const void * src, size_t len )

Copy a memory area.

The memcpy() function copies len bytes from memory area src to memory area dest. The memory areas may not
overlap. Use memmove() if the memory areas do overlap.

Returns

The memcpy() function returns a pointer to dest.

22.11.3.8 void « memmem ( const void x s1, size_t len1, const void x s2, size_t len2 )

The memmem() function finds the start of the first occurrence of the substring s2 of length 1en2 in the memory area
sl of length 1enl.

Returns

The memmem() function returns a pointer to the beginning of the substring, or NULL if the substring is not found. If
len?2 is zero, the function returns s1.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 152

22.11.3.9 void x memmove ( void * dest, const void x src, size_t len )

Copy memory area.

The memmove() function copies len bytes from memory area src to memory area dest. The memory areas may overlap.

Returns

The memmove() function returns a pointer to dest.

22.11.3.10 void  memrchr ( const void x src, int val, size_t len )

The memrchr() function is like the memchr() function, except that it searches backwards from the end of the 1en bytes
pointed to by src instead of forwards from the front. (Glibc, GNU extension.)

Returns

The memrchr() function returns a pointer to the matching byte or NULL if the character does not occur in the given
memory area.

22.11.3.11 void « memset ( void * dest, int val, size_t len )

Fill memory with a constant byte.

The memset() function fills the first len bytes of the memory area pointed to by dest with the constant byte val.

Returns

The memset() function returns a pointer to the memory area dest.

22.11.3.12 int strcasecmp ( const char * s1, const char x s2 )

Compare two strings ignoring case.

The strcasecmp() function compares the two strings s1 and s2, ignoring the case of the characters.

Returns

The strcasecmp() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively, to
be less than, to match, or be greater than s2. A consequence of the ordering used by strcasecmp() is that if s1 is
an initial substring of s2, then s1 is considered to be "less than" s2.

22.11.3.13 char x strcasestr ( const char x s1, const char x s2 )

The strcasestr() function finds the first occurrence of the substring s2 in the string s1. This is like strstr(), except that it
ignores case of alphabetic symbols in searching for the substring. (Glibc, GNU extension.)

Returns

The strcasestr() function returns a pointer to the beginning of the substring, or NULL if the substring is not found. If
s2 points to a string of zero length, the function returns s1.

22.11.3.14 char x strcat ( char x dest, const char x src )

Concatenate two strings.

The strcat() function appends the src string to the dest string overwriting the 0’ character at the end of dest, and then
adds a terminating "\O’ character. The strings may not overlap, and the dest string must have enough space for the
result.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 153

Returns

The strcat() function returns a pointer to the resulting string dest.

22.11.3.15 char x strchr ( const char x src, int val )

Locate character in string.
The strchr() function returns a pointer to the first occurrence of the character val in the string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte characters.

Returns

The strchr() function returns a pointer to the matched character or NULL if the character is not found.

22.11.3.16 char x strchrnul ( const char x s, int ¢ )

The strchrnul() function is like strchr() except that if ¢ is not found in s, then it returns a pointer to the null byte at the
end of s, rather than NULL. (Glibc, GNU extension.)
Returns

The strchrnul() function returns a pointer to the matched character, or a pointer to the null byte at the end of s (i.e.,
s+strlen(s)) if the character is not found.

22.11.3.17 int stremp ( const char * s1, const char * s2 )

Compare two strings.

The stremp() function compares the two strings s1 and s2.

Returns

The strcmp() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively, to be
less than, to match, or be greater than s2. A consequence of the ordering used by strcmp() is that if s1 is an initial
substring of s2, then s1 is considered to be "less than" s2.

22.11.3.18 char * strepy ( char x dest, const char x src )

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating \O’ character) to the array pointed to
by dest. The strings may not overlap, and the destination string dest must be large enough to receive the copy.

Returns

The strcpy() function returns a pointer to the destination string dest.

Note

If the destination string of a strcpy() is not large enough (that is, if the programmer was stupid/lazy, and failed to
check the size before copying) then anything might happen. Overflowing fixed length strings is a favourite cracker
technique.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 154

22.11.3.19 size_t strespn ( const char « s, const char * reject )

The strcspn() function calculates the length of the initial segment of s which consists entirely of characters not in
reject.

Returns

The strcspn() function returns the number of characters in the initial segment of s which are not in the string
reject. The terminating zero is not considered as a part of string.

22.11.3.20 char x strdup ( const char x s1 )

Duplicate a string.

The strdup() function allocates memory and copies into it the string addressed by s1, including the terminating null
character.

Warning

The strdup() function calls malloc() to allocate the memory for the duplicated string! The user is responsible for
freeing the memory by calling free().

Returns

The strdup() function returns a pointer to the resulting string dest. If malloc() cannot allocate enough storage for the
string, strdup() will return NULL.

Warning

Be sure to check the return value of the strdup() function to make sure that the function has succeeded in allocating
the memory!
22.11.3.21 size_t stricat ( char * dst, const char * src, size_t siz )

Concatenate two strings.

Appends src to string dst of size siz (unlike strncat(), siz is the full size of dst, not space left). At most siz-1 characters
will be copied. Always NULL terminates (unless siz <= strlen(dst)).

Returns

The stricat() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval >= siz, truncation occurred.

Appends src to string dst of size siz (unlike strncat(), siz is the full size of dst, not space left). At most siz-1
characters will be copied. Always NULL terminates (unless siz <= strlen (dst)).

Returns

The stricat() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval >= siz, truncation occurred.

22.11.3.22 size_t stricpy ( char * dst, const char * src, size_t siz )

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always NULL terminates (unless siz == 0).

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 155

Returns

The stricpy() function returns strlen(src). If retval >= siz, truncation occurred.

Copy src to string dst of size siz. At most siz—1 characters will be copied. Always NULL terminates (unless siz
==0).

Returns

The strlcpy() function returns strlen(src). If retval >= siz, truncation occurred.

22.11.3.23 size_t strlen ( const char x src )

Calculate the length of a string.

The strlen() function calculates the length of the string src, not including the terminating "0’ character.

Returns

The strlen() function returns the number of characters in src.

22.11.3.24 char « strlwr ( char *x s )

Convert a string to lower case.

The strlwr() function will convert a string to lower case. Only the upper case alphabetic characters [A .. Z] are converted.
Non-alphabetic characters will not be changed.

Returns

The striwr() function returns a pointer to the converted string.

22.11.3.25 int strncasecmp ( const char x s1, const char x s2, size_t len )

Compare two strings ignoring case.

The strncasecmp() function is similar to strcasecmp(), except it only compares the first 1en characters of s1.

Returns

The strncasecmp() function returns an integer less than, equal to, or greater than zero if s1 (or the first 1en bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2. A consequence of the ordering
used by strncasecmp() is that if s1 is an initial substring of s2, then s1 is considered to be "less than" s2.

22.11.3.26 char * strncat ( char * dest, const char x src, size_t len )

Concatenate two strings.

The strncat() function is similar to strcat(), except that only the first n characters of src are appended to dest.

Returns

The strncat() function returns a pointer to the resulting string dest.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 156

22.11.3.27 int strnecmp ( const char x s1, const char x s2, size_t len )

Compare two strings.

The strncmp() function is similar to strcmp(), except it only compares the first (at most) n characters of s1 and s2.

Returns

The strncmp() function returns an integer less than, equal to, or greater than zero if s1 (or the first n bytes thereof)
is found, respectively, to be less than, to match, or be greater than s2.

22.11.3.28 char « strncpy ( char * dest, const char x src, size_t len )

Copy a string.

The strncpy() function is similar to strcpy(), except that not more than n bytes of src are copied. Thus, if there is no null
byte among the first n bytes of src, the result will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be padded with nulls.

Returns

The strncpy() function returns a pointer to the destination string dest.

22.11.3.29 size_t strnlen ( const char x src, size_tlen )

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not including the terminating "\0’
character, but at most len. In doing this, strnlen looks only at the first len characters at src and never beyond src+len.
Returns

The strnlen function returns strlen(src), if that is less than len, or len if there is no '\O’ character among the first len
characters pointed to by src.

22.11.3.30 char * strpbrk ( const char x s, const char x accept )

The strpbrk() function locates the first occurrence in the string s of any of the characters in the string accept.

Returns

The strpbrk() function returns a pointer to the character in s that matches one of the characters in accept, or
NULL if no such character is found. The terminating zero is not considered as a part of string: if one or both args
are empty, the result will NULL.

22.11.3.31 char « strrchr ( const char x sre, int val )

Locate character in string.
The strrchr() function returns a pointer to the last occurrence of the character val in the string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte characters.

Returns

The strrchr() function returns a pointer to the matched character or NULL if the character is not found.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 157

22.11.3.32 char x strrev ( char x s )

Reverse a string.

The strrev() function reverses the order of the string.

Returns

The strrev() function returns a pointer to the beginning of the reversed string.

22.11.3.33 char x strsep ( char xx sp, const char x delim )

Parse a string into tokens.

The strsep() function locates, in the string referenced by *sp, the first occurrence of any character in the string delim
(or the terminating \O’ character) and replaces it with a \0’. The location of the next character after the delimiter
character (or NULL, if the end of the string was reached) is stored in xsp. An “empty” field, i.e. one caused by two
adjacent delimiter characters, can be detected by comparing the location referenced by the pointer returned in xsp to
0.

Returns

The strsep() function returns a pointer to the original value of xsp. If xsp is initially NULL, strsep() returns NULL.

22.11.3.34 size_t strspn ( const char x s, const char *x accept )
The strspn() function calculates the length of the initial segment of s which consists entirely of characters in accept.

Returns

The strspn() function returns the number of characters in the initial segment of s which consist only of characters
from accept. The terminating zero is not considered as a part of string.

22.11.3.35 char x strstr ( const char x s1, const char x s2 )

Locate a substring.

The strstr() function finds the first occurrence of the substring s2 in the string s1. The terminating '\O’ characters are
not compared.

Returns

The strstr() function returns a pointer to the beginning of the substring, or NULL if the substring is not found. If s2
points to a string of zero length, the function returns s1.

22.11.3.36 char « strtok ( char x s, const char x delim )

Parses the string s into tokens.

strtok parses the string s into tokens. The first call to strtok should have s as its first argument. Subsequent calls should
have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is overwritten with a "\0’
and a pointer to the next character is saved for the next call to strtok. The delimiter string delim may be different for each
call.

Returns

The strtok() function returns a pointer to the next token or NULL when no more tokens are found.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.11 <string.h>: Strings 158

Note

strtok() is NOT reentrant. For a reentrant version of this function see strtok_r ().

22.11.3.37 char « striok_r ( char « string, const char * delim, char xx last )

Parses string into tokens.

strtok_r parses string into tokens. The first call to strtok_r should have string as its first argument. Subsequent calls
should have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is overwritten with a
\0’ and a pointer to the next character is saved for the next call to strtok_r. The delimiter string de 1 im may be different
for each call. 1ast is a user allocated charx pointer. It must be the same while parsing the same string. strtok_r is a
reentrant version of strtok().

Returns

The strtok_r() function returns a pointer to the next token or NULL when no more tokens are found.

22.11.3.38 char « strupr ( char x s )

Convert a string to upper case.

The strupr() function will convert a string to upper case. Only the lower case alphabetic characters [a .. z] are converted.
Non-alphabetic characters will not be changed.

Returns

The strupr() function returns a pointer to the converted string. The pointer is the same as that passed in since the
operation is perform in place.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 159

22.12 <avr/boot.h>>: Bootloader Support Utilities

Macros

+ #define BOOTLOADER_SECTION __attribute__ ((section (".bootloader")))

- #define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
« #define boot_spm_interrupt_disable() (__ SPM_REG &= (uint8_t)~_BV(SPMIE))
« #define boot_is_spm_interrupt() (__ SPM_REG & (uint8_t)_BV(SPMIE))

« #define boot_rww_busy() (_ SPM_REG & (uint8_t) BV(__ COMMON_ASB))
« #define boot_spm_busy() (__ SPM_REG & (uint8_t)_BV(__SPM_ENABLE))

« #define boot_spm_busy_wait() do{}while(boot_spm_busy())

+ #define GET_LOW_FUSE_BITS (0x0000)

« #define GET_LOCK_BITS (0x0001)

« #define GET_EXTENDED_FUSE_BITS (0x0002)

+ #define GET_HIGH_FUSE_BITS (0x0003)

« #define boot_lock_fuse_bits_get(address)

« #define boot_signature_byte_get(addr)

« #define boot_page_fill(address, data) __boot_page_fill_normal(address, data)
« #define boot_page_erase(address) __boot_page_erase_normal(address)

« #define boot_page_write(address) __boot_page_write_normal(address)

« #define boot_rww_enable() _ boot_rww_enable()

« #define boot_lock_bits_set(lock_bits) _ boot_lock_bits_set(lock_bits)

« #define boot_page_fill_safe(address, data)

+ #define boot_page_erase_safe(address)

* #define boot_page_write_safe(address)

 #define boot_rww_enable_safe()

« #define boot_lock bits_set_safe(lock_bits)

22.12.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

The macros in this module provide a C language interface to the bootloader support functionality of certain AVR pro-
cessors. These macros are designed to work with all sizes of flash memory.

Global interrupts are not automatically disabled for these macros. It is left up to the programmer to do this. See the code
example below. Also see the processor datasheet for caveats on having global interrupts enabled during writing of the
Flash.

Note
Not all AVR processors provide bootloader support. See your processor datasheet to see if it provides bootloader
support.

Todo From email with Marek: On smaller devices (all except ATmega64/128), _ SPM_REG is in the 1/O space, ac-
cessible with the shorter "in" and "out" instructions - since the boot loader has a limited size, this could be an
important optimization.

API Usage Example

The following code shows typical usage of the boot API.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 160

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t xbuf)
{

uintl6_t i;

uint8_t sreg;

// Disable interrupts.

sreg = SREG;
cli();

eeprom_busy_wait ();
boot_page_erase (page);
boot_spm_busy_wait (); // Wait until the memory

is erased.

v (i=0; 1<SPM_PAGESIZE; i+=2)

// Set up little-endian word.

uintlé_t w = xbuf++;
w += (xbuf++) << §;

boot_page_fill (page + i, w);
}

boot_page_write (page); // Store buffer in flash
page.
boot_spm_busy_wait (); // Wait until the memory

is written.

// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.

boot_rww_enable ();
// Re-enable interrupts (if they were ever enabled).

SREG = sreg;

22.12.2 Macro Definition Documentation

22.12.2.1 #define boot_is_spm_interrupt( ) (__SPM_REG & (uint8_t)_BV(SPMIE))
Check if the SPM interrupt is enabled.

22.12.2.2 #define boot_lock_bits_set( lock_bits ) __boot_lock_bits_set(lock_bits)
Set the bootloader lock bits.

Parameters

lock_bits \ A mask of which Boot Loader Lock Bits to set.

Note

In this context, a 'set bit’ will be written to a zero value. Note also that only BLBxx bits can be programmed by this
command.

For example, to disallow the SPM instruction from writing to the Boot Loader memory section of flash, you would use
this macro as such:

boot_lock_bits_set (_BV (BLB11l));

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 161

Note

Like any lock bits, the Boot Loader Lock Bits, once set, cannot be cleared again except by a chip erase which will
in turn also erase the boot loader itself.

22.12.2.3 #define boot_lock_bits_set_safe( lock_bits )
Value:

S
boot_spm_busy_wait ();
eeprom_busy_wait ();
boot_lock_bits_set (lock_bits);

}ou e (0)

—

Same as boot_lock_bits_set() except waits for eeprom and spm operations to complete before setting the lock bits.
22.12.2.4 #define boot_lock_fuse_bits_get( address )

Value:

(__extension__ ({
uint8_t __ result;
__asm__ __volatile_
(
"sts %1, %2\n\t"
"lpm %0, Zz\n\t"
: "=r" (__result)
: "i" (_SFR_MEM_ADDR(__SPM_REG)),
"r" ((uint8_t) (__BOOT_LOCK_BITS_SET)),
"z" ((uintl6_t) (address))
)i
__result;

1)

P

Read the lock or fuse bits at address.

Parameter address can be any of GET_LOW_FUSE_BITS, GET_LOCK_BITS, GET_EXTENDED_FUSE_BITS, or
GET_HIGH_FUSE_BITS.

Note

The lock and fuse bits returned are the physical values, i.e. a bit returned as 0 means the corresponding fuse or
lock bit is programmed.

22.12.2.5 #define boot_page_erase( address ) __boot_page_erase_normal(address)
Erase the flash page that contains address.

Note

address is a byte address in flash, not a word address.

22.12.2.6 #define boot_page_erase_safe( address )
Value:

£\

boot_spm_busy_wait ();

eeprom_busy_wait ();

boot_page_erase (address);
}w e (0)

—

Same as boot_page_erase() except it waits for eeprom and spm operations to complete before erasing the page.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 162

22.12.2.7 #define boot_page_fill( address, data ) __boot_page._fill_normal(address, data)

Fill the bootloader temporary page buffer for flash address with data word.

Note

The address is a byte address. The data is a word. The AVR writes data to the buffer a word at a time, but
addresses the buffer per byte! So, increment your address by 2 between calls, and send 2 data bytes in a word
format! The LSB of the data is written to the lower address; the MSB of the data is written to the higher address.

22.12.2.8 #define boot_page fill_safe( address, data )

Value:

 { \
boot_spm_busy_wait ();
eeprom_busy_wait ();
boot_page_fill (address, data);
} while (0)

—

Same as boot_page_fill() except it waits for eeprom and spm operations to complete before filling the page.
22.12.2.9 #define boot_page_write( address ) __boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note

address is a byte address in flash, not a word address.

22.12.2.10 #define boot_page_write_safe( address )

Value:

jo {0\
boot_spm_busy_wait ();
eeprom_busy_wait ();
boot_page_write (address);
} while (0)

—

Same as boot_page_write() except it waits for eeprom and spm operations to complete before writing the page.
22.12.2.11 #define boot_rww_busy( ) (._SPM_REG & (uint8_t)_BV(_COMMON_ASB))

Check if the RWW section is busy.

22.12.2.12  #define boot_rww_enable( ) __boot_rww_enable()

Enable the Read-While-Write memory section.

22.12.2.13 #define boot_rww_enable_safe( )

Value:

SN
boot_spm_busy_wait () ;
eeprom_busy_wait ();
boot_rww_enable () ;
} while (0)

—

Same as boot_rww_enable() except waits for eeprom and spm operations to complete before enabling the RWW mame-
ory.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 163

22.12.2.14 #define boot_signature_byte_get( addr )

: (s
"r" ((uint8_t) (__BOOT_SIGROW_READ)),
((

won

uint16_t) (addr))
)i

__result;

Value:
(__extension__ ({ \
uint8_t __ result; \
__asm__ _ _volatile_ \
( \
"sts %1, %2\n\t" \
"lpm %0, z" "\n\t" \
: "=r" (__result) \
nim SFR_MEM_ADDR (__SPM_REG) ), \
\
\
\
\

)

Read the Signature Row byte at address. For some MCU types, this function can also retrieve the factory-stored
oscillator calibration bytes.

Parameter address can be 0-0x1f as documented by the datasheet.

Note

The values are MCU type dependent.

22.12.2.15 #define boot_spm_busy( ) (_._SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
Check if the SPM instruction is busy.

22.12.2.16  #define boot_spm_busy_wait( ) do{ }while(boot_spm_busy())

Wait while the SPM instruction is busy.

22.12.2.17 #define boot_spm_interrupt_disable( ) (__SPM_REG &= (uint8_t)~_BV(SPMIE))
Disable the SPM interrupt.

22.12.2.18 #define boot_spm _interrupt_enable( ) (__SPM_REG |= (uint8_t)_BV(SPMIE))
Enable the SPM interrupt.

22.12.2.19 #define BOOTLOADER_SECTION __attribute__ ((section (”.bootloader”)))

Used to declare a function or variable to be placed into a new section called .bootloader. This section and its contents
can then be relocated to any address (such as the bootloader NRWW area) at link-time.

22.12.2.20 #define GET_EXTENDED_FUSE_BITS (0x0002)

address to read the extended fuse bits, using boot_lock_fuse_bits_get
22.12.2.21 #define GET_HIGH_FUSE_BITS (0x0003)

address to read the high fuse bits, using boot_lock_fuse_bits_get
22.12.2.22 #define GET_LOCK_BITS (0x0001)

address to read the lock bits, using boot_lock_fuse_bits_get

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.12 <avr/boot.h>: Bootloader Support Utilities 164

22.12.2.23 #define GET_LOW_FUSE_BITS (0x0000)

address to read the low fuse bits, using boot_lock_fuse_bits_get

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.13 <avr/cpufunc.h>: Special AVR CPU functions 165

22.13 <avr/cpufunc.h>: Special AVR CPU functions

Macros

+ #define _NOP()
+ #define _MemoryBarrier()

22.13.1 Detailed Description

#include <avr/cpufunc.h>

This header file contains macros that access special functions of the AVR CPU which do not fit into any of the other
header files.

22.13.2 Macro Definition Documentation

22.13.2.1 #define _MemoryBarrier( )

Implement a read/write memory barrier. A memory barrier instructs the compiler to not cache any memory data in
registers beyond the barrier. This can sometimes be more effective than blocking certain optimizations by declaring
some object with a volatile qualifier.

See Problems with reordering code for things to be taken into account with respect to compiler optimizations.
22.13.2.2 #define NOP( )

Execute a no operation (NOP) CPU instruction. This should not be used to implement delays, better use the func-
tions from <util/delay_basic.h> or <util/delay.h> for this. For debugging purposes, a NOP can be useful to have an
instruction that is guaranteed to be not optimized away by the compiler, so it can always become a breakpoint in the
debugger.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.14 <avr/eeprom.h>: EEPROM handling 166

22.14 <avr/eeprom.h>: EEPROM handling
Macros

+ #define EEMEM __ attribute__ ((section(".eeprom")))
* #define eeprom_is_ready()
« #define eeprom_busy_wait() do {} while (leeprom_is_ready())

Functions

« uint8_t eeprom_read_byte (const uint8_t x__p) _ ATTR_PURE__

» uint16_t eeprom_read_word (const uint16_t «__p) _ ATTR_PURE__
* uint32_t eeprom_read_dword (const uint32_t «__p) _ ATTR_PURE__
« float eeprom_read_float (const float x__p) _ ATTR_PURE__

« void eeprom_read_block (void *__dst, const void x__src, size_t__n)

* void eeprom_write_byte (uint8_t x__p, uint8_t __value)

* void eeprom_write_word (uint16_t x__p, uint16_t _ value)

* void eeprom_write_dword (uint32_t *__p, uint32_t __value)

« void eeprom_write_float (float x__p, float __ value)

+ void eeprom_write_block (const void *__src, void *__dst, size_t __n)

+ void eeprom_update_byte (uint8_t x__p, uint8_t _ value)

+ void eeprom_update_word (uint16_t *__p, uint16_t __ value)

+ void eeprom_update_dword (uint32_t x__p, uint32_t _ value)

+ void eeprom_update_float (float x__p, float __ value)

+ void eeprom_update_block (const void *__src, void *__dst, size_t __ n)

IAR C compatibility defines

 #define _EEPUT(addr, val) eeprom_write_byte ((uint8_t x)(addr), (uint8_t)(val))
 #define _ EEPUT(addr, val) eeprom_write_byte ((uint8_t x)(addr), (uint8_t)(val))
* #define _EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t «)(addr))
« #define _ EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t *)(addr))

22.14.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for handling the data EEPROM con-
tained in the AVR microcontrollers. The implementation uses a simple polled mode interface. Applications that require
interrupt-controlled EEPROM access to ensure that no time will be wasted in spinloops will have to deploy their own
implementation.

Notes:

+ In addition to the write functions there is a set of update ones. This functions read each byte first and skip the
burning if the old value is the same with new. The scaning direction is from high address to low, to obtain quick
return in common cases.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.14 <avr/eeprom.h>: EEPROM handling 167

« All of the read/write functions first make sure the EEPROM is ready to be accessed. Since this may cause long
delays if a write operation is still pending, time-critical applications should first poll the EEPROM e. g. using
eeprom_is_ready() before attempting any actual I/O. But this functions are not wait until SELFPRGEN in SPMC-
SR becomes zero. Do this manually, if your softwate contains the Flash burning.

+ As these functions modify IO registers, they are known to be non-reentrant. If any of these functions are used from
both, standard and interrupt context, the applications must ensure proper protection (e.g. by disabling interrupts
before accessing them).

All write functions force erase_and_write programming mode.

» For Xmega the EEPROM start address is 0, like other architectures. The reading functions add the 0x2000 value
to use EEPROM mapping into data space.

22.14.2 Macro Definition Documentation

22.14.21 #define _EEGET( var, addr ) (var) = eeprom_read_byte ((const uint8_t x)(addr))
Read a byte from EEPROM. Compatibility define for IAR C.

22.14.2.2 #define _EEPUT( addr, val ) eeprom_write_byte ((uint8_t x)(addr), (uint8_t)(val))
Write a byte to EEPROM. Compatibility define for IAR C.

22.14.2.3 #define EEGET( var, addr )(var) = eeprom_read_byte ((const uint8_t x)(addr))
Read a byte from EEPROM. Compatibility define for IAR C.

22.14.2.4 #define EEPUT( addr, val ) eeprom_write_byte ((uint8_t x)(addr), (uint8_t)(val))
Write a byte to EEPROM. Compatibility define for IAR C.

22.14.2.5 #define EEMEM __attribute__((section(”.eeprom”)))

Attribute expression causing a variable to be allocated within the .eeprom section.
22.14.2.6 #define eeprom_busy wait( )do {} while (leeprom_is_ready())

Loops until the eeprom is no longer busy.

Returns

Nothing.

22.14.2.7 #define eeprom_is_ready( )

Returns
1 if EEPROM is ready for a new read/write operation, 0 if not.
22.14.3 Function Documentation

22.14.3.1 void eeprom_read_block ( void * __dst, const void x __src, size .t __n)

Read a block of __n bytes from EEPROM address __srcto SRAM __ dst.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.14 <avr/eeprom.h>: EEPROM handling 168

22.14.3.2 uint8_t eeprom_read_byte ( const uint8_t « __p )

Read one byte from EEPROM address __p.

22.14.3.3 uint32_t eeprom_read_dword ( const uint32_t « __p )

Read one 32-bit double word (little endian) from EEPROM address __p.
22.14.3.4 float eeprom_read_float ( const float x __p )

Read one float value (little endian) from EEPROM address __p.

22.14.3.5 uint16_t eeprom_read_word ( const uint16_t =« _p )

Read one 16-bit word (little endian) from EEPROM address __p.

22.14.3.6 void eeprom_update_block ( const void  __src, void x __dst, size t __n)

Update a block of ___n bytes to EEPROM address __dst from __src.

Note

The argument order is mismatch with common functions like strcpy().

22.14.3.7 void eeprom_update_byte ( uint8_t *« __p, uint8_t __value )

Update a byte __value to EEPROM address __p.

22.14.3.8 void eeprom_update_dword ( uint32_t « __p, uint32_t __value )
Update a 32-bit double word __value to EEPROM address __p.

22.14.3.9 void eeprom_update float ( float + __p, float __value )

Update a float __value to EEPROM address __p.

22.14.3.10 void eeprom_update_word ( uint16_t = __p, uint16_t __value )
Update a word __value to EEPROM address __p.

22.14.3.11 void eeprom_write_block ( const void * __src, void * __dst, size t __n)

Write a block of __n bytes to EEPROM address __dstfrom __src.

Note

The argument order is mismatch with common functions like strcpy().

22.14.3.12 void eeprom_write_byte ( uint8_t x __p, uint8_t __value )
Write a byte __value to EEPROM address __p.
22.14.3.13 void eeprom_write_dword ( uint32_t x __p, uint32_t __value )

Write a 32-bit double word __value to EEPROM address __ p.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.14 <avr/eeprom.h>: EEPROM handling

169

22.14.3.14 void eeprom_write_float ( float « __p, float __value )
Write a float __value to EEPROM address __p.
22.14.3.15 void eeprom_write_word ( uint16_t * __p, uint16_t __value )

Write a word __value to EEPROM address __p.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.15 <avr/fuse.h>: Fuse Support 170

22.15 <avr/fuse.h>>: Fuse Support

Introduction

The Fuse API allows a user to specify the fuse settings for the specific AVR device they are compiling for. These fuse
settings will be placed in a special section in the ELF output file, after linking.

Programming tools can take advantage of the fuse information embedded in the ELF file, by extracting this information
and determining if the fuses need to be programmed before programming the Flash and EEPROM memories. This also
allows a single ELF file to contain all the information needed to program an AVR.

To use the Fuse API, include the <avr/io.h> header file, which in turn automatically includes the individual I/O header
file and the <avr/fuse.h> file. These other two files provides everything necessary to set the AVR fuses.

Fuse API

Each 1/0 header file must define the FUSE_MEMORY_SIZE macro which is defined to the number of fuse bytes that
exist in the AVR device.

A new type, _ fuse_t, is defined as a structure. The number of fields in this structure are determined by the number of
fuse bytes in the FUSE_MEMORY_SIZE macro.

If FUSE_MEMORY_SIZE == 1, there is only a single field: byte, of type unsigned char.
If FUSE_MEMORY_SIZE == 2, there are two fields: low, and high, of type unsigned char.
If FUSE_MEMORY_SIZE == 3, there are three fields: low, high, and extended, of type unsigned char.

If FUSE_MEMORY_SIZE > 3, there is a single field: byte, which is an array of unsigned char with the size of the array
being FUSE_MEMORY_SIZE.

A convenience macro, FUSEMEM, is defined as a GCC attribute for a custom-named section of ".fuse".

A convenience macro, FUSES, is defined that declares a variable, __ fuse, of type _ fuse_t with the attribute defined by
FUSEMEM. This variable allows the end user to easily set the fuse data.

Note

If a device-specific I/O header file has previously defined FUSEMEM, then FUSEMEM is not redefined. If a device-
specific /0 header file has previously defined FUSES, then FUSES is not redefined.

Each AVR device I/O header file has a set of defined macros which specify the actual fuse bits available on that device.
The AVR fuses have inverted values, logical 1 for an unprogrammed (disabled) bit and logical 0 for a programmed
(enabled) bit. The defined macros for each individual fuse bit represent this in their definition by a bit-wise inversion of
a mask. For example, the FUSE_EESAVE fuse in the ATmega128 is defined as:

#define FUSE_EESAVE

|
W

Note

The _BV macro creates a bit mask from a bit number. It is then inverted to represent logical values for a fuse
memory byte.

To combine the fuse bits macros together to represent a whole fuse byte, use the bitwise AND operator, like so:

(FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.15 <avr/fuse.h>: Fuse Support 171

Each device I/O header file also defines macros that provide default values for each fuse byte that is available. LFUSE-
_DEFAULT is defined for a Low Fuse byte. HFUSE_DEFAULT is defined for a High Fuse byte. EFUSE_DEFAULT is
defined for an Extended Fuse byte.

If FUSE_MEMORY_SIZE > 3, then the I/O header file defines macros that provide default values for each fuse byte like
so: FUSEO_DEFAULT FUSE1_DEFAULT FUSE2_DEFAULT FUSE3_DEFAULT FUSE4_DEFAULT ....

API Usage Example

Putting all of this together is easy. Using C99's designated initializers:

#include <avr/io.h>

FUSES =
{
.low = LFUSE_DEFAULT,
.high = (FUSE_BOOTSZ0 & FUSE_BOOTSZl & FUSE_EESAVE & FUSE_SPIEN &
FUSE_JTAGEN) ,
.extended = EFUSE_DEFAULT,
bi

int main (void)

Or, using the variable directly instead of the FUSES macro,

#include <avr/io.h>

__fuse_t __fuse __attribute__ ((section (".fuse"))) =
{
.low = LFUSE_DEFAULT,
.high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN &
FUSE_JTAGEN) ,
.extended = EFUSE_DEFAULT,
}i

int main (void)

If you are compiling in C++, you cannot use the designated intializers so you must do:

#include <avr/io.h>

FUSES =
{
LFUSE_DEFAULT, // .low
(FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),
// .high
EFUSE_DEFAULT, // .extended
bi

int main (void)

However there are a number of caveats that you need to be aware of to use this API properly.

Be sure to include <avr/io.h> to get all of the definitions for the API. The FUSES macro defines a global variable to
store the fuse data. This variable is assigned to its own linker section. Assign the desired fuse values immediately in
the variable initialization.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.15 <avr/fuse.h>: Fuse Support 172

The .fuse section in the ELF file will get its values from the initial variable assignment ONLY. This means that you can
NOT assign values to this variable in functions and the new values will not be put into the ELF .fuse section.

The global variable is declared in the FUSES macro has two leading underscores, which means that it is reserved for
the "implementation", meaning the library, so it will not conflict with a user-named variable.

You must initialize ALL fields in the _ fuse_t structure. This is because the fuse bits in all bytes default to a logical
1, meaning unprogrammed. Normal uninitialized data defaults to all locgial zeros. So it is vital that all fuse bytes are
initialized, even with default data. If they are not, then the fuse bits may not programmed to the desired settings.

Be sure to have the -mmcu=device flag in your compile command line and your linker command line to have the correct
device selected and to have the correct I/O header file included when you include <avr/io.h>.

You can print out the contents of the .fuse section in the ELF file by using this command line:

avr-objdump -s -3j .fuse <ELF file>

The section contents shows the address on the left, then the data going from lower address to a higher address, left to
right.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 173

22.16 <avrfinterrupt.h>: Interrupts
Global manipulation of the interrupt flag

The global interrupt flag is maintained in the | bit of the status register (SREG).

Handling interrupts frequently requires attention regarding atomic access to objects that could be altered by code running
within an interrupt context, see <util/atomic.h>.

Frequently, interrupts are being disabled for periods of time in order to perform certain operations without being dis-
turbed; see Problems with reordering code for things to be taken into account with respect to compiler optimizations.

« #define sei()
+ #define cli()

Macros for writing interrupt handler functions

« #define ISR(vector, attributes)

« #define SIGNAL(vector)

« #define EMPTY_INTERRUPT (vector)

« #define ISR_ALIAS(vector, target_vector)
« #define reti()

« #define BADISR_vect

ISR attributes

* #define ISR_BLOCK

« #define ISR_NOBLOCK

« #define ISR_NAKED

+ #define ISR_ALIASOF(target_vector)

22.16.1 Detailed Description

Note

This discussion of interrupts was originally taken from Rich Neswold’s document. See Acknowledgments.

Introduction to avr-libc’s interrupt handling

It's nearly impossible to find compilers that agree on how to handle interrupt code. Since the C language tries to stay
away from machine dependent details, each compiler writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt routines with predetermined names.
By using the appropriate name, your routine will be called when the corresponding interrupt occurs. The device library
provides a set of default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by convention, a set of registers when
it's normally executing compiler-generated code. It's important that these registers, as well as the status register, get
saved and restored. The extra code needed to do this is enabled by tagging the interrupt function with __attribute-
((signal)).

These details seem to make interrupt routines a little messy, but all these details are handled by the Interrupt API. An
interrupt routine is defined with ISR(). This macro register and mark the routine as an interrupt handler for the specified
peripheral. The following is an example definition of a handler for the ADC interrupt.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 174

#include <avr/interrupt.h>

ISR (ADC_vect)
{
// user code here

}

Refer to the chapter explaining assembler programming for an explanation about interrupt routines written solely in
assembler language.

Catch-all interrupt vector

If an unexpected interrupt occurs (interrupt is enabled and no handler is installed, which usually indicates a bug), then
the default action is to reset the device by jumping to the reset vector. You can override this by supplying a function
named BADISR_vect which should be defined with ISR() as such. (The name BADISR_vect is actually an alias for
__vector_default. The latter must be used inside assembly code in case <avr/interrupt.h> is not included.)

#include <avr/interrupt.h>

ISR(BADISR_vect)
{
// user code here

}

Nested interrupts

The AVR hardware clears the global interrupt flag in SREG before entering an interrupt vector. Thus, normally interrupts
will remain disabled inside the handler until the handler exits, where the RETI instruction (that is emitted by the compiler
as part of the normal function epilogue for an interrupt handler) will eventually re-enable further interrupts. For that
reason, interrupt handlers normally do not nest. For most interrupt handlers, this is the desired behaviour, for some
it is even required in order to prevent infinitely recursive interrupts (like UART interrupts, or level-triggered external
interrupts). In rare circumstances though it might be desired to re-enable the global interrupt flag as early as possible
in the interrupt handler, in order to not defer any other interrupt more than absolutely needed. This could be done
using an sei() instruction right at the beginning of the interrupt handler, but this still leaves few instructions inside the
compiler-generated function prologue to run with global interrupts disabled. The compiler can be instructed to insert an
SEl instruction right at the beginning of an interrupt handler by declaring the handler the following way:

ISR (XXX_vect, ISR_NOBLOCK)
{

}

where XXX_vect is the name of a valid interrupt vector for the MCU type in question, as explained below.
Two vectors sharing the same code

In some circumstances, the actions to be taken upon two different interrupts might be completely identical so a single
implementation for the ISR would suffice. For example, pin-change interrupts arriving from two different ports could
logically signal an event that is independent from the actual port (and thus interrupt vector) where it happened. Sharing
interrupt vector code can be accomplished using the ISR_ALIASOF() attribute to the ISR macro:

ISR (PCINTO_vect)
{

// Code to handle the event.
}

ISR(PCINT1_vect, ISR_ALIASOF (PCINTO_vect));

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 175

Note

There is no body to the aliased ISR.

Note that the ISR_ALIASOF() feature requires GCC 4.2 or above (or a patched version of GCC 4.1.x). See the doc-
umentation of the ISR_ALIAS() macro for an implementation which is less elegant but could be applied to all compiler
versions.

Empty interrupt service routines

In rare circumstances, in interrupt vector does not need any code to be implemented at all. The vector must be declared
anyway, so when the interrupt triggers it won’t execute the BADISR_vect code (which by default restarts the application).

This could for example be the case for interrupts that are solely enabled for the purpose of getting the controller out of
sleep_mode().

A handler for such an interrupt vector can be declared using the EMPTY_INTERRUPT() macro:

EMPTY_INTERRUPT (ADC_vect) ;

Note

There is no body to this macro.

Manually defined ISRs

In some circumstances, the compiler-generated prologue and epilogue of the ISR might not be optimal for the job, and
a manually defined ISR could be considered particularly to speedup the interrupt handling.

One solution to this could be to implement the entire ISR as manual assembly code in a separate (assembly) file. See
Combining C and assembly source files for an example of how to implement it that way.

Another solution is to still implement the ISR in C language but take over the compiler’s job of generating the prologue
and epilogue. This can be done using the ISR_NAKED attribute to the ISR() macro. Note that the compiler does not
generate anything as prologue or epilogue, so the final reti() must be provided by the actual implementation. SREG
must be manually saved if the ISR code modifies it, and the compiler-implied assumption of zero_reg always being
0 could be wrong (e. g. when interrupting right after of a MUL instruction).

ISR(TIMER1_OVF_vect, ISR_NAKED)

{
PORTB |= _BV(0); // results in SBI which does not affect SREG
reti();

}

Choosing the vector: Interrupt vector names

The interrupt is chosen by supplying one of the symbols in following table.

There are currently two different styles present for naming the vectors. One form uses names starting with SIG_ -
, followed by a relatively verbose but arbitrarily chosen name describing the interrupt vector. This has been the only
available style in avr-libc up to version 1.2.x.

Starting with avr-libc version 1.4.0, a second style of interrupt vector names has been added, where a short phrase for
the vector description is followed by _vect. The short phrase matches the vector name as described in the datasheet
of the respective device (and in Atmel’s XML files), with spaces replaced by an underscore and other non-alphanumeric
characters dropped. Using the suffix _vect is intented to improve portability to other C compilers available for the AVR
that use a similar naming convention.

The historical naming style might become deprecated in a future release, so it is not recommended for new projects.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

176

Note

The ISR() macro cannot really spell-check the argument passed to them. Thus, by misspelling one of the names
below in a call to ISR(), a function will be created that, while possibly being usable as an interrupt function, is not
actually wired into the interrupt vector table. The compiler will generate a warning if it detects a suspiciously looking
name of a ISR() function (i.e. one that after macro replacement does not start with "__vector_").

Vector name

Old vector
name

Description

Applicable for device

ADC_vect

SIG_ADC

ADC Conversion
Complete

AT90S2333, AT90S4433, AT90S4434, A-
T90S8535, AT90PWM216, AT9OPWM2B, A-
T90PWM316, AT90OPWM3B, AT90PWMS3, A-
T90PWM2, AT90PWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal128, ATmegal284P, ATmegal6, A-
Tmega163, ATmegal165, ATmegal165P, A-
Tmegal168P, ATmega169, ATmegal69P, A-
Tmega32, ATmega323, ATmega325, A-
Tmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290-
P, ATmega48P, ATmega64, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega8, ATmega8535, ATmega88P, A-
Tmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATtiny13, ATtiny15, ATtiny26, ATtiny43U, A-
Ttiny48, ATtiny24, ATtiny44, ATtiny84, A-
Ttiny45, ATtiny25, ATtiny85, ATtiny261, A-
Ttiny461, ATtiny861, AT90USB1287, AT90-
USB1286, AT90USB647, AT90USB646

ANALOG_CO-
MP_0_vect

SIG_COMPA-
RATORO

Analog Compara-
tor 0

AT90PWMS3, AT90PWM2, AT90PWM1

ANALOG_CO-
MP_1_vect

SIG_COMPA-
RATOR1

Analog Compara-
tor 1

AT90PWMS3, AT90PWM2, AT90PWM1

ANALOG_CO-
MP_2 vect

SIG_COMPA-
RATOR2

Analog Compara-
tor 2

AT90PWMS3, AT90PWM2, ATO0OPWM1

ANALOG_CO-
MP_vect

SIG_COMPA-
RATOR

Analog Compara-
tor

AT90CAN128, AT90CAN32, AT90CAN64,
ATmegal03, ATmegal28, ATmegal284P,
ATmegal165, ATmegal65P, ATmegal168P,
ATmega169, ATmega169P, ATmega325, A-
Tmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290-
P, ATmega48P, ATmega64, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmegal168, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644-
P, ATmega644, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

ANA_COMP_-
vect

SIG_COMPA-
RATOR

Analog Compara-
tor

AT90S1200, AT90S2313, AT90S2333,
ATO0S4414, AT90S4433, AT90S4434,
AT90S8515,  AT90S8535, ATmegal6,

ATmegal61, ATmegal62, ATmegal63,
ATmega32, ATmega323, ATmega8, A-
Tmega8515, ATmega8535, ATtiny11,
ATtiny12, ATtiny13, ATtiny15, ATtiny2313,
ATtiny26, ATtiny28, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861

CANIT _vect

SIG_CAN_IN-
TERRUPT1

CAN Transfer
Complete or Error

AT90CAN128, AT90CAN32, AT90CANG4

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

177

EEPROM_RE-
ADY_vect

SIG_EEPR-
OM_READY,
SIG_EE_REA-
DY

ATtiny2313

EE_RDY_vect

SIG_EEPRO-
M_READY

EEPROM Ready

AT90S2333, AT90S4433, AT90S4434, A-
T90S8535, ATmegal6, ATmegal6l, A-
Tmegal162, ATmegal63, ATmega32, A-
Tmega323, ATmega8, ATmega8515, A-
Tmega8535, ATtiny12, ATtiny13, ATtiny15,
ATtiny26, ATtiny43U, ATtiny48, ATtiny24, A-
Ttiny44, ATtiny84, ATtiny45, ATtiny25, A-
Ttiny85, ATtiny261, ATtiny461, ATtiny861

EE_READY_-
vect

SIG_EEPRO-
M_READY

EEPROM Ready

AT90PWM3, AT90PWM2, AT90PWM1, A-
T90CAN128, AT90CAN32, AT90CANG4, A-
Tmegal103, ATmega128, ATmega1284P, A-
Tmega165, ATmegal65P, ATmega168P, A-
Tmegal169, ATmega169P, ATmega325, A-
Tmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290-
P, ATmega32HVB, ATmega406, ATmega48-
P, ATmega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega88P,
ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmega16HVA, AT90USB162, AT90US-
B82, AT90USB1287, AT90USB1286, AT90-
USB647, AT90USB646

EXT_INTO_-
vect

SIG_INTERR-
UPTO

External Interrupt
Request 0

ATtiny24, ATtiny44, ATtiny84

INTO_vect

SIG_INTERR-
UPTO

External Interrupt
0

AT90S1200, AT90S2313, AT90S2323, A-
T90S2333, AT90S2343, AT90S4414, A-
T90S4433, AT90S4434, AT90S8515, AT90-
S8535, AT90PWM216, AT90PWM2B, AT90-
PWM316, AT90PWM3B, AT90PWM3, A-
T90PWM2, AT90PWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmega128, ATmega1284P, ATmegal6, A-
Tmegal61, ATmegal62, ATmegal63, A-
Tmegal165, ATmegal65P, ATmegal168P, A-
Tmegal169, ATmegal69P, ATmega32, A-
Tmega323, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega32HV-
B, ATmega406, ATmega48P, ATmega64, A-
Tmega645, ATmega6450, ATmega649, A-
Tmega6490, ATmega8, ATmega8515, A-
Tmega8535, ATmega88P, ATmegal68, A-
Tmega48, ATmega88, ATmega640, A-
Tmegal1280, ATmegal281, ATmega2560,
ATmega2561, ATmega324P, ATmegal64-
P, ATmega644P, ATmega644, ATmegal6-
HVA, ATtiny11, ATtiny12, ATtiny13, A-
Ttiny15, ATtiny22, ATtiny2313, ATtiny26, A-
Ttiny28, ATtiny43U, ATtiny48, ATtiny45, A-
Ttiny25, ATtiny85, ATtiny261, ATtiny461, A-
Ttiny861, ATO0USB162, AT90USB82, AT90-
USB1287, AT90USB1286, AT90USB647, A-
T90USB646

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

178

INT1_vect

SIG_INTERR-
UPT1

External Interrupt
Request 1

AT90S2313, AT90S2333, AT90S4414, A-
T90S4433, AT90S4434, AT90S8515, AT90-
S8535, AT90PWM216, AT90PWM2B, AT90-
PWM316, AT90PWM3B, AT90PWM3, A-
T90PWM2, AT90PWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal128, ATmegal284P, ATmegal6, A-
Tmegal61, ATmegal62, ATmegal63, A-
Tmega168P, ATmega32, ATmega323, A-
Tmega328P, ATmega32HVB, ATmega406,
ATmega48P, ATmega64, ATmega8, A-
Tmega8515, ATmega8535, ATmega88P, A-
Tmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmegal16HVA, ATtiny2313, ATtiny28, A-
Ttiny48, ATtiny261, ATtiny461, ATtiny861, A-
T90USB162, AT90USB82, AT90USB1287,
AT90USB1286, AT90USB647, AT90US-
B646

INT2_vect

SIG_INTERR-
UPT2

External Interrupt
Request 2

AT90PWM3, AT90PWM2, AT90PWM1, A-
T90CAN128, AT90CAN32, AT90CAN64, A-
Tmegal103, ATmega128, ATmega1284P, A-
Tmegal6, ATmegal61, ATmegal62, A-
Tmega32, ATmega323, ATmega32HVB, A-
Tmegad406, ATmegab4, ATmega8515, A-
Tmega8535, ATmega640, ATmega1280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal164P, ATmega644-
P, ATmega644, ATmegal6HVA, AT90US-
B162, AT90USB82, AT90USB1287, AT90U-
SB1286, AT90USB647, AT90USB646

INT3_vect

SIG_INTERR-
UPT3

External Interrupt
Request 3

AT90PWM3, AT90PWM2, AT90PWM1, A-
T90CAN128, AT90CAN32, AT90CANG4, A-
Tmegal03, ATmegal28, ATmega32HVB,
ATmega406, ATmega64, ATmega640, A-
Tmegal1280, ATmegal281, ATmega2560,
ATmega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

INT4_vect

SIG_INTERR-
UPT4

External Interrupt
Request 4

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal03, ATmegal28, ATmega64,
ATmega640, ATmegai1280, ATmegai281,
ATmega2560, ATmega2561, AT90USB162,
ATO0USB82, AT90USB1287, AT90US-
B1286, AT90USB647, AT90USB646

INT5_vect

SIG_INTERR-
UPT5

External Interrupt
Request 5

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal03, ATmegal28, ATmegab4,
ATmega640, ATmegal280, ATmegal281,
ATmega2560, ATmega2561, AT90USB162,
ATO0USB82, AT90USB1287, AT90US-
B1286, AT90USB647, AT90USB646

INT6_vect

SIG_INTERR-
UPT6

External Interrupt
Request 6

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal03, ATmegal28, ATmegab4,
ATmega640, ATmegal1280, ATmegai281,
ATmega2560, ATmega2561, AT90USB162,
AT90USB82, AT90USB1287, AT90US-
B1286, AT90USB647, AT90USB646

INT7_vect

SIG_INTERR-
UPT7

External Interrupt
Request 7

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal03, ATmegal28, ATmegab4,
ATmega640, ATmegal1280, ATmegal281,
ATmega2560, ATmega2561, AT90USB162,
ATO0USB82, AT90USB1287, AT90US-
B1286, AT90USB647, AT90USB646

I0_PINS_vect

SIG_PIN,
SIG_PIN_CH-
ANGE

External Interrupt
Request 0

ATtiny11, ATtiny12, ATtiny15, ATtiny26

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

179

LCD_vect SIG_LCD LCD Start of ATmega169, ATmega169P, ATmega329, A-
Frame Tmega3290, ATmega3290P, ATmega649,
ATmega6490
LOWLEVEL_I- SIG_PIN Low-level  Input | ATtiny28
O_PINS_vect on Port B
OVRIT _vect SIG_CAN_O- CAN Timer Over- | AT90CAN128, AT90CAN32, AT90CANG4
VERFLOW 1 run
PCINTO_vect SIG_PIN_CH- Pin Change Inter- | ATmega162, ATmegal65, ATmegal65P,
ANGEO rupt Request 0 ATmega168P, ATmegal69, ATmegal69P,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, A-
Tmegad406, ATmega48P, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmegal68, ATmega48,
ATmega88, ATmega640, ATmegal280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,
ATmega644, ATtiny13, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, AT90USB162, AT90-
USB82, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646
PCINT1_vect SIG_PIN_CH- Pin Change Inter- | ATmega162, ATmegal65, ATmegal65P,
ANGE1 rupt Request 1 ATmega168P, ATmegal69, ATmegal69P,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, A-
Tmegad406, ATmega48P, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmegal68, ATmega48,
ATmega88, ATmega640, ATmegal280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,
ATmega644, ATtiny43U, ATtiny48, A-
Ttiny24, ATtiny44, ATtiny84, AT90USB162,
AT90USB82
PCINT2_vect SIG_PIN_CH- Pin Change Inter- | ATmega3250, ATmega3250P, ATmega328-
ANGE2 rupt Request 2 P, ATmega3290, ATmega3290P, ATmega48-
P, ATmega6450, ATmega6490, ATmega88-
P, ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATtiny48
PCINT3_vect SIG_PIN_CH- Pin Change Inter- | ATmega3250, ATmega3250P, A-
ANGES3 rupt Request 3 Tmega3290, ATmega3290P, ATmega6450,
ATmega6490, ATmega324P, ATmegal64P,
ATmega644P, ATmega644, ATtiny48
PCINT _vect SIG_PIN_- ATtiny2313, ATtiny261, ATtiny461, A-
CHANGE, Ttiny861
SIG_PCINT
PSCO_CAPT- SIG_PSC0_C- PSCO  Capture | AT90PWM3, AT9OPWM2, ATO0OPWM1
_vect APTURE Event
PSCO_EC_- SIG_PSCO0_E- PSCO End Cycle AT90PWM3, AT90PWM2, AT9OPWM1
vect ND_CYCLE
PSC1_CAPT- SIG_PSC1_C- PSC1 Capture | AT90PWM3, AT90PWM2, AT90PWM1
_vect APTURE Event
PSC1_EC_- SIG_PSC1_E- PSC1 End Cycle AT90PWM3, AT90PWM2, AT9OPWM1
vect ND_CYCLE
PSC2_CAPT- SIG_PSC2_C- PSC2  Capture | AT90PWMS3, AT9OPWM2, ATO0PWM1
_vect APTURE Event
PSC2_EC_- SIG_PSC2_E- PSC2 End Cycle AT90PWM3, AT90PWM2, AT9OPWM1
vect ND_CYCLE

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

180

SPI_STC_vect SIG_SPI Serial Transfer AT90S2333, AT90S4414, AT90S4433, A-
Complete T90S4434, AT90S8515, AT90S8535, AT90-
PWM216, AT90PWM2B, AT90PWM316, A-
T90PWM3B, AT90PWMS3, AT90PWM2, A-
T90PWM1, AT90CAN128, AT90CAN32, A-
T90CAN64, ATmegal03, ATmegail28, A-
Tmega1284P, ATmegal6, ATmegal61, A-
Tmegal162, ATmegal63, ATmegal65, A-
Tmegal165P, ATmega168P, ATmegail69, A-
Tmegal169P, ATmega32, ATmega323, A-
Tmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, ATmega48-
P, ATmega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega8, A-
Tmega8515, ATmega8535, ATmega88P, A-
Tmegal168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmegal164P, ATmega644P, ATmega644,
ATmega16HVA, ATtiny48, AT90USB162, A-
TI0USB82, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646
SPM_RDY_- SIG_SPM_R- Store  Program | ATmegal6, ATmegal62, ATmega32, A-
vect EADY Memory Ready Tmega323, ATmega8, ATmega8515, A-
Tmega8535
SPM_READY- SIG_SPM_R- Store  Program | AT90PWM3, AT90PWM2, AT90PWM1, A-
_vect EADY Memory Read T90CAN128, AT90CAN32, AT90CAN64, A-
Tmega128, ATmega1284P, ATmegal65, A-
Tmega165P, ATmega168P, ATmega169, A-
Tmega169P, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega406,
ATmega48P, ATmega64, ATmega645, A-
Tmega6450, ATmega649, ATmega6490, A-
Tmega88P, ATmegal68, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644-
P, ATmega644, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646
TIMO_COMP- SIG_OUTPU- Timer/Counter ATtiny13, ATtiny43U, ATtiny24, ATtiny44, A-
A_vect T_COMPAR- Compare Match | Ttiny84, ATtiny45, ATtiny25, ATtiny85
EOA A
TIMO_COMP- SIG_OUTPU- Timer/Counter ATtiny13, ATtiny43U, ATtiny24, ATtiny44, A-
B_vect T_COMPAR- Compare Match | Ttiny84, ATtiny45, ATtiny25, ATtiny85
EOB B
TIMO_OVF_- SIG_OVERFL- | Timer/Counter0 ATtiny13, ATtiny43U, ATtiny24, ATtiny44, A-
vect owo Overflow Ttiny84, ATtiny45, ATtiny25, ATtiny85
TIM1_CAPT_- SIG_INPUT_- Timer/Counter1 ATtiny24, ATtiny44, ATtiny84
vect CAPTURE1 Capture Event
TIM1_COMP- SIG_OUTPU- Timer/Counter1 ATtiny24, ATtiny44, ATtiny84, ATtiny45, A-
A_vect T_COMPAR- Compare Match | Ttiny25, ATtiny85
E1A A
TIM1_COMP- SIG_OUTPU- Timer/Counter1 ATtiny24, ATtiny44, ATtiny84, ATtiny45, A-
B_vect T_COMPAR- Compare Match | Ttiny25, ATtiny85
E1B B
TIM1_OVF_- SIG_OVERFL- Timer/Counter1 ATtiny24, ATtiny44, ATtiny84, ATtiny45, A-
vect ow1 Overflow Ttiny25, ATtiny85
TIMERO_CAP- SIG_INPUT_- ADC Conversion | ATtiny261, ATtiny461, ATtiny861
T_vect CAPTUREO Complete

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

181

TIMERO_CO-
MPA_vect

SIG_OUTPU-
T COMPAR-
EOA

TimerCounter0
Compare Match
A

ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmegal6HVA, ATtiny2313, ATtiny48, A-
Ttiny261, ATtiny461, ATtiny861, AT90US-
B162, AT90USB82, AT90USB1287, AT90U-
SB1286, AT90USB647, AT90USB646

TIMERO_CO-
MPB_vect

SIG_OUT-
PUT_CO-
MPAREOB,
SIG_OUTPU-
T_COMPAR-
EO_B

Timer Counter 0
Compare Match
B

AT90PWM3, AT90PWM2, AT90PWM1, A-
Tmega1284P, ATmega168P, ATmega328P,
ATmega32HVB, ATmega48P, ATmega88P,
ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmegal164P, ATmega644P, ATmega644,
ATmegal6HVA, ATtiny2313, ATtiny48, A-
Ttiny261, ATtiny461, ATtiny861, AT90US-
B162, AT90USB82, AT90USB1287, AT90U-
SB1286, AT90USB647, AT90USB646

TIMERO_CO-
MP_A_vect

SIG_OUT-
PUT_CO-
MPAREOA,
SIG_OUTPU-
T_COMPAR-
E0_A

Timer/Counter0
Compare Match
A

AT90PWM3, AT90PWM2, AT90OPWM1

TIMERO_CO-
MP_vect

SIG_OUTPU-
T_COMPAR-
EO

Timer/Counter0
Compare Match

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega103, ATmegal28, ATmegal6, A-
Tmegal161, ATmegal62, ATmegal65, A-
Tmegal165P, ATmega169, ATmega169P, A-
Tmega32, ATmega323, ATmega325, A-
Tmega3250, ATmega3250P, ATmega329,
ATmega3290, ATmega3290P, ATmegab4,
ATmega645, ATmega6450, ATmega649, A-
Tmega6490, ATmega8515, ATmega8535

TIMERO_OV-
FO_vect

SIG_OVERFL-
OWO0

Timer/Counter0
Overflow

AT90S2313, AT90S2323, AT90S2343, A-
Ttiny22, ATtiny26

TIMERO_OVF-
_vect

SIG_OVERFL-
OwWo

Timer/Counter0
Overflow

AT90S1200, AT90S2333, AT90S4414, A-
T90S4433, AT90S4434, AT90S8515, AT90-
S8535, AT90PWM216, AT90PWM2B, AT90-
PWM316, AT90PWM3B, AT90PWM3, A-
T90PWM2, AT90OPWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal28, ATmegal284P, ATmegal6, A-
Tmegal161, ATmegal62, ATmegal63, A-
Tmega165, ATmegal165P, ATmega168P, A-
Tmegal169, ATmegal69P, ATmega32, A-
Tmega323, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega32HV-
B, ATmega48P, ATmega64, ATmega645, A-
Tmega6450, ATmega649, ATmega6490, A-
Tmega8, ATmega8515, ATmega8535, A-
Tmega88P, ATmegal68, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal164P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny11, A-
Ttiny12, ATtiny15, ATtiny2313, ATtiny28, A-
Ttiny48, ATtiny261, ATtiny461, ATtiny861, A-
TO0USB162, AT90USB82, AT90USB1287,
ATO0USB1286, AT90USB647, AT90US-
B646

TIMER1_CAP-
T1_vect

SIG_INPUT_-
CAPTURE1

Timer/Counter1
Capture Event

AT90S2313

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

182

TIMER1_CAP- | SIG_INPUT_- Timer/Counter AT90S2333, AT90S4414, AT90S4433, A-
T_vect CAPTUREH1 Capture Event T90S4434, AT90S8515, AT90S8535, AT90-
PWM216, AT90PWM2B, AT90PWM316, A-
T90PWM3B, AT90PWMS3, AT90PWM2, A-
TO90PWM1, AT90CAN128, AT90CAN32, A-
T90CAN64, ATmegal03, ATmegail28, A-
Tmega1284P, ATmegal6, ATmegal61, A-
Tmegal162, ATmegal63, ATmegal65, A-
Tmegal165P, ATmega168P, ATmegail69, A-
Tmegal169P, ATmega32, ATmega323, A-
Tmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega48P, ATmegab4, A-
Tmega645, ATmega6450, ATmega649, A-
Tmega6490, ATmega8, ATmega8515, A-
Tmega8535, ATmega88P, ATmegal68, A-
Tmega48, ATmega88, ATmega640, A-
Tmega1280, ATmegal281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATtiny2313, A-
Ttiny48, AT90USB162, AT90USB82, AT90-
USB1287, AT90USB1286, AT90USB647, A-
TI0USB646
TIMER1_CM- SIG_OUTPU- Timer/Counter1 ATtiny26
PA_vect T_COMPAR- Compare Match
E1A 1A
TIMER1_CM- SIG_OUTPU- Timer/Counter1 ATtiny26
PB_vect T_COMPAR- Compare Match
E1B 1B
TIMER1_CO- SIG_OUTPU- Timer/Counter1 AT90S2313
MP1_vect T_COMPAR- Compare Match
E1A
TIMER1_CO- SIG_OUTPU- Timer/Counter1 AT90S4414, AT90S4434, AT90S8515, A-
MPA_vect T_COMPAR- Compare Match | T90S8535, AT90PWM216, AT9OPWM2B, A-
E1A A T90PWM316, AT90OPWM3B, AT90PWM3, A-

T90PWM2, AT90PWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal28, ATmega1284P, ATmegal6, A-
Tmegal61, ATmegal62, ATmegail63, A-
Tmega165, ATmegal165P, ATmegal68P, A-
Tmegal69, ATmegal69P, ATmega32, A-
Tmega323, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega32HV-
B, ATmega48P, ATmega64, ATmega645, A-
Tmega6450, ATmega649, ATmega6490, A-
Tmega8, ATmega8515, ATmega8535, A-
Tmega88P, ATmegal68, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, ATtiny861,
AT90USB162, AT90USB82, AT90USB1287,
ATO0USB1286, AT90USB647, AT90US-
B646

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

183

TIMER1_CO-
MPB_vect

SIG_OUTPU-
T COMPAR-
E1B

Timer/Counter1
Compare MatchB

AT90S4414, AT90S4434, AT90S8515, A-
T90S8535, AT90PWM216, AT9OPWM2B, A-
T90PWM316, ATO9OPWM3B, AT90PWM3, A-
T90PWM2, AT90PWM1, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal128, ATmegal284P, ATmegal6, A-
Tmegal61, ATmegal62, ATmegal63, A-
Tmega165, ATmegal165P, ATmegai68P, A-
Tmegal69, ATmegal69P, ATmega32, A-
Tmega323, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega32HV-
B, ATmega48P, ATmega64, ATmega645, A-
Tmega6450, ATmega649, ATmega6490, A-
Tmega8, ATmega8515, ATmega8535, A-
Tmega88P, ATmegal68, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, ATtiny861,
AT90USB162, AT90USB82, AT90USB1287,
ATO0USB1286, AT90USB647, AT90US-
B646

TIMER1_CO-
MPC_vect

SIG_OUTPU-
T_COMPAR-
E1C

Timer/Counter1
Compare Match
Cc

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal128, ATmega64, ATmega640, A-
Tmega1280, ATmegal281, ATmega2560,
ATmega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER1_CO-
MPD_vect

SIG_OUTPU-
T _COMPAR-
EOD

Timer/Counter1
Compare Match
D

ATtiny261, ATtiny461, ATtiny861

TIMER1_CO-
MP_vect

SIG_OUTPU-
T_COMPAR-
E1A

Timer/Counter1
Compare Match

AT90S2333, AT90S4433, ATtiny15

TIMER1_OV-
F1_vect

SIG_OVERFL-
Oowi1

Timer/Counter1
Overflow

AT90S2313, ATtiny26

TIMER1_OVF-
_vect

SIG_OVERFL-
ow1

Timer/Counter1
Overflow

AT90S2333, AT90S4414, AT90S4433, A-
T90S4434, AT90S8515, AT90S8535, AT90-
PWM216, AT90PWM2B, AT90PWM316, A-
T90PWM3B, AT90PWMS3, AT90PWM2, A-
T90PWM1, AT90CAN128, AT90CAN32, A-
T90CAN64, ATmegal03, ATmegal28, A-
Tmega1284P, ATmegal6, ATmegal61, A-
Tmegal162, ATmegal63, ATmegal65, A-
Tmega165P, ATmega168P, ATmega169, A-
Tmegal169P, ATmega32, ATmega323, A-
Tmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, ATmega48-
P, ATmega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega8, A-
Tmega8515, ATmega8535, ATmega88P, A-
Tmega168, ATmegad48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmegal6HVA, ATtiny15, ATtiny2313, A-
Ttiny48, ATtiny261, ATtiny461, ATtiny861, A-
TO0USB162, AT90USB82, AT90USB1287,
ATO0USB1286, AT90USB647, AT90US-
B646

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

184

TIMER2_CO-
MPA_vect

SIG_OUTPU-
T COMPAR-
E2A

Timer/Counter2
Compare Match
A

ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER2_CO-
MPB_vect

SIG_OUTPU-
T_COMPAR-
E2B

Timer/Counter2
Compare Match
A

ATmega168, ATmega48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER2_CO-
MP_vect

SIG_OUTPU-
T_COMPAR-
E2

Timer/Counter2
Compare Match

AT90S4434, AT90S8535, AT90CAN128, A-
TO0CAN32, AT90CAN64, ATmegal03, A-
Tmegal28, ATmegal6, ATmegal6l, A-
Tmegal62, ATmegal63, ATmegail65, A-
Tmegal165P, ATmega169, ATmegal69P, A-
Tmega32, ATmega323, ATmega325, A-
Tmega3250, ATmega3250P, ATmega329,
ATmega3290, ATmega3290P, ATmega64,
ATmega645, ATmega6450, ATmega649, A-
Tmega6490, ATmega8, ATmega8535

TIMER2_OVF-
_vect

SIG_OVERFL-
owz2

Timer/Counter2
Overflow

AT90S4434, AT90S8535, AT90CAN128, A-
T90CAN32, AT90CAN64, ATmegal03, A-
Tmegal28, ATmegal284P, ATmegal6, A-
Tmegal61, ATmegal62, ATmegal63, A-
Tmega165, ATmegal65P, ATmega168P, A-
Tmegal169, ATmegal69P, ATmega32, A-
Tmega323, ATmega325, ATmega3250, A-
Tmega3250P, ATmega328P, ATmega329, A-
Tmega3290, ATmega3290P, ATmega48P, A-
Tmega64, ATmega645, ATmega6450, A-
Tmega649, ATmega6490, ATmega8, A-
Tmega8535, ATmega88P, ATmegal68, A-
Tmega48, ATmega88, ATmega640, A-
Tmega1280, ATmegal281, ATmega2560,
ATmega2561, ATmega324P, ATmegail64-
P, ATmega644P, ATmega644, AT90US-
B1287, AT90USB1286, AT90USB647, A-
T90USB646

TIMER3_CAP-
T_vect

SIG_INPUT -
CAPTURE3

Timer/Counter3
Capture Event

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal128, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmega1280, A-
Tmegal1281, ATmega2560, ATmega2561,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER3_CO-
MPA_vect

SIG_OUTPU-
T_COMPAR-
E3A

Timer/Counter3
Compare Match
A

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmega1280, A-
Tmegal281, ATmega2560, ATmega2561,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER3_CO-
MPB_vect

SIG_OUTPU-
T_COMPAR-
E3B

Timer/Counter3
Compare Match
B

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal128, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmega1280, A-
Tmegal1281, ATmega2560, ATmega2561,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

TIMER3_CO-
MPC_vect

SIG_OUTPU-
T_COMPAR-
E3C

Timer/Counter3
Compare Match
Cc

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega128, ATmega64, ATmega640, A-
Tmegal1280, ATmegai281, ATmega2560,
ATmega2561, AT90USB1287, AT90US-
B1286, AT90USB647, AT90USB646

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

185

TIMER3_OVF- | SIG_OVERFL- | Timer/Counter3 AT90CAN128, AT90CAN32, AT90CANG64,
_vect Ows3 Overflow ATmegal28, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmega1280, A-
Tmegal1281, ATmega2560, ATmega2561,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646
TIMER4_CAP- SIG_INPUT_- Timer/Counter4 ATmega640, ATmegai1280, ATmegai281,
T_vect CAPTURE4 Capture Event ATmega2560, ATmega2561
TIMER4_CO- SIG_OUTPU- Timer/Counter4 ATmega640, ATmegal280, ATmegal281,
MPA_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E4A A
TIMER4_CO- SIG_OUTPU- Timer/Counter4 ATmega640, ATmegal280, ATmegal281,
MPB_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E4B B
TIMER4_CO- SIG_OUTPU- Timer/Counter4 ATmega640, ATmegal1280, ATmegal281,
MPC_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E4C C
TIMER4_OVF- SIG_OVERFL- Timer/Counter4 ATmega640, ATmegal280, ATmegal281,
_vect Oow4 Overflow ATmega2560, ATmega2561
TIMER5_CAP- SIG_INPUT - Timer/Counter5 ATmega640, ATmega1280, ATmegal281,
T_vect CAPTURES Capture Event ATmega2560, ATmega2561
TIMER5_CO- SIG_OUTPU- Timer/Counter5 ATmega640, ATmegal1280, ATmegai281,
MPA_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E5A A
TIMER5_CO- SIG_OUTPU- Timer/Counter5 ATmega640, ATmegai1280, ATmegal281,
MPB_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E5B B
TIMER5_CO- SIG_OUTPU- Timer/Counter5 ATmega640, ATmegail280, ATmegal281,
MPC_vect T_COMPAR- Compare Match | ATmega2560, ATmega2561
E5C C
TIMER5_OVF- SIG_OVERFL- Timer/Counter5 ATmega640, ATmegal1280, ATmegai281,
_vect OwW5 Overflow ATmega2560, ATmega2561
TWI_vect SIG_2WIRE_- 2-wire Serial In- | AT90CAN128, AT90CAN32, AT90CANG64,
SERIAL terface ATmega128, ATmega1284P, ATmegal6, A-
Tmega163, ATmegal68P, ATmega32, A-
Tmega323, ATmega328P, ATmega32HVB,
ATmegad06, ATmegad48P, ATmega64, A-
Tmega8, ATmega8535, ATmega88P, A-
Tmega168, ATmegad48, ATmega88, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATtiny48, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646
TXDONE_vect SIG_TXDONE Transmission AT86RF401
Done, Bit Timer
Flag 2 Interrupt
TXEMPTY_- SIG_TXBE Transmit  Buffer | AT86RF401
vect Empty, Bit Itmer
Flag O Interrupt
UARTO_RX_- SIG_UARTO_- UARTO, Rx Com- | ATmegal61
vect RECV plete
UARTO_TX_- SIG_UARTO_- | UARTO, Tx Com- | ATmegai61
vect TRANS plete
UARTO_UDR- SIG_UARTO_- UARTO Data | ATmegal61
E_vect DATA Register Empty
UART1_RX_- SIG_UART1_- UART1, Rx Com- | ATmegal61
vect RECV plete
UART1_TX_- SIG_UART1_- UART1, Tx Com- | ATmegal61
vect TRANS plete
UART1_UDR- SIG_UART1_- UART1 Data | ATmegal61
E_vect DATA Register Empty
UART_RX_- SIG_UART_R- UART, Rx Com- | AT90S2313, AT90S2333, AT90S4414, A-
vect ECV plete T90S4433, AT90S4434, AT90S8515, A-

T90S8535, ATmegal03, ATmegal63, A-
Tmega8515

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

186

UART_TX_-
vect

SIG_UART_T-
RANS

UART, Tx Com-
plete

AT90S2313, AT90S2333, AT90S4414, A-
T90S4433, AT90S4434, AT90S8515, A-
T90S8535, ATmegal03, ATmegal63, A-
Tmega8515

UART_UDRE-
_vect

SIG_UART_D-
ATA

UART Data Reg-
ister Empty

AT90S2313, AT90S2333, AT90S4414, A-
T90S4433, AT90S4434, AT90S8515, A-
T90S8535, ATmegal03, ATmegal63, A-
Tmega8515

USARTO_RX-
C_vect

SIG_USARTO-
_RECV

USARTO, Rx
Complete

ATmegal62

USARTO_RX-
_vect

SIG_UARTO_-
RECV

USARTO, Rx
Complete

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega128, ATmegal284P, ATmegal65,
ATmegal165P, ATmegal169, ATmegal69P,
ATmega325, ATmega329, ATmega64, A-
Tmega645, ATmega649, ATmega640, A-
Tmega1280, ATmegai281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644

USARTO_TX-
C_vect

SIG_USARTO-
_TRANS

USARTO, Tx
Complete

ATmegal162

USARTO_TX_-
vect

SIG_UARTO_-
TRANS

USARTO, Tx
Complete

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal128, ATmegal284P, ATmegal65,
ATmega165P, ATmegai69, ATmegal69P,
ATmega325, ATmega3250, ATmega3250P,
ATmega329, ATmega3290, ATmega3290P,
ATmega64, ATmega645, ATmega6450, A-
Tmega649, ATmega6490, ATmega640, A-
Tmegal1280, ATmegal281, ATmega2560,
ATmega2561, ATmega324P, ATmegal164P,
ATmegab644P, ATmega644

USARTO_UD-
RE_vect

SIG_UARTO_-
DATA

USARTO Data
Register Empty

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega128, ATmegal284P, ATmegal62,
ATmega165, ATmega165P, ATmegail69, A-
Tmegal169P, ATmega325, ATmega329, A-
Tmega64, ATmega645, ATmega649, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmegal164P, ATmega644P, ATmega644

USART1_RX-
C_vect

SIG_USART1-
_RECV

USARTI, Rx
Complete

ATmegal62

USART1_RX-
_vect

SIG_UARTT -
RECV

USARTT, Rx
Complete

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega128, ATmega1284P, ATmega64, A-
Tmega640, ATmega1280, ATmegai281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmegal164P, ATmega644P, ATmega644,
AT90USB162, AT90USB82, AT90USB1287,
AT90USB1286, AT90USB647, AT90US-
B646

USART1_TX-
C_vect

SIG_USART1-
_TRANS

USARTT, Tx
Complete

ATmegal162

USART1_TX_-
vect

SIG_UART1_-
TRANS

USARTT, Tx
Complete

AT90CAN128, AT90CAN32, AT90CANG64,
ATmega128, ATmega1284P, ATmega64, A-
Tmega640, ATmega1280, ATmega1281, A-
Tmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
AT90USB162, AT90USB82, AT90USB1287,
ATO0USB1286, AT90USB647, AT90US-
B646

USART1_UD-
RE_vect

SIG_UART1_-
DATA

USART1, Data
Register Empty

AT90CAN128, AT90CAN32, AT90CANG64,
ATmegal128, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmega1280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644-
P, ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286, AT90US-
B647, AT90USB646

USART2_RX-
_vect

SIG_USART2-
_RECV

USART2, Rx
Complete

ATmega640, ATmegai1280, ATmegai281,
ATmega2560, ATmega2561

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts

187

USART2_TX_- SIG_USART2- USART2, Tx ATmega640, ATmegal1280, ATmegai281,
vect _TRANS Complete ATmega2560, ATmega2561
USART2_UD- SIG_USART2- USART2 Data | ATmega640, ATmegai280, ATmegai281,
RE_vect _DATA register Empty ATmega2560, ATmega2561
USART3_RX- SIG_USART3- USARTS, Rx | ATmega640, ATmegai1280, ATmegal281,
_vect _RECV Complete ATmega2560, ATmega2561
USART3_TX_- SIG_USARTS3- USARTS, Tx ATmega640, ATmegai1280, ATmegai281,
vect _TRANS Complete ATmega2560, ATmega2561
USART3_UD- SIG_USART3- USART3 Data | ATmega640, ATmegai280, ATmegail281,
RE_vect _DATA register Empty ATmega2560, ATmega2561
USART_RXC- SIG_USA- USART, Rx Com- | ATmegal6, ATmega32, ATmega323, A-
_vect RT_RECV, plete Tmega8
SIG_UART_R-
ECV
USART_RX_- SIG_USA- USART, Rx Com- | AT90PWM3, AT90PWM2, AT90PWM1, A-
vect RT_RECQCYV, plete Tmega168P, ATmega3250, ATmega3250P,
SIG_UART_R- ATmega328P, ATmega3290, ATmega3290-
ECV P, ATmega48P, ATmega6450, ATmega6490,
ATmega8535, ATmega88P, ATmegai168, A-
Tmega48, ATmega88, ATtiny2313
USART_TXC- SIG_USAR- USART, Tx Com- | ATmegal6, ATmega32, ATmega323, A-
_vect T_TRANS, plete Tmega8
SIG_UART_T-
RANS
USART_TX_- SIG_USAR- USART, Tx Com- | AT90PWM3, AT90PWM2, AT90PWM1, A-
vect T_TRANS, plete Tmega168P, ATmega328P, ATmega48P, A-
SIG_UART_T- Tmega8535, ATmega88P, ATmegal168, A-
RANS Tmega48, ATmega88, ATtiny2313
USART_UDR- SIG_USA- USART Data | AT90PWMS3, AT90PWM2, AT90PWM1, A-
E_vect RT_DATA, Register Empty Tmegal6, ATmegal68P, ATmega32, A-
SIG_UART_D- Tmega323, ATmega3250, ATmega3250P,
ATA ATmega328P, ATmega3290, ATmega3290-
P, ATmega48P, ATmega6450, ATmega6490,
ATmega8, ATmega8535, ATmega88P, A-
Tmegal168, ATmega48, ATmega88, A-
Ttiny2313
USI_OVERFL- SIG_USI_OV- USI Overflow ATmega165, ATmegal165P, ATmegal69, A-
OW_vect ERFLOW Tmegal169P, ATmega325, ATmega3250, A-
Tmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATtiny2313
USI_OVF_vect SIG_USI_OV- USI Overflow ATtiny26, ATtiny43U, ATtiny24, ATtiny44, A-
ERFLOW Ttiny84, ATtiny45, ATtiny25, ATtiny85, A-
Ttiny261, ATtiny461, ATtiny861
USI_START _- SIG_USI_ST- USI Start Condi- | ATmegal65, ATmegal65P, ATmegai69, A-
vect ART tion Tmega169P, ATmega325, ATmega3250, A-
Tmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATtiny2313, A-
Ttiny43U, ATtiny45, ATtiny25, ATtiny85, A-
Ttiny261, ATtiny461, ATtiny861
USI_STRT_- SIG_USI_ST- USI Start ATtiny26
vect ART
USI_STR_vect | SIG_USI_ST- USI START ATtiny24, ATtiny44, ATtiny84
ART
WATCHDOG- SIG_WATCH- Watchdog Time- | ATtiny24, ATtiny44, ATtiny84
_vect DOG_TIMEO- out
uTt
WDT_OVERF- SIG_WAT- Watchdog Timer | ATtiny2313
LOW_vect CHDOG._- Overflow
TIMEOUT,
SIG_WDT_O-
VERFLOW

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 188

WDT_vect SIG_WDT, SI- | Watchdog Time- | AT90PWM3, AT90PWM2, AT90PWM1, A-
G_WATCHD- out Interrupt Tmega1284P, ATmegal168P, ATmega328P,
OG_TIMEOUT ATmega32HVB, ATmega406, ATmega48P,

ATmega88P, ATmegal168, ATmega48, A-
Tmega88, ATmega640, ATmegal280, A-
Tmegal1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny13, A-
Ttiny43U, ATtiny48, ATtiny45, ATtiny25, A-
Ttiny85, ATtiny261, ATtiny461, ATtiny861, A-
T90USB162, AT90USB82, AT90USB1287,
AT90USB1286, AT90USB647, AT90US-
B646

22.16.2 Macro Definition Documentation

22.16.2.1 #define BADISR_vect

#finclude <avr/interrupt.h>

This is a vector which is aliased to __vector_default, the vector executed when an ISR fires with no accompanying ISR
handler. This may be used along with the ISR() macro to create a catch-all for undefined but used ISRs for debugging
purposes.

22.16.2.2 #define cli( )

Disables all interrupts by clearing the global interrupt mask. This function actually compiles into a single line of assembly,
so there is no function call overhead. However, the macro also implies a memory barrier which can cause additional
loss of optimization.

In order to implement atomic access to multi-byte objects, consider using the macros from <util/atomic.h>, rather than
implementing them manually with cli() and sei().

22.16.2.3 #define EMPTY_INTERRUPT( vector )

Defines an empty interrupt handler function. This will not generate any prolog or epilog code and will only return from
the ISR. Do not define a function body as this will define it for you. Example:

EMPTY_INTERRUPT (ADC_vect) ;

22.16.2.4 #define ISR( vector, attributes )
Introduces an interrupt handler function (interrupt service routine) that runs with global interrupts initially disabled by
default with no attributes specified.

The attributes are optional and alter the behaviour and resultant generated code of the interrupt routine. Multiple
attributes may be used for a single function, with a space seperating each attribute.

Valid attributes are ISR_BLOCK, ISR_NOBLOCK, ISR_NAKED and ISR_ALIASOF(vect).

vector must be one of the interrupt vector names that are valid for the particular MCU type.
22.16.2.5 #define ISR_ALIAS( vector, target vector )

Aliases a given vector to another one in the same manner as the ISR_ALIASOF attribute for the ISR() macro. Unlike
the ISR_ALIASOF attribute macro however, this is compatible for all versions of GCC rather than just GCC version 4.2
onwards.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 189

Note
This macro creates a trampoline function for the aliased macro. This will result in a two cycle penalty for the aliased
vector compared to the ISR the vector is aliased to, due to the JMP/RJMP opcode used.

Deprecated For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Example:

ISR (INTO_vect)
{

PORTB = 42;
}

ISR_ALIAS (INT1_vect, INTO_vect);

22.16.2.6 #define ISR_ALIASOF( target_vector )

The ISR is linked to another ISR, specified by the vect parameter. This is compatible with GCC 4.2 and greater only.

Use this attribute in the attributes parameter of the ISR macro.
22.16.2.7 #define ISR_BLOCK

Identical to an ISR with no attributes specified. Global interrupts are initially disabled by the AVR hardware when
entering the ISR, without the compiler modifying this state.

Use this attribute in the attributes parameter of the ISR macro.
22.16.2.8 #define ISR_NAKED

ISR is created with no prologue or epilogue code. The user code is responsible for preservation of the machine state
including the SREG register, as well as placing a reti() at the end of the interrupt routine.

Use this attribute in the attributes parameter of the ISR macro.

22.16.2.9 #define ISR_NOBLOCK

ISR runs with global interrupts initially enabled. The interrupt enable flag is activated by the compiler as early as possible
within the ISR to ensure minimal processing delay for nested interrupts.

This may be used to create nested ISRs, however care should be taken to avoid stack overflows, or to avoid infinitely
entering the ISR for those cases where the AVR hardware does not clear the respective interrupt flag before entering
the ISR.

Use this attribute in the attributes parameter of the ISR macro.
22.16.2.10 #define reti( )

Returns from an interrupt routine, enabling global interrupts. This should be the last command executed before leaving
an ISR defined with the ISR_NAKED attribute.

This macro actually compiles into a single line of assembly, so there is no function call overhead.
22.16.2.11 #define sei( )

Enables interrupts by setting the global interrupt mask. This function actually compiles into a single line of assembly, so
there is no function call overhead. However, the macro also implies a memory barrier which can cause additional loss
of optimization.

In order to implement atomic access to multi-byte objects, consider using the macros from <util/atomic.h>, rather than
implementing them manually with cli() and sei().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.16 <avtr/interrupt.h>: Interrupts 190

22.16.2.12 #define SIGNAL( vector )

Introduces an interrupt handler function that runs with global interrupts initially disabled.

This is the same as the ISR macro without optional attributes.

Deprecated Do not use SIGNAL() in new code. Use ISR() instead.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.17 <avr/io.h>: AVR device-specific 10 definitions 191

22.17 <avrfio.h>: AVR device-specific 10 definitions

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been specified by the —mmcu= compiler
command-line switch. This is done by diverting to the appropriate file <avr/ioXXXX.h> which should never be
included directly. Some register names common to all AVR devices are defined directly within <avr/common.h>,
which is included in <avr/io.h>, but most of the details come from the respective include file.

Note that this file always includes the following files:

#include <avr/sfr_defs.h>
#include <avr/portpins.h>

#include
#include <av
See <avr/sfr_defs.h>: Special function registers for more details about that header file.

Included are definitions of the 10 register set and their respective bit values as specified in the Atmel documentation.
Note that inconsistencies in naming conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as documented here.

Finally, the following macros are defined:

+ RAMEND
The last on-chip RAM address.

+ XRAMEND

The last possible RAM location that is addressable. This is equal to RAMEND for devices that do not allow for
external RAM. For devices that allow external RAM, this will be larger than RAMEND.

« E2END
The last EEPROM address.

« FLASHEND
The last byte address in the Flash program space.
+ SPM_PAGESIZE
For devices with bootloader support, the flash pagesize (in bytes) to be used for the SPM instruction.

+ E2PAGESIZE
The size of the EEPROM page.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.18 <avr/lock.h>: Lockbit Support 192

22.18 <avr/lock.h>: Lockbit Support

\par Introduction

The Lockbit API allows a user to specify the lockbit settings for the
specific AVR device they are compiling for. These lockbit settings will be
placed in a special section in the ELF output file, after linking.

Programming tools can take advantage of the lockbit information embedded in
the ELF file, by extracting this information and determining if the lockbits
need to be programmed after programming the Flash and EEPROM memories.

This also allows a single ELF file to contain all the

information needed to program an AVR.

To use the Lockbit API, include the <avr/io.h> header file, which in turn
automatically includes the individual I/O header file and the <avr/lock.h>
file. These other two files provides everything necessary to set the AVR
lockbits.

\par Lockbit API

Each I/0O header file may define up to 3 macros that controls what kinds
of lockbits are available to the user.

If _ LOCK_BITS_EXIST is defined, then two lock bits are available to the
user and 3 mode settings are defined for these two bits.

If _ BOOT_LOCK_BITS_O0_EXIST is defined, then the two BLBO lock bits are
available to the user and 4 mode settings are defined for these two bits.

If _ BOOT_LOCK_BITS_1_EXIST is defined, then the two BLBl lock bits are
available to the user and 4 mode settings are defined for these two bits.

If _ BOOT_LOCK_APPLICATION_TABLE_BITS_EXIST is defined then two lock bits
are available to set the locking mode for the Application Table Section
(which is used in the XMEGA family).

If _ BOOT_LOCK_APPLICATION_BITS_EXIST is defined then two lock bits are
available to set the locking mode for the Application Section (which is used
in the XMEGA family) .

If _ BOOT_LOCK_BOOT_BITS_EXIST is defined then two lock bits are available
to set the locking mode for the Boot Loader Section (which is used in the
XMEGA family) .

The AVR lockbit modes have inverted values, logical 1 for an unprogrammed
(disabled) bit and logical 0 for a programmed (enabled) bit. The defined
macros for each individual lock bit represent this in their definition by a
bit-wise inversion of a mask. For example, the LB_MODE_3 macro is defined
as:

@code

#define LB_MODE_3 (0xFC)

To combine the lockbit mode macros together to represent a whole byte,
use the bitwise AND operator, like so:

@code

(LB_MODE_3 & BLBO_MODE_2)

\endcode

<avr/lock.h> also defines a macro that provides a default lockbit value:
LOCKBITS_DEFAULT which is defined to be OxFF.

See the AVR device specific datasheet for more details about these
lock bits and the available mode settings.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.18 <avr/lock.h>: Lockbit Support 193

A convenience macro, LOCKMEM, is defined as a GCC attribute for a
custom-named section of ".lock".

A convenience macro, LOCKBITS, is defined that declares a variable, __ lock,
of type unsigned char with the attribute defined by LOCKMEM. This variable
allows the end user to easily set the lockbit data.

\note If a device-specific I/0 header file has previously defined LOCKMEM,
then LOCKMEM is not redefined. If a device-specific I/O header file has
previously defined LOCKBITS, then LOCKBITS is not redefined. LOCKBITS 1is
currently known to be defined in the I/0 header files for the XMEGA devices.

\par API Usage Example
Putting all of this together is easy:

@code
#include <avr/io.h>

LOCKBITS = (LB_MODE_1 & BLBO_MODE_3 & BLB1_MODE_4);

int main(void)
{

return 0;
}

\endcode
Or:

@code
#include <avr/io.h>

unsigned char __lock __attribute__ ((section (".lock"))) =
(LB_MODE_1 & BLBO_MODE_3 & BLB1_MODE_4);

int main(void)
{

return 0;
}

\endcode

However there are a number of caveats that you need to be aware of to
use this API properly.

Be sure to include <avr/io.h> to get all of the definitions for the API.

The LOCKBITS macro defines a global variable to store the lockbit data. This
variable is assigned to its own linker section. Assign the desired lockbit
values immediately in the variable initialization.

The .lock section in the ELF file will get its values from the initial
variable assignment ONLY. This means that you can NOT assign values to
this variable in functions and the new values will not be put into the
ELF .lock section.

The global variable is declared in the LOCKBITS macro has two leading
underscores, which means that it is reserved for the "implementation",
meaning the library, so it will not conflict with a user-named variable.

You must initialize the lockbit variable to some meaningful value, even

if it is the default value. This is because the lockbits default to a
logical 1, meaning unprogrammed. Normal uninitialized data defaults to all
locgial zeros. So it is vital that all lockbits are initialized, even with
default data. If they are not, then the lockbits may not programmed to the
desired settings and can possibly put your device into an unrecoverable
state.

Be sure to have the -mmcu=<em>device</em> flag in your compile command line and
your linker command line to have the correct device selected and to have

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.18 <avr/lock.h>: Lockbit Support 194

the correct I/O header file included when you include <avr/io.h>.

You can print out the contents of the .lock section in the ELF file by
using this command line:

@code

avr-objdump -s -7j .lock <ELF file>

\endcode

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 195

22.19 <avr/pgmspace.h>: Program Space Utilities

Macros

* #define PROGMEM __ ATTR_PROGMEM__

« #define PGM_P const char *

« #define PGM_VOID_P const void

« #define PSTR(s) ((const PROGMEM char *)(s))

« #define pgm_read_byte_near(address_short) _ LPM((uint16_t)(address_short))

* #define pgm_read_word_near(address_short) _ LPM_word((uint16_t)(address_short))
* #define pgm_read_dword_near(address_short) _ LPM_dword((uint16_t)(address_short))
« #define pgm_read_float_near(address_short) _ LPM_float((uint16_t)(address_short))

* #define pgm_read_byte far(address_long) _ ELPM((uint32_t)(address_long))

+ #define pgm_read_word_far(address_long) _ ELPM_word((uint32_t)(address_long))

+ #define pgm_read_dword_far(address_long) _ ELPM_dword((uint32_t)(address_long))
* #define pgm_read_float_far(address_long) _ ELPM_float((uint32_t)(address_long))

« #define pgm_read_byte(address_short) pgm_read_byte near(address_short)

« #define pgm_read_word(address_short) pgm_read_word_near(address_short)

* #define pgm_read_dword(address_short) pgm_read_dword_near(address_short)

« #define pgm_read_float(address_short) pgm_read_float_near(address_short)

Typedefs

* typedef void PROGMEM prog_void

* typedef char PROGMEM prog_char

* typedef unsigned char PROGMEM prog_uchar
* typedef int8_t PROGMEM prog_int8_t

* typedef uint8_t PROGMEM prog_uint8_t

* typedef int16_t PROGMEM prog_int16_t

* typedef uint16_t PROGMEM prog_uint16_t
* typedef int32_t PROGMEM prog_int32_t

+ typedef uint32_t PROGMEM prog_uint32_t
* typedef int64_t PROGMEM prog_int64_t

* typedef uint64_t PROGMEM prog_uint64 _t

Functions

* char x strtok_P (char xs, PGM_P delim)

 int memcmp_PF (const void *, uint_farptr_t, size_t) _ ATTR_PURE___

+ void * memcpy_PF (void xdest, uint_farptr_t src, size_t len)

* int strcasecmp_PF (const char xs1, uint_farptr_t s2) _ ATTR_PURE__

» char x strcat_PF (char xdest, uint_farptr_t src)

* int strcmp_PF (const char xs1, uint_farptr_ts2) _ ATTR_PURE__

« char * strcpy_PF (char xdest, uint_farptr_t src)

* size_t stricat_PF (char xdst, uint_farptr_t src, size_t siz)

* size_t stricpy_PF (char xdst, uint_farptr_t src, size_t siz)

* size_t strlen_PF (uint_farptr_t src)

« int strncasecmp_PF (const char xs1, uint_farptr_t s2, size_tn) _ ATTR_PURE__
* char x strncat_PF (char xdest, uint_farptr_t src, size_t len)

« int strncmp_PF (const char *s1, uint_farptr_t s2, size_tn) _ ATTR_PURE___
» char x strncpy_PF (char xdest, uint_farptr_t src, size_t len)

* size_t strnlen_PF (uint_farptr_t src, size_t len)

« char * strstr_PF (const char xs1, uint_farptr_t s2)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 196

22.19.1 Detailed Description

The

#include <avr/io.h>
#include <avr/pgmspace.h>

functions in this module provide interfaces for a program to access data stored in program space (flash memory) of

the device. In order to use these functions, the target device must support either the LPM or ELPM instructions.

Note

These functions are an attempt to provide some compatibility with header files that come with IAR C, to make
porting applications between different compilers easier. This is not 100% compatibility though (GCC does not have
full support for multiple address spaces yet).

If you are working with strings which are completely based in ram, use the standard string functions described in
<string.h>: Strings.

If possible, put your constant tables in the lower 64 KB and use pgm_read_byte near() or pgm_read_word_near()
instead of pgm_read_byte_far() or pgm_read_word_far() since it is more efficient that way, and you can still use the
upper 64K for executable code. All functions that are suffixed with a _P require their arguments to be in the lower
64 KB of the flash ROM, as they do not use ELPM instructions. This is normally not a big concern as the linker
setup arranges any program space constants declared using the macros from this header file so they are placed
right after the interrupt vectors, and in front of any executable code. However, it can become a problem if there are
too many of these constants, or for bootloaders on devices with more than 64 KB of ROM. All these functions will
not work in that situation.

For Xmega devices, make sure the NVM controller command register (NVM.CMD or NVM_CMD) is set to 0x00
(NOP) before using any of these functions.

22.19.2 Macro Definition Documentation

22.19.2.1 #define PGM_P const char x

Used to declare a variable that is a pointer to a string in program space.

22.19.2.2 #define pgm_read_byte( address_short ) pgm_read_byte near(address_short)

Read a byte from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.3 #define pgm_read_byte far( address_long ) __ELPM((uint32_t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.4 #define pgm_read_byte_near( address_short ) __LPM((uint16_t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 197

22.19.2.5 #define pgm_read_dword( address_short ) pgm_read_dword_near(address_short)
Read a double word from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.6 #define pgm_read_dword_far( address_long ) __ELPM_dword((uint32_t)(address_long))
Read a double word from the program space with a 32-bit (far) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.7 #define pgm_read_dword_near( address_short ) __LPM_dword((uint16_t)(address_short))
Read a double word from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.8 #define pgm_read_float( address_short ) pgm_read_float_near(address_short)
Read a float from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.9 #define pgm_read float_far( address_long ) __ELPM_float((uint32_t)(address_long))
Read a float from the program space with a 32-bit (far) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.10 #define pgm_read_float_near( address_short ) __LPM_float((uint16_t)(address_short))
Read a float from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.11 #define pgm_read_word( address_short ) pgm_read_word_near(address_short)
Read a word from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 198

22.19.2.12 #define pgm_read_word_far( address_long ) __ELPM_word((uint32_t)(address_long))
Read a word from the program space with a 32-bit (far) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.13 #define pgm_read_word_near( address_short ) __LPM_word((uint16_t)(address_short))
Read a word from the program space with a 16-bit (near) address.

Note

The address is a byte address. The address is in the program space.

22.19.2.14 #define PGM_VOID_P const void

Used to declare a generic pointer to an object in program space.
22.19.2.15 #define PROGMEM __ATTR_PROGMEM__

Attribute to use in order to declare an object being located in flash ROM.
22.19.2.16 #define PSTR( s ) ((const PROGMEM char x)(s))

Used to declare a static pointer to a string in program space.

22.19.3 Typedef Documentation

22.19.3.1 prog_char
Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of a "char" object located in flash ROM.

22.19.3.2 prog_int16_t

Note
DEPRECATED

This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.
However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "int16_t" object located in flash ROM.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 199

22.19.3.3 prog_int32_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "int32_t" object located in flash ROM.

22.19.34 prog_int64_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "int64_t" object located in flash ROM.

Note

This type is not available when the compiler option -mint8 is in effect.

22.19.3.5 prog_int8_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "int8_t" object located in flash ROM.

22.19.3.6 prog_uchar

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "unsigned char" object located in flash ROM.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 200

22.19.3.7 prog_uint16_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "uint16_t" object located in flash ROM.

22.19.3.8 prog_uint32_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "uint32_t" object located in flash ROM.

22.19.3.9 prog_uint64_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "uint64_t" object located in flash ROM.

Note

This type is not available when the compiler option -mint8 is in effect.

22.19.3.10 prog_uint8_t

Note
DEPRECATED
This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.

However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of an "uint8_t" object located in flash ROM.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 201

22.19.3.11 prog_void

Note
DEPRECATED

This typedef is now deprecated because the usage of the progmem attribute on a type is not supported in GCC.
However, the use of the progmem attribute on a variable declaration is supported, and this is now the recommended
usage.

The typedef is only visible if the macro PROG_TYPES_COMPAT has been defined before including <avr/pgmspace.h>
(either by a #define directive, or by a -D compiler option.)

Type of a "void" object located in flash ROM. Does not make much sense by itself, but can be used to declare a "void *"
object in flash ROM.

22.19.4 Function Documentation

22.19.41 int mememp_PF ( const void * s1, uint_farptr_t s2, size_t len )

Compare memory areas.

The memcmp_PF() function compares the first 1en bytes of the memory areas s1 and flash s2. The comparision is
performed using unsigned char operations. It is an equivalent of memcmp_P() function, except that it is capable working
on all FLASH including the exteded area above 64kB.

Returns

The memcmp_PF() function returns an integer less than, equal to, or greater than zero if the first Len bytes of s1
is found, respectively, to be less than, to match, or be greater than the first 1en bytes of s2.

22.19.4.2 void x memcpy_PF ( void « dest, uint_farptr_t src, size_tn )

Copy a memory block from flash to SRAM.

The memcpy_PF() function is similar to memcpy(), except the data is copied from the program space and is addressed
using a far pointer

\param dst A pointer to the destination buffer
\param src A far pointer to the origin of data in flash memory
\param n The number of bytes to be copied

Returns

The memcpy_PF() function returns a pointer to dst. The contents of RAMPZ SFR are undefined when the function
returns

22.19.4.3 int strcasecmp_PF ( const char x s1, uint_farptr_t s2 )

Compare two strings ignoring case.

The strcasecmp_PF() function compares the two strings s7 and s2, ignoring the case of the characters

Parameters

s1 | A pointer to the first string in SRAM

s2 | A far pointer to the second string in Flash

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 202

Returns

The strcasecmp_PF() function returns an integer less than, equal to, or greater than zero if s7 is found, respectively,
to be less than, to match, or be greater than s2. The contents of RAMPZ SFR are undefined when the function
returns

22.19.4.4 char x strcat_PF ( char x dst, uint_farptr_t src )

Concatenates two strings.

The strcat_PF() function is similar to strcat() except that the src string must be located in program space (flash) and is
addressed using a far pointer

Parameters

dst | A pointer to the destination string in SRAM

src | A far pointer to the string to be appended in Flash

Returns

The strcat_PF() function returns a pointer to the resulting string dst. The contents of RAMPZ SFR are undefined
when the function returns

22.19.4.5 int stremp_PF ( const char x s1, uint_farptr_t s2 )

Compares two strings.

The stremp_PF() function is similar to strcmp() except that s2is a far pointer to a string in program space

Parameters

s1 | A pointer to the first string in SRAM

s2 | A far pointer to the second string in Flash

Returns

The strcmp_PF() function returns an integer less than, equal to, or greater than zero if s7 is found, respectively, to
be less than, to match, or be greater than s2. The contents of RAMPZ SFR are undefined when the function returns

22.19.4.6 char x strcpy_PF ( char x dst, uint_farptr_t src )

Duplicate a string.

The strepy_PF() function is similar to strcpy() except that srcis a far pointer to a string in program space

Parameters

dst | A pointer to the destination string in SRAM

src | A far pointer to the source string in Flash

Returns

The strcpy_PF() function returns a pointer to the destination string dst. The contents of RAMPZ SFR are undefined
when the funcion returns

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 203

22.19.4.7 size_t strlcat_PF ( char x dst, uint_farptr_t src, size tn)

Concatenate two strings.

The strlcat_PF() function is similar to stricat(), except that the src string must be located in program space (flash) and is
addressed using a far pointer

Appends src to string dst of size n (unlike strncat(), n is the full size of dst, not space left). At most n-7 characters will
be copied. Always NULL terminates (unless n <= strlen(dst))

Parameters
dst | A pointer to the destination string in SRAM
src | A far pointer to the source string in Flash
n | The total number of bytes allocated to the destination string
Returns

The stricat_PF() function returns strlen(src) + MIN(n, strlen(initial dst)). If retval >= n, truncation occurred. The
contents of RAMPZ SFR are undefined when the funcion returns
22.19.4.8 size_t strlcpy_PF ( char x dst, uint_farptr_t src, size_tsiz )

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always NULL terminates (unless siz == 0).

Returns

The stricpy_PF() function returns strlen(src). If retval >= siz, truncation occurred. The contents of RAMPZ SFR are
undefined when the function returns

22.19.49 size_t strlen_PF ( uint_farptr_ts )

Obtain the length of a string.

The strlen_PF() function is similar to strlen(), except that s is a far pointer to a string in program space

Parameters

s | A far pointer to the string in flash

Returns

The strlen_PF() function returns the number of characters in s. The contents of RAMPZ SFR are undefined when
the function returns

22.19.4.10 int strncasecmp_PF ( const char * s1, uint_farptr_t s2, size tn )

Compare two strings ignoring case.

The strncasecmp_PF() function is similar to strcasecmp_PF(), except it only compares the first n characters of s7 and
the string in flash is addressed using a far pointer

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 204

Parameters
s1 | A pointer to a string in SRAM
s2 | A far pointer to a string in Flash
n | The maximum number of bytes to compare
Returns

The strncasecmp_PF() function returns an integer less than, equal to, or greater than zero if s7 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2. The contents of RAMPZ SFR are
undefined when the function returns

22.19.4.11 char x strncat_PF ( char * dst, uint_farptr_t src, size tn )

Concatenate two strings.

The strncat_PF() function is similar to strncat(), except that the src string must be located in program space (flash) and
is addressed using a far pointer

Parameters
dst | A pointer to the destination string in SRAM
src | A far pointer to the source string in Flash
n | The maximum number of bytes to append
Returns

The strncat_PF() function returns a pointer to the resulting string dst. The contents of RAMPZ SFR are undefined
when the function returns
22.19.412 int strncmp_PF ( const char * s1, uint_farptr_t s2, size_tn )

Compare two strings with limited length.

The strncmp_PF() function is similar to strcmp_PF() except it only compares the first (at most) n characters of s7 and s2

Parameters
s1 | A pointer to the first string in SRAM
s2 | A far pointer to the second string in Flash
n | The maximum number of bytes to compare
Returns

The strncmp_PF() function returns an integer less than, equal to, or greater than zero if s7 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2. The contents of RAMPZ SFR are
undefined when the function returns

22.19.4.13 char « strncpy_PF ( char x dst, uint_farptr_t src, size tn )

Duplicate a string until a limited length.

The strncpy_PF() function is similar to strcpy_PF() except that not more than n bytes of src are copied. Thus, if there is
no null byte among the first n bytes of src, the result will not be null-terminated

In the case where the length of srcis less than that of n, the remainder of dst will be padded with nulls

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 205

Parameters
dst | A pointer to the destination string in SRAM
src | A far pointer to the source string in Flash
n | The maximum number of bytes to copy
Returns

The strncpy_PF() function returns a pointer to the destination string dst. The contents of RAMPZ SFR are undefined
when the function returns

22.19.414 size t strnlen_PF ( uint_farptr_t s, size_t len )

Determine the length of a fixed-size string.

The strnlen_PF() function is similar to strnlen(), except that s is a far pointer to a string in program space

Parameters

s | A far pointer to the string in Flash

len | The maximum number of length to return

Returns

The strnlen_PF function returns strlen_P(s), if that is less than len, or len if there is no "\O’ character among the first
len characters pointed to by s. The contents of RAMPZ SFR are undefined when the function returns

22.19.4.15 char « strstr_PF ( const char x s1, uint_farptr_t s2 )

Locate a substring.

The strstr_PF() function finds the first occurrence of the substring s2 in the string s1. The terminating \O’ characters
are not compared. The strstr_PF() function is similar to strstr() except that s2 is a far pointer to a string in program
space.

Returns

The strstr_PF() function returns a pointer to the beginning of the substring, or NULL if the substring is not found. If
s2 points to a string of zero length, the function returns s1. The contents of RAMPZ SFR are undefined when the
function returns

22.19.4.16 charx strtok_P ( char x s, PGM_P delim )

Parses the string into tokens.

strtok_P() parses the string s into tokens. The first call to strtok_P() should have s as its first argument. Subsequent
calls should have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is overwritten
with a \0’ and a pointer to the next character is saved for the next call to strtok_P(). The delimiter string de 1 im may be
different for each call.

The strtok_P() function is similar to strtok() except that de1im is pointer to a string in program space.

Returns

The strtok_P() function returns a pointer to the next token or NULL when no more tokens are found.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.19 <avr/pgmspace.h>: Program Space Utilities 206

Note

strtok_P() is NOT reentrant. For a reentrant version of this function see strtok_rP().

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 207

22.20 <avr/power.h>: Power Reduction Management

#include <avr/power.h>

Many AVRs contain a Power Reduction Register (PRR) or Registers (PRRx) that allow you to reduce power consumption
by disabling or enabling various on-board peripherals as needed.

There are many macros in this header file that provide an easy interface to enable or disable on-board peripherals to
reduce power. See the table below.

Note

Not all AVR devices have a Power Reduction Register (for example the ATmega128). On those devices without a
Power Reduction Register, these macros are not available.

Not all AVR devices contain the same peripherals (for example, the LCD interface), or they will be named differently
(for example, USART and USARTO). Please consult your device’s datasheet, or the header file, to find out which
macros are applicable to your device.

Power Macro Description Applicable for device

power_aca_disable() Disable The Analog Comparator On PortA ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmegal128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

208

power_aca_enable()

Enable The Analog Comparator On PortA

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_acb_disable()

Disable The Analog Comparator On PortB

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 209

power_acb_enable() Enable The Analog Comparator On PortB ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,

ATMXT540SREVA
power_adc_disable() Disable the Analog to Digital Converter ATmega640, ATmega1280, ATmega1281,
module. ATmega2560, ATmega2561,

ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmega64RFR2,
ATmega256RFA2, ATmegal128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmegal16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWM316, AT90OPWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmegal165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmega645P, ATmega6450,
ATmega6450A, ATmega6450P, ATmegal69,
ATmega169A, ATmega169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmega649P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmega164P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab44PA, ATmega644,
ATmega164PA, ATmega4d8, ATmega4d8A,
ATmega48PA, ATmega48P, ATmega8s,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmegal168A, ATmega168P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
ATtiny4, ATtiny5, ATtiny9, ATtiny10,
ATtiny13A, ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 210

power_adc_enable() Enable the Analog to Digital Converter ATmegab640, ATmega1280, ATmegai281,
module. ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWM316, AT90PWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega48, ATmega4d8A,
ATmega48PA, ATmega48P, ATmega88,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmega168A, ATmegai68P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
ATtiny4, ATtiny5, ATtiny9, ATtiny10,
ATtiny13A, ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

211

power_adca_disable()

Disable the Analog to Digital Converter
module On PortA

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_adca_enable()

Enable the Analog to Digital Converter
module On PortA

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management

212

power_adcb_disable()

Disable the Analog to Digital Converter
module On PortB

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_adcb_enable()

Enable the Analog to Digital Converter
module On PortB

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmegal128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_aes_disable()

Disable the AES module

ATxmega16A4, ATxmegai6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmegab4A1, ATxmega64A1U,
ATxmegab64A3, ATxmegab4A3U,
ATxmegab64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmega16C4,
ATxmega32C4, ATxmegab64C3,
ATxmega128C3, ATxmegai192C3,
ATxmega256C3, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA, AT90SCR100

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

213

power_aes_enable()

Enable the AES module

ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmegal16C4,
ATxmega32C4, ATxmega64C3,
ATxmega128C3, ATxmegal192C3,
ATxmega256C3, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT5408S,
ATMXT540SREVA, AT90SCR100

power_all_disable()

Disable all modules.

ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega64D4, ATxmega128D4,
ATxmegal16D4, ATxmega32D4,
ATxmega64D3, ATxmega128D3,
ATxmega192D3, ATxmega32E5,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA, ATmega640,
ATmega1280, ATmega1281, ATmega2560,
ATmega2561, ATmega128RFA1,
ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2,
AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287,
ATmega32U4, ATmegai6U4, ATmega32U6,
AT90PWM1, AT90OPWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B, AT90PWM216,
AT90PWM316, AT9OPWM81,
AT90PWM161, ATmega165, ATmegal65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmega645P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegal69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmegab6490A, ATmega6490P,
ATmega164A, ATmegal164P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny828,
ATtiny841 ATtiny841 ATtiny24 ATtiny24A,

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by

Doxygen

ATtiny44, ATtiny44A, ATtiny84, ATtiny84A,
ATtiny25, ATtiny45, ATtiny85, ATtiny261,
ATtiny261A, ATtiny461, ATtiny461A,
ATtiny861, ATtiny861A, ATtiny43U,
ATmega1284, ATmegai284P,




22.20 <avr/power.h>: Power Reduction Management 214

power_all_enable() Enable all modules. ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmegai128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega64D4, ATxmega128D4,
ATxmega16D4, ATxmega32D4,
ATxmega64D3, ATxmega128D3,
ATxmega192D3, ATxmega32ES5,
ATxmegab4B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA, ATmega640,
ATmega1280, ATmegai281, ATmega2560,
ATmega2561, ATmegai128RFAT1,
ATmega256RFR2, ATmegai28RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2,
AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287,
ATmega32U4, ATmega16U4, ATmega32U6,
AT90PWM1, AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B, AT90PWM216,
AT90PWM316, AT9OPWM81,
AT90PWM161, ATmega165, ATmegal65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmega645P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal69P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmega649P, ATmega6490,
ATmegab6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab44PA, ATmega644,
ATmega164PA, ATmega406, ATtiny828,
ATtiny841, ATtiny841, ATtiny24, ATtiny24A,
ATtiny44, ATtiny44A, ATtiny84, ATtiny84A,
ATtiny25, ATtiny45, ATtiny85, ATtiny261,
ATtiny261A, ATtiny461, ATtiny461A,
ATtiny861, ATtiny861A, ATtiny43U,
ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF, ATA5790,
ATA5790N, ATA5795, ATA5831,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100,
ATtiny4, ATtiny5, ATtiny9, ATtiny10,
ATtiny13A, ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

215

power_can_disable()

Disable the CAN module

ATmega16M1, ATmega32C1, ATmega32M1,

ATmega64C1, ATmega64M1

power_can_enable()

Enable the CAN module

ATmega16M1, ATmega32C1, ATmega32M1,

ATmega64C1, ATmega64M1

power_cinterface_disable()

Disable the CINTERFACE module

ATA5790, ATA5790N, ATA5795

power_cinterface_enable()

Enable the CINTERFACE module

ATA5790, ATA5790N, ATA5795

power_clock_output_disable() Enable clock output module ATA5831
power_clock_output_enable() Enable clock output module ATA5831
power_cpld_disable() Disable CPLD module ATxmega32E5
power_cpld_enable() Enable CPLD module ATxmega32E5
power_crc_disable() Disable CRC module ATAS5831
power_crc_enable() Enable CRC module ATA5831

power_crypto_disable()

Disable the CRYPTO module

ATA5790, ATA5790N, ATA5795

power_crypto_enable()

Enable the CRYPTO module

ATA5790, ATA5790N, ATA5795

power_ctm_disable()

Disable CTM module

ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_ctm_enable()

Enable CTM module

ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_daca_disable()

Disable the DAC module on PortA

ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmega32E5,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

216

power_daca_enable()

Enable the DAC module on PortA

ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmega32E5,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_dacb_disable()

Disable the DAC module on PortB

ATxmega16A4, ATxmegai6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmegab64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_dacb_enable()

Enable the DAC module on PortB

ATxmega16A4, ATxmegal16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmegab4A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmegal128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_data_fifo_disable()

Disable data FIFO

ATA5831

power_data_fifo_enable()

Enable data FIFO

ATA5831

power_dma_disable()

Disable the DMA module

ATxmegal16A4, ATxmegal16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmegab64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmegal16C4,
ATxmega32C4, ATxmegab64C3,
ATxmega128C3, ATxmegai92C3,
ATxmega256C3, ATxmega32E5,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 217

power_dma_enable() Enable the DMA module ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmega16C4,
ATxmega32C4, ATxmega64C3,
ATxmega128C3, ATxmegal192C3,
ATxmega256C3, ATxmega32E5,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_ebi_disable() Disable the EBI module ATxmega16A4, ATxmegal16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmegab4A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmegal128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_ebi_enable() Enable the EBI module ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT5408S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

218

power_evsys_disable()

Disable the EVSYS module

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_evsys_enable()

Enable the EVSYS module

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

219

power_hiresc_disable()

Disable the HIRES module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_hiresc_enable()

Enable the HIRES module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

220

power_hiresd_disable()

Disable the HIRES module on PortD

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_hiresd_enable()

Enable the HIRES module on PortD

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_hirese_disable()

Disable the HIRES module on PortE

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmegal128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

221

power_hirese_enable()

Enable the HIRES module on PortE

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_hiresf_disable()

Disable the HIRES module on PortF

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_hiresf_enable()

Enable the HIRES module on PortF

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmegal128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management

222

power_hsspi_disable() Disable the HSPPI module AT90SCR100
power_hsspi_enable() Enable the HSPPI module AT90SCR100
power_id_scan_disable() Disable ID Scan ATAS5831
power_id_scan_enable() Enable ID Scan ATAS5831

power_irdriver_disable()

Disable the IRDRIVER module

ATA5790, ATA5790N, ATA5795

power_irdriver_enable()

Enable the IRDRIVER module

ATA5790, ATA5790N, ATA5795

power_kb_disable()

Disable the KB module

AT90SCR100

power_kb_enable()

Enable the KB module

AT90SCR100

power_Icd_disable()

Disable the LCD module.

ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATmega169, ATmega169A, ATmegai69P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab49A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P

power_lcd_enable()

Enable the LCD module.

ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATmega169, ATmegal69A, ATmega169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P

power_[freceiver_disable()

Disable the LFRECEIVER module

ATAS5790, ATA5790N

power_lfreceiver_enable()

Enable the LFRECEIVER module

ATA5790, ATA5790N

power_lin_disable()

Disable the LIN module

ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272

power_lin_enable()

Enable the LIN module

ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272

power_pga_disable()

Disable PGA module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_pga_enable()

Enable PGA module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_preamble_rssi_fifo_disable()

Disable preamble/RSSI FIFO

ATA5831

power_preamble_rssi_fifo_enable()

Enable preamble/RSSI FIFO

ATA5831

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management

223

power_psc0_disable()

Disable the Power Stage Controller 0 module.

AT90PWM1, AT90PWM2, AT90PWM2B,
AT90PWMS3, AT90PWM3B, AT90PWM216,
AT90PWM316

power_psc0_enable()

Enable the Power Stage Controller 0 module.

AT90PWM1, AT90PWM2, ATO90OPWM2B,
AT90PWMS3, AT90PWM3B, AT90PWM216,
AT90PWM316

power_psci_disable()

Disable the Power Stage Controller 1 module.

AT90PWM1, AT90PWM2, ATOOPWM2B,
AT90PWMS3, AT90PWM3B, AT90PWM216,
AT90PWM316

power_psc1_enable()

Enable the Power Stage Controller 1 module.

AT90PWM1, AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B, AT90PWM216,
AT90PWM316

power_psc2_disable()

Disable the Power Stage Controller 2 module.

AT90PWM1, AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B, AT90PWM216,
AT90PWM316, AT9OPWM81, AT90OPWM161

power_psc2_enable()

Enable the Power Stage Controller 2 module.

AT90PWM1, AT90PWM2, ATO90OPWM2B,
AT90PWMS3, AT90PWM3B, AT90PWM216,
AT90PWM316, ATOOPWM81, ATOOPWM161

power_psc_disable()

Disable the Power Stage Controller module

ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1

power_psc_enable()

Enable the Power Stage Controller module

ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1

power_pscr_disable()

Disable the Reduced Power Stage Controller
module.

AT90PWM81, AT90PWM161

power_pscr_enable()

Enable the Reduced Power Stage Controller
module.

AT90PWM81, AT90PWM161

power_ramQ_disable()

Disable Ram0 module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ramOQ_enable()

Enable Ram0 module

ATmega256RFR2, ATmega128RFR2,
ATmegab4RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ram1_disable()

Disable Ram1 module

ATmega256RFR2, ATmegai128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ram1_enable()

Enable Ram1 module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ram2_disable()

Disable Ram2 module

ATmega256RFR2, ATmegai28RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ram2_enable()

Enable Ram2 module

ATmega256RFR2, ATmega128RFR2,
ATmegab4RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

224

power_ram3_disable()

Disable Ram3 module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_ram3_enable()

Enable Ram3 module

ATmega256RFR2, ATmegai28RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_receive_dsp_control_disable() Disable Receive DSP control module ATAS5831
power_receive_dsp_control_enable() Enable Receive DSP control module ATA5831
power_rssi_buffer_disable() Disable RSSI buffer ATA5831
power_rssi_buffer_enable() Enable RSSI buffer ATA5831

power_rtc_disable()

Disable the RTC module

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmegal128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management 225

power_rtc_enable() Enable the RTC module ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,

ATMXT540SREVA
power_sci_disable() Disable the SCI module AT90SCR100
power_sci_enable() Enable the SCI module AT90SCR100
power_sequencer_state_machine_disable() Disable power sequencer state machine ATAS5831
power_sequencer_state_machine_enable() Enable power sequencer state machine ATAS5831
power_spi_disable() Disable the Serial Peripheral Interface ATmega640, ATmega1280, ATmegai281,
module. ATmega2560, ATmega2561,

ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmega64RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWM316, AT9OPWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegal69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal164P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATmega48, ATmega48A,
ATmega48PA, ATmega48P, ATmega88,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmegal168A, ATmega168P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF, ATA5790,
ATA5790N, ATA5795 ATA5831,

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen ATmega16M1, ATmega32C1, ATmega32M1,
ATmegab64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, AT90USB82,
AT90USB162, ATmega8U2, ATmegai6U2,
ATmega32U2, AT90SCR100, ATtiny20,




22.20 <avr/power.h>: Power Reduction Management 226

power_spi_enable() Enable the Serial Peripheral Interface ATmegab640, ATmega1280, ATmegai281,
module. ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWM316, AT90PWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega48, ATmega4d8A,
ATmega48PA, ATmega48P, ATmega88,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmega168A, ATmegai68P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATmega1284, ATmegal284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF, ATA5790,
ATA5790N, ATA5795, ATA5831,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, AT90USB82,
AT90USB162, ATmega8U2, ATmegai6U2,
ATmega32U2, AT90SCR100, ATtiny20,
ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

227

power_spic_disable()

Disable the SPI module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmegab4B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_spic_disalbe()

Disable SPI module on PortC

ATxmega32E5

power_spic_enable()

Enable the SPI module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmegal128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

228

power_spid_disable()

Disable the SPI module on PortD

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_spid_enable()

Enable the SPI module on PortD

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

229

power_spie_disable()

Disable the SPI module on PortE

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_spie_enable()

Enable the SPI module on PortE

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_spif_disable()

Disable the SPI module on PortF

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmegal128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

230

power_spif_enable()

Enable the SPI module on PortF

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcOc_disable()

Disable the TCO module on PortC

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmegal128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

231

power_tcOc_enable()

Enable the TCO module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcOd_disable()

Disable the TCO module on PortD

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management

232

power_tcOd_enable()

Enable the TCO module on PortD

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcOe_disable()

Disable the TCO module on PortE

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

233

power_tcOe_enable()

Enable the TCO module on PortE

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmegab4B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcOf_disable()

Disable the TCO module on PortF

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

234

power_tcOf_enable()

Enable the TCO module on PortF

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcic_disable()

Disable the TC1 module on PortC

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

235

power_tcic_enable()

Enable the TC1 module on PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tc1d_disable()

Disable the TC1 module on PortD

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega32E5, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tc1d_enable()

Enable the TC1 module on PortD

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega32E5, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

236

power_tcle_disable()

Disable the TC1 module on PortE

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tcle_enable()

Enable the TC1 module on PortE

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_tc1f_disable()

Disable the TC1 module on PortF

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmegal128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

237

power_tc1f_enable()

Enable the TC1 module on PortF

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_timer0_disable()

Disable the Timer 0 module.

ATmegab640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmega64RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWMB3B, AT90PWM216,
AT90PWM316, ATmega164A, ATmegal64P,
ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100,
ATtiny4, ATtiny5, ATtiny9, ATtiny10,
ATtiny13A, ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

238

power_timerQ_enable()

Enable the Timer 0 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmegai128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWMB316, ATmegai164A, ATmega164P,
ATmega324A, ATmega324P,
ATmega324PA, ATmegab644P,
ATmega644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100,
ATtiny4, ATtiny5, ATtiny9, ATtiny10,
ATtiny13A, ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 239

power_timer1_disable() Disable the Timer 1 module. ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM2186,
AT90PWM316, AT90PWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF, ATA5790,
ATA5790N, ATA5795, ATA5831,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100,
ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 240

power_timer1_enable() Enable the Timer 1 module. ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, AT9OPWM1,
AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWMS3B, AT90PWM216,
AT90PWM316, AT90PWM81,
AT90PWM161, ATmega165, ATmegai65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF, ATA5790,
ATA5790N, ATA5795, ATA5831,
ATmega16M1, ATmega32C1, ATmega32M1,
ATmega64C1, ATmega64M1, ATtiny167,
ATtiny87, ATA5505, ATA5272, ATtiny1634,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100,
ATtiny20, ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 241

power_timer2_disable() Disable the Timer 2 module. ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, ATmega164A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATtiny841, ATmega1284,
ATmega1284P, ATA5790, ATA5790N,
ATA5795, ATA5831, AT90SCR100

power_timer2_enable() Enable the Timer 2 module. ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmegal6U4, ATmega32U6, ATmegai64A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATtiny841, ATmega1284,
ATmega1284P, ATA5790, ATA5790N,
ATA5795, ATA5831, AT90SCR100

power_timer3_disable() Disable the Timer 3 module. ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab64RFR2,
ATmega256RFA2, ATmegai128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmegal6U4, ATmega32U6, ATmegai284,
ATmega1284P, ATA5790, ATA5790N,
ATA5795, ATA5831

power_timer3_enable() Enable the Timer 3 module. ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab64RFR2,
ATmega256RFA2, ATmegai128RFA2,
ATmegab4RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, ATmega1284,
ATmega1284P, ATA5790, ATA5790N,
ATA5795, ATA5831

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

242

power_timer4_disable()

Disable the Timer 4 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, ATA5831

power_timer4_enable()

Enable the Timer 4 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab64RFR2,
ATmega256RFA2, ATmegai128RFA2,
ATmega64RFA2, ATA5831

power_timermodulator_disable()

Disable the TIMERMODULATOR module

ATA5790, ATA5790N, ATA5795

power_timermodulator_enable()

Enable the TIMERMODULATOR module

ATA5790, ATA5790N, ATA5795

power_transceiver_disable()

Disable transceiver module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_transceiver_enable()

Enable transceiver module

ATmega256RFR2, ATmega128RFR2,
ATmega64RFR2, ATmega256RFA2,
ATmega128RFA2, ATmega64RFA2

power_transmit_dsp_control_disable()

Disable Transmit DSP control module

ATA5831

power_transmit_dsp_control_enable()

Enable Transmit DSP control module

ATA5831

power_twi_disable()

Disable the Two Wire Interface module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab64RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, ATmega164A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmegab644P,
ATmegab644A, ATmegab44PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATmega1284, ATmega1284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF,
ATtiny1634, AT90SCR100, ATtiny20,
ATtiny40

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen




22.20 <avr/power.h>: Power Reduction Management 243

power_twi_enable() Enable the Two Wire Interface module. ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, ATmega164A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATmega406, ATtiny841,
ATmega1284, ATmegai284P,
ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF,
ATtiny1634, AT90SCR100, ATtiny20,

ATtiny40
power_twic_disable() Disable the Two Wire Interface module on ATxmega16C4, ATxmega32C4,
PortC ATxmega64C3, ATxmega128C3,

ATxmega192C3, ATxmega256C3,
ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmegai28B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

244

power_twic_enable()

Enable the Two Wire Interface module on
PortC

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_twid_disable()

Disable the Two Wire Interface module on
PortD

ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_twid_enable()

Enable the Two Wire Interface module on
PortD

ATxmegal16A4, ATxmega16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

245

power_twie_disable()

Disable the Two Wire Interface module on
PortE

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_twie_enable()

Enable the Two Wire Interface module on
PortE

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 246

power_twif_disable() Disable the Two Wire Interface module on ATxmega16A4, ATxmegal6A4U,
PortF ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmegai28D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,

ATMXT540SREVA
power_twif_enable() Disable the Two Wire Interface module on ATxmega16A4, ATxmegal6A4U,
PortF ATxmega16D4, ATxmega32A4,

ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,

ATMXT540SREVA
power_tx_modulator_disable() Disable Tx modulator ATA5831
power_tx_modulator_enable() Enable Tx modulator ATAS5831
power_usart0_disable() Disable the USART 0 module. ATmegab640, ATmega1280, ATmegai281,

ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmega64RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, ATmega32U4,
ATmega16U4, ATmega165, ATmegal65A,
ATmega165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmegab45P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegail69,
ATmega169A, ATmegal69P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmegab49P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmegal64P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmega644A, ATmegab644PA, ATmega644,
ATmega164PA, ATmega48, ATmega4d8A,
ATmega48PA, ATmega48P, ATmega88,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmega168A, ATmegai68P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATmega1284, ATmegal1284P, ATtiny1634,
AT90SCR100

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 247

power_usart0_enable() Enable the USART 0 module. ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, ATmega32U4,
ATmega16U4, ATmega165, ATmega165A,
ATmegal165P, ATmega165PA, ATmega325,
ATmega325A, ATmega325PA,
ATmega3250, ATmega3250A,
ATmega3250PA, ATmega645,
ATmegab645A, ATmega645P, ATmega6450,
ATmegab6450A, ATmega6450P, ATmegal69,
ATmega169A, ATmegal169P,
ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290,
ATmega3290A, ATmega3290P,
ATmega3290PA, ATmega649,
ATmegab649A, ATmega649P, ATmega6490,
ATmega6490A, ATmega6490P,
ATmega164A, ATmega164P, ATmega324A,
ATmega324P, ATmega324PA, ATmega644P,
ATmegab644A, ATmega644PA, ATmega644,
ATmega164PA, ATmega4d8, ATmega4d8A,
ATmega48PA, ATmega48P, ATmega8s,
ATmega88A, ATmega88P, ATmega88PA,
ATmega168, ATmegal168A, ATmega168P,
ATmega168PA, ATmega328, ATmega328P,
ATtiny48, ATtiny88, ATtiny828, ATtiny841,
ATmega1284, ATmega1284P, ATtiny1634,
AT90SCR100

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

248

power_usart1_disable()

Disable the USART 1 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmegai128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmega16U4, ATmega32U6, ATmega164A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmegab44PA, ATtiny841,
ATmega1284P, ATtiny1634, AT90USBS82,
AT90USB162, ATmega8U2, ATmegai6U2,
ATmega32U2

power_usart1_enable()

Enable the USART 1 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561,
ATmega128RFA1, ATmega256RFR2,
ATmega128RFR2, ATmegab4RFR2,
ATmega256RFA2, ATmega128RFA2,
ATmega64RFA2, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega32U4,
ATmegal6U4, ATmega32U6, ATmegai64A,
ATmega164P, ATmega324A, ATmega324P,
ATmega324PA, ATmega644P,
ATmegab644A, ATmegab644PA, ATtiny841,
ATmega1284P, ATtiny1634, AT90USBS82,
AT90USB162, ATmega8U2, ATmegai6U2,
ATmega32U2

power_usart2_disable()

Disable the USART 2 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561

power_usart2_enable()

Enable the USART 2 module.

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

power_usart3_disable()

Disable the USART 3 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561

power_usart3_enable()

Enable the USART 3 module.

ATmegab640, ATmega1280, ATmegai281,
ATmega2560, ATmega2561

power_usart_disable()

Disable the USART module.

AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM216, AT9OPWM316

power_usart_enable()

Enable the USART module.

AT90PWM2, AT90PWM2B, AT90PWM3,
AT90PWM3B, AT90PWM216, AT90OPWM316

power_usartc0_disable()

Disable the USARTO module on PortC

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega16A4, ATxmegal6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E _ATMXT336S, ATMXT540S,

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by

Doxygen

ATMXT540SREVA




22.20 <avr/power.h>: Power Reduction Management 249

power_usartcO_enable() Enable the USARTO module on PortC ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATxmega64B1,
ATxmega64B3, ATxmega128B1,
ATxmega128B3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usartc1_disable() Disable the USART1 module on PortC ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmegal128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmegal16C4,
ATxmega32C4, ATxmega64C3,
ATxmega128C3, ATxmegal192C3,
ATxmega256C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT5408S,
ATMXT540SREVA

power_usartc1_enable() Enable the USART1 module on PortC ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmegab4A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATxmega16C4,
ATxmega32C4, ATxmegab64C3,
ATxmega128C3, ATxmegai192C3,
ATxmega256C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT5408S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

250

power_usartd0_disable()

Disable the USARTO module on PortD

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usartd0_enable()

Enable the USARTO module on PortD

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega32E5, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 251

power_usartd1_disable() Disable the USART1 module on PortD ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usartd1_enable() Enable the USART1 module on PortE ATxmegal16A4, ATxmegal16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4AiU,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usarte0_disable() Disable the USARTO module on PortE ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegai6A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 252

power_usarte0_enable() Enable the USARTO module on PortE ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATxmegab4B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usarte1_disable() Disable the USART1 module on PortE ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmegal128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usarte1_enable() Enable the USART1 module on PortE ATxmegal16A4, ATxmega16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

253

power_usartf0_disable()

Disable the USARTO module on PortF

ATxmega16C4, ATxmega32C4,
ATxmegab4C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmegab4A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmegal192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usartfO_enable()

Enable the USARTO module on PortF

ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmegal16A4, ATxmegal16A4U,
ATxmega16D4, ATxmega32A4,
ATxmega32A4U, ATxmega32D4,
ATxmega64A1, ATxmega64A1U,
ATxmega64A3, ATxmega64A3U,
ATxmega64A4U, ATxmega64D3,
ATxmega128A1, ATxmega128A1U,
ATxmega128A3, ATxmega128A3U,
ATxmega128A4U, ATxmega128D3,
ATxmega192A3, ATxmega192A3U,
ATxmega192D3, ATxmega256A3,
ATxmega256A3U, ATxmega256A3B,
ATxmega256A3BU, ATxmega384C3,
ATxmega64D4, ATxmega128D4,
ATMXT112SL, ATMXT224, ATMXT224E,
ATMXT336S, ATMXT540S,
ATMXT540SREVA

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 254

power_usartf1_disable() Disable the USART1 module on PortF ATxmega16A4, ATxmegal6A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4A1U,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai28A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usartf1_enable() Enable the USART1 module on PortF ATxmegal16A4, ATxmegal16A4U,
ATxmega32A4U, ATxmega32A4,
ATxmega64A1, ATxmegab4AiU,
ATxmegab64A3, ATxmega64A3U,
ATxmega64A4U, ATxmegai128A1,
ATxmega128A1U, ATxmega128A3,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3, ATxmega192A3U,
ATxmega256A3, ATxmega256A3U,
ATxmega256A3B, ATxmega256A3BU,
ATxmega384C3, ATMXT112SL, ATMXT224,
ATMXT224E, ATMXT336S, ATMXT540S,
ATMXT540SREVA

power_usb_disable() Disable the USB module. ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmegai128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287,
ATmega32U4, ATmegal6U4, ATmega32U6,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100

power_usb_enable() Enable the USB module. ATxmega384C3, ATxmega256A3BU,
ATxmega16A4U, ATxmega32A4U,
ATxmega64A3U, ATxmega64A4U,
ATxmega128A3U, ATxmega128A4U,
ATxmega192A3U, ATxmega256A3U,
ATxmega16C4, ATxmega32C4,
ATxmega64C3, ATxmega128C3,
ATxmega192C3, ATxmega256C3,
ATxmega64B1, ATxmega64B3,
ATxmega128B1, ATxmega128B3,
AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287,
ATmega32U4, ATmegal6U4, ATmega32U6,
AT90USB82, AT90USB162, ATmega8U2,
ATmegal6U2, ATmega32U2, AT90SCR100

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management

255

power_usbh_disable()

Disable the USBH module

AT90SCR100

power_usbh_enable()

Enable the USBH module

AT90SCR100

power_usi_disable()

Disable the Universal Serial Interface module.

ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATtiny167, ATtiny87, ATA5505,
ATAS5272, ATtiny1634

power_usi_enable()

Enable the Universal Serial Interface module.

ATtiny24, ATtiny24A, ATtiny44, ATtiny44A,
ATtiny84, ATtiny84A, ATtiny25, ATtiny45,
ATtiny85, ATtiny261, ATtiny261A, ATtiny461,
ATtiny461A, ATtiny861, ATtiny861A,
ATtiny43U, ATtiny167, ATtiny87, ATA5505,
ATAS5272, ATtiny1634

power_vadc_disable()

Disable the Voltage ADC module.

ATmega406, ATmega32HVB,
ATmega32HVBREVB, ATmega16HVB,
ATmegal16HVBREVB, ATmega26HVG,
ATmega48HVF

power_vadc_enable()

Enable the Voltage ADC module.

ATmega406, ATmega32HVB,
ATmega32HVBREVB, ATmega16HVB,
ATmega16HVBREVB, ATmega26HVG,
ATmega48HVF

power_vmonitor_disable()

Disable the VMONITOR module

ATA5790, ATA5790N, ATA5795

power_vmonitor_enable()

Enable the VMONITOR module

ATA5790, ATA5790N, ATA5795

power_voltage_monitor_disable()

Disable voltage monitor module

ATA5831

power_voltage_monitor_enable()

Enable voltage monitor module

ATA5831

power_vrm_disable()

Disable the VRM module

ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF

power_vrm_enable()

Enable the VRM module

ATmega32HVB, ATmega32HVBREVB,
ATmega16HVB, ATmegal6HVBREVB,
ATmega26HVG, ATmega48HVF

Some of the newer AVRs contain a System Clock Prescale Register (CLKPR) that allows you to decrease the system
clock frequency and the power consumption when the need for processing power is low. Below are two macros and an
enumerated type that can be used to interface to the Clock Prescale Register.

Note

Not all AVR devices have a Clock Prescale Register. On those devices without a Clock Prescale Register, these
macros are not available.

typedef enum

{
clock_div_1
clock_div_2
clock_div_4
clock_div_8
clock_div_16
clock_div_32
clock_div_o64
clock_div_128 ,
clock_div_256 ,
clock_div_1_rc = 15, // ATmegal28RFAl only

} clock_div_t;

[LI R ]
w N = O

'
'

7
8

Clock prescaler setting enumerations.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.20 <avr/power.h>: Power Reduction Management 256

clock_prescale_set (x)

Set the clock prescaler register select bits, selecting a system clock division setting. This function is inlined, even if
compiler optimizations are disabled.

The type of x is clock_div_t.

clock_prescale_get ()

Gets and returns the clock prescaler register setting. The return type is clock_div_t.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.21 Additional notes from <avr/sfr_defs.h> 257

22.21 Additional notes from <avr/sfr_defs.h>

The <avr/sfr_defs.h> fileis included by all of the <avr/ioXXXX.h> files, which use macros defined here to
make the special function register definitions look like C variables or simple constants, depending on the _SFR_ASM—
_ COMPAT define. Some examples from <avr/iocanxx.h> to show how to define such macros:

#define PORTA
#define EEAR
#define UDRO
#define TCNT3
#define CANIDT

If _SFR_ASM_COMPAT is not defined, C programs can use names like PORTA directly in C expressions (also on the
left side of assignment operators) and GCC will do the right thing (use short I/O instructions if possible). The _ SFR—
_OFFSET definition is not used in any way in this case.

Define _SFR_ASM_COMPAT as 1 to make these names work as simple constants (addresses of the I/O registers). This
is necessary when included in preprocessed assembler (x.S) source files, so it is done automatically if ASSEMBLER is
defined. By default, all addresses are defined as if they were memory addresses (used in 1ds/sts instructions). To
use these addresses in in/out instructions, you must subtract 0x20 from them.

For more backwards compatibility, insert the following at the start of your old assembler source file:

#define __ SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it's a hack, so it is recommended to change your source:
wrap such addresses in macros defined here, as shown below. After this is done, the ___SFR_OFFSET definition is no
longer necessary and can be removed.

Real example - this code could be used in a boot loader that is portable between devices with SPMCR at different
addresses.

<avr/ioml63.h>: #define SPMCR _SFR_IO8 (0x37)
<avr/ioml28.h>: #define SPMCR _SFR_MEMS8 (0x68)

#if _SFR_IO_REG_P (SPMCR)
out _SFR_IO_ADDR (SPMCR) , r24

sts _SFR_MEM_ADDR (SPMCR), r24
#endif

You can use the in/out/cbi/sbi/sbic/sbis instructions, without the _SFR_TIO_REG_P test, if you know that
the register is in the I/O space (as with SREG, for example). If it isn’t, the assembler will complain (I/O address out of
range 0...0x3f), so this should be fairly safe.

If you do not define SFR_OFFSET (so it will be 0x20 by default), all special register
addresses are defined as memory addresses (so SREG is 0x5f), and (if code size
and speed are not important, and you don’t like the ugly #if above) you can
always use lds/sts to access them. But, this will not work if SFR_OFFSET !=
0x20, so use a different macro (defined only if _ SFR_OFFSET == 0x20) for safety-

sts _SFR_ADDR (SPMCR) , r24

In C programs, all 3 combinations of _SFR_ASM_COMPAT and __SFR_OFFSET are supported - the _SFR-
_ADDR (SPMCR) macro can be used to get the address of the SPMCR register (0x57 or 0x68 depending on
device).

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.22 <avr/sfr_defs.h>: Special function registers 258

22.22 <avr/sfr_defs.h>: Special function registers
Modules

» Additional notes from <avr/sfr_defs.h>

Bit manipulation

. #define BV(bit) (1 << (bit))

10 register bit manipulation

« #define bit_is_set(sfr, bit) (_ SFR_BYTE(sfr) & _BV/(bit))

« #define bit_is_clear(sfr, bit) ({(_SFR_BYTE(sfr) & _BV(bit)))

« #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))
* #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

22.22.1 Detailed Description

When working with microcontrollers, many tasks usually consist of controlling internal peripherals, or external peripherals
that are connected to the device. The entire 10 address space is made available as memory-mapped IO, i.e. it can be
accessed using all the MCU instructions that are applicable to normal data memory. For most AVR devices, the 10
register space is mapped into the data memory address space with an offset of 0x20 since the bottom of this space is
reserved for direct access to the MCU registers. (Actual SRAM is available only behind the 10 register area, starting at
some specific address depending on the device.)

For example the user can access memory-mapped IO registers as if they were globally defined variables like this:

PORTA = 0x33;
unsigned char foo = PINA;

The compiler will choose the correct instruction sequence to generate based on the address of the register being
accessed.

The advantage of using the memory-mapped registers in C programs is that it makes the programs more portable to
other C compilers for the AVR platform.

Note that special care must be taken when accessing some of the 16-bit timer 1O registers where access from both the
main program and within an interrupt context can happen. See faq_16bitio.

Porting programs that use the deprecated sbi/cbhi macros

Access to the AVR single bit set and clear instructions are provided via the standard C bit manipulation commands. The
sbi and cbi macros are no longer directly supported. sbi (sfr,bit) can be replaced by sfr |= _BV(bit) .

i.e.: sbi(PORTB, PB1); is now PORTB |= _BV(PB1);

This actually is more flexible than having sbi directly, as the optimizer will use a hardware sbi if appropriate, or a
read/or/write operation if not appropriate. You do not need to keep track of which registers sbi/cbi will operate on.

Likewise, cbi (sfr,bit) is now sfr &= ~(_BV(bit));

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.22 <avr/sfr_defs.h>: Special function registers 259

22.22.2 Macro Definition Documentation

222221 #define BV( bit ) (1 << (bit))

#include <avr/io.h>

Converts a bit number into a byte value.

Note

The bit shift is performed by the compiler which then inserts the result into the code. Thus, there is no run-time
overhead when using _BV().

22.22.2.2 #define bit_is_clear( sfr, bit ) ({(_SFR_BYTE(sfr) & _BV(bit)))
#include <avr/io.h>
Test whether bit bit in IO register sfr is clear. This will return non-zero if the bit is clear, and a 0 if the bit is set.
22.22.2.3 #define bit_is_set( sfr, bit ) ((SFR_BYTE(sfr) & _BV(bit))
#include <avr/io.h>
Test whether bit bit in IO register sfr is set. This will return a 0 if the bit is clear, and non-zero if the bit is set.
22.22.2.4 #define loop_until_bit_is_clear( sfr, bit )do { } while (bit_is_set(sfr, bit))
#include <avr/io.h>
Wait until bit bit in IO register sfr is clear.
22.22.2.5 #define loop_until _bit_is_set( sfr, bit )do { } while (bit_is_clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO register sfr is set.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.23 <avr/signature.h>: Signature Support 260

22.23 <avr/signature.h>: Signature Support

Introduction

The <avr/signature.h> header file allows the user to automatically and easily include the device’s signature data in a
special section of the final linked ELF file.

This value can then be used by programming software to compare the on-device signature with the signature recorded
in the ELF file to look for a match before programming the device.

API Usage Example

Usage is very simple; just include the header file:

#include <avr/signature.h>

This will declare a constant unsigned char array and it is initialized with the three signature bytes, MSB first, that are
defined in the device I/O header file. This array is then placed in the .signature section in the resulting linked ELF file.

The three signature bytes that are used to initialize the array are these defined macros in the device I/O header file, from
MSB to LSB: SIGNATURE_2, SIGNATURE_1, SIGNATURE_0.

This header file should only be included once in an application.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.24 <avr/sleep.h>: Power Management and Sleep Modes 261

22.24 <avr/sleep.h>: Power Management and Sleep Modes
Functions

+ void sleep_enable (void)
+ void sleep_disable (void)
* void sleep_cpu (void)

22.24.1 Detailed Description

#include <avr/sleep.h>

Use of the SLEEP instruction can allow an application to reduce its power comsumption considerably. AVR devices can
be put into different sleep modes. Refer to the datasheet for the details relating to the device you are using.

There are several macros provided in this header file to actually put the device into sleep mode. The simplest way is to
optionally set the desired sleep mode using set_sleep_mode () (it usually defaults to idle mode where the CPU is
put on sleep but all peripheral clocks are still running), and then call sleep_mode (). This macro automatically sets
the sleep enable bit, goes to sleep, and clears the sleep enable bit.

Example:
#include <avr/sleep.h>

set_sleep_mode (<mode>) ;
sleep_mode () ;

Note that unless your purpose is to completely lock the CPU (until a hardware reset), interrupts need to be enabled
before going to sleep.

As the sleep_mode () macro might cause race conditions in some situations, the individual steps of manipulating
the sleep enable (SE) bit, and actually issuing the SLEEP instruction, are provided in the macros sleep_enable (),
sleep_disable(),and sleep_cpu (). This also allows for test-and-sleep scenarios that take care of not missing
the interrupt that will awake the device from sleep.

Example:

#include <avr/interrupt.h>
#include <avr/sleep.h>

set_sleep_mode (<mode>) ;
cli();
if (some_condition)
{
sleep_enable();
sei();
sleep_cpul();
sleep_disable();
}

sei();

This sequence ensures an atomic test of some_condition with interrupts being disabled. If the condition is met,
sleep mode will be prepared, and the SLEEP instruction will be scheduled immediately after an SET instruction. As
the intruction right after the SET is guaranteed to be executed before an interrupt could trigger, it is sure the device will
really be put to sleep.

Some devices have the ability to disable the Brown Out Detector (BOD) before going to sleep. This will also reduce
power while sleeping. If the specific AVR device has this ability then an additional macro is defined: sleep_bod-
_disable (). This macro generates inlined assembly code that will correctly implement the timed sequence for

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.24 <avr/sleep.h>: Power Management and Sleep Modes 262

disabling the BOD before sleeping. However, there is a limited number of cycles after the BOD has been disabled that
the device can be put into sleep mode, otherwise the BOD will not truly be disabled. Recommended practice is to disable
the BOD (sleep_bod_disable ()), setthe interrupts (sei () ), and then put the device to sleep (s1leep_cpu () ),
like so:

#include <avr/interrupt.h>
#include <avr/sleep.h>

set_sleep_mode (<mode>) ;

cli();

if (some_condition)

{
sleep_enable();
sleep_bod_disable();
sei();
sleep_cpul();
sleep_disable () ;

}

sel();

22.24.2 Function Documentation

22.24.2.1 void sleep_cpu ( void )

Put the device into sleep mode. The SE bit must be set beforehand, and it is recommended to clear it afterwards.
22.24.2.2 void sleep_disable ( void )

Clear the SE (sleep enable) bit.

22.24.2.3 void sleep_enable ( void )

Put the device in sleep mode. How the device is brought out of sleep mode depends on the specific mode selected with
the set_sleep_mode() function. See the data sheet for your device for more details.

Set the SE (sleep enable) bit.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.25 <avr/version.h>: avr-libc version macros 263

22.25 <avr/version.h>: avr-libc version macros

Macros

« #define __AVR_LIBC_VERSION_STRING__ "1.8.0"
* #define __AVR_LIBC_VERSION__ 10800UL

« #define _ AVR_LIBC_DATE_STRING__ "20111228"
« #define _ AVR_LIBC_DATE_ 20111228UL

« #define _ AVR_LIBC_MAJOR__ 1

« #define __ AVR_LIBC_MINOR__ 8

+ #define __AVR_LIBC_REVISION__ 0

22.25.1 Detailed Description

#include <avr/version.h>

This header file defines macros that contain version numbers and strings describing the current version of avr-libc.

The version number itself basically consists of three pieces that are separated by a dot: the major number, the minor
number, and the revision number. For development versions (which use an odd minor number), the string representation
additionally gets the date code (YYYYMMDD) appended.

This file will also be included by <avr/io.h>. That way, portable tests can be implemented using <avr/io.h>
that can be used in code that wants to remain backwards-compatible to library versions prior to the date when the library
version APl had been added, as referenced but undefined C preprocessor macros automatically evaluate to 0.

22.25.2 Macro Definition Documentation

22.25.2.1 #define __AVR_LIBC_DATE_20111228UL
Numerical representation of the release date.
22.25.2.2 #define __AVR_LIBC_DATE_STRING_. "20111228”
String literal representation of the release date.
22.25.2.3 #define __AVR_LIBC_MAJOR__ 1

Library major version number.

22.25.2.4 #define __AVR_LIBC_MINOR__8

Library minor version number.

22.25.2.5 #define __AVR_LIBC_REVISION__0
Library revision number.

22.25.2.6 #define __AVR_LIBC_VERSION__ 10800UL

Numerical representation of the current library version.

In the numerical representation, the major number is multiplied by 10000, the minor number by 100, and all three parts
are then added. It is intented to provide a monotonically increasing numerical value that can easily be used in numerical
checks.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.25 <avr/version.h>: avr-libc version macros 264

22.25.2.7 #define __AVR_LIBC_VERSION_STRING__ "1.8.0”

String literal representation of the current library version.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.26 <avr/wdt.h>: Watchdog timer handling

265

22.26 <avr/wdt.h>: Watchdog timer handling

Macros

22.26.1

#define wdt_reset() __asm___

#define wdt_enable(value)
#define wdt_disable()
#define WDTO_15MS 0
#define WDTO_30MS 1
#define WDTO_60MS 2
#define WDTO_120MS 3
#define WDTO_250MS 4
#define WDTO_500MS 5
#define WDTO_1S 6
#define WDTO_2S 7
#define WDTO_4S 8
#define WDTO_8S 9

Detailed Description

#include <avr/wdt.h>

__volatile__ ("wdr")

This header file declares the interface to some inline macros handling the watchdog timer present in many AVR devices.
In order to prevent the watchdog timer configuration from being accidentally altered by a crashing application, a special
timed sequence is required in order to change it. The macros within this header file handle the required sequence

automatically before changing any value. Interrupts will be disabled during the manipulation.

Note

Depending on the fuse configuration of the particular device, further restrictions might apply, in particular it might

be disallowed to turn off the watchdog timer.

Note that for newer devices (ATmega88 and newer, effectively any AVR that has the option to also generate interrupts),
the watchdog timer remains active even after a system reset (except a power-on condition), using the fastest prescaler
value (approximately 15 ms). It is therefore required to turn off the watchdog early during program startup, the datasheet

recommends a sequence like the following:

#include <stdint.h>
#include <avr/wdt.h>

uint8_t mcusr_mirror __attribute_

void get_mcusr (void) \

__attribute_ ((naked)) \

__attribute_ ((section(".init3")));

void get_mcusr (void)

{

}

mcusr_mirror = MCUSR;
MCUSR = 0;
wdt_disable();

(".noinit")));

Saving the value of MCUSR in mcusr_mirror is only needed if the application later wants to examine the reset
source, but in particular, clearing the watchdog reset flag before disabling the watchdog is required, according to the
datasheet.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.26 <avr/wdt.h>: Watchdog timer handling 266

22.26.2 Macro Definition Documentation

22.26.2.1 #define wdt_disable( )

Value:

__asm__ _ volatile_ ( \
"in _ tmp_reg_, __ SREG__" "\n\t" \
"eli™ "\n\t" \
"out %0, 31" "\n\t" \
"out %0, __zero_reg__ " "\n\t" \
"out __SREG__,__tmp_reg__" "\n\t" \
: /% no outputs */ \
: "I" (_SFR_IO_ADDR (_WD_CONTROL_REG)), \
"r" ((uint8_t) (_BV(_WD_CHANGE_BIT) | _BV(WDE))) \
RPLLI

Disable the watchdog timer, if possible. This attempts to turn off the Enable bit in the watchdog control register. See the
datasheet for details.

22.26.2.2 #define wdt_enable( value )
Value:

asm__ __ volatile_  (

"in __tmp_reg_ ,_ SREG__" "\n\t" \
melin m\n\t"

mdrt \n\t" \

"out 20,%1" M\n\t" |\

"out __SREG__,__tmp_reg__" "\n\t" \

"out %0,%2" \
: /* no outputs */ \

: "I" (_SFR_IO_ADDR (_WD_CONTROL_REG)), \

"r" (_BV(_WD_CHANGE_BIT) _BV (WDE) ), \

"r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) | \
_BV(WDE) | (value & 0x07)) ) \

:ovron o\

Enable the watchdog timer, configuring it for expiry after t imeout (which is a combination of the WDP 0 through WDP 2
bits to write into the WDTCR register; For those devices that have a WDTCSR register, it uses the combination of the
WDP O through WDP 3 bits).

See also the symbolic constants WDTO_15MS et al.
22.26.2.3 #define wdt_reset( ) __asm__ _volatile__ ("wdr”)

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction is required before the timer
expires, otherwise a watchdog-initiated device reset will occur.

22.26.2.4 #define WDTO_120MS 3
See WDTO_15MS
22.26.2.5 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on a free-running RC oscillator, the
times are approximate only and apply to a supply voltage of 5 V. At lower supply voltages, the times will increase. For
older devices, the times will be as large as three times when operating at Vcc = 3 V, while the newer devices (e. g.
ATmega128, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s. (Some devices also allow for 4 s
and 8 s.) Symbolic constants are formed by the prefix WDTO_, followed by the time.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.26 <avr/wdt.h>: Watchdog timer handling 267

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable (WDTO_500MS) ;

22.26.2.6 #define WDTO_1S 6
See WDTO_15MS

22.26.2.7 #define WDTO_250MS 4
See WDTO_15MS

22.26.2.8 #define WDTO_2S 7
See WDTO_15MS

22.26.2.9 #define WDTO_30MS 1
See WDTO_15MS

22.26.2.10 #define WDTO 4S 8

See WDTO_15MS Note: This is only available on the ATtiny2313, ATtiny24, ATtiny44, ATtiny84, ATtiny84A, ATtiny25,
ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861, ATmega48, ATmega88, ATmega168, ATmega48P, ATmega88-
P, ATmega168P, ATmega328P, ATmega164P, ATmega324P, ATmega644P, ATmega644, ATmega640, ATmegai280,
ATmega1281, ATmega2560, ATmega2561, ATmega8HVA, ATmegal6HVA, ATmega26HVG, ATmega32HVB, A-
Tmegad06, ATmegad48HVF, ATmega1284P, ATmega256RFA2, ATmega256RFR2, ATmega128RFA2, ATmegal128R-
FR2, ATmega64RFA2, ATmega64RFR2, AT90OPWM1, AT90PWM2, AT90PWM2B, AT90PWM3, ATO0OPWM3B, AT90-
PWM216, AT90PWM316, ATOOPWM81, AT90PWM161, AT90USB82, AT90USB162, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287, ATtiny48, ATtiny88.

22.26.2.11 #define WDTO_500MS 5
See WDTO0_15MS

22.26.2.12 #define WDTO_60MS 2
WDTO_15MS

22.26.2.13 #define WDTO_8S 9

See WDTO_15MS Note: This is only available on the ATtiny2313, ATtiny24, ATtiny44, ATtiny84, ATtiny84A, ATtiny25, A-
Ttiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861, ATmega48, ATmega48A, ATmega48PA, ATmega88, ATmegai68,
ATmega48P, ATmega88P, ATmegal168P, ATmega328P, ATmega164P, ATmega324P, ATmega644P, ATmega644, A-
Tmega640, ATmega1280, ATmega1281, ATmega2560, ATmega2561, ATmega8HVA, ATmegal6HVA, ATmega26HV-
G, ATmega32HVB, ATmega406, ATmega48HVF, ATmega1284P, ATmega256RFA2, ATmega256RFR2, ATmegai28R-
FA2, ATmega128RFR2, ATmega64RFA2, ATmega64RFR2, AT90OPWM1, AT9OPWM2, AT90OPWM2B, AT90PWMS3, A-
T90PWM3B, AT90PWM216, AT90OPWM316, AT9OPWM81, ATO0PWM161, AT90USB82, AT90USB162, ATO0USB646,
AT90USB647, AT90USB1286, AT90USB1287, ATtiny48, ATtiny88, ATxmegal6a4u, ATxmega32a4u, ATxmegai6c4,
ATxmega32c4, ATxmega128c3, ATxmegai92c3, ATxmega256c¢3.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.27 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks

268

22.27 <util/atomic.h>> Atomically and Non-Atomically Executed Code Blocks

Macros

+ #define ATOMIC_BLOCK(type)

+ #define NONATOMIC_BLOCK(type)

+ #define ATOMIC_RESTORESTATE

+ #define ATOMIC_FORCEON

+ #define NONATOMIC_RESTORESTATE
+ #define NONATOMIC_FORCEOFF

22.27.1 Detailed Description

@code
#include <util/atomic.h>
\endcode

\note The macros in this header file require the ISO/IEC 9899:1999
("ISO C99") feature of for loop variables that are declared inside
the for loop itself. For that reason, this header file can only

be used if the standard level of the compiler (option &ndash;std=) is
set to either \c c99 or \c gnu99.

The macros in this header file deal with code blocks that are
guaranteed to be excuted Atomically or Non-Atmomically. The term
"Atomic" in this context refers to the unability of the respective
code to be interrupted.

These macros operate via automatic manipulation of the Global
Interrupt Status (I) bit of the SREG register. Exit paths from
both block types are all managed automatically without the need
for special considerations, i. e. the interrupt status will be
restored to the same value it has been when entering the
respective block.

A typical example that requires atomic access is a 16 (or more)
bit variable that is shared between the main execution path and an
ISR. While declaring such a variable as volatile ensures that the
compiler will not optimize accesses to it away, it does not
guarantee atomic access to it. Assuming the following example:

@code

#include <inttypes.h> #include <avr/interrupt.n> #include <avr/io.h>
volatile uint16_t ctr;
ISR(TIMER1_OVF_vect) { ctr--; }

... int main(void) { ... ctr = 0x200; start_timer(); while (ctr = 0) // wait ; ... }

There is a chance where the main context will exit its wait loop when the variable ct r just reached the value OxFF. This
happens because the compiler cannot natively access a 16-bit variable atomically in an 8-bit CPU. So the variable is for
example at 0x100, the compiler then tests the low byte for 0, which succeeds. It then proceeds to test the high byte, but
that moment the ISR triggers, and the main context is interrupted. The ISR will decrement the variable from 0x100 to
0xFF, and the main context proceeds. It now tests the high byte of the variable which is (now) also 0, so it concludes the

variable has reached 0, and terminates the loop.

Using the macros from this header file, the above code can be rewritten like:

#include <inttypes.h>
#include <avr/interrupt.h>

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.27 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 269

#include <avr/io.h>
#include <util/atomic.h>

volatile uintlé_t ctr;

ISR (TIMER1_OVF_vect)
{

ctr——;

}

int
main (void)

{

ctr = 0x200;
start_timer () ;
sei();

uintl6_t ctr_copy;
dc

{
ATOMIC_BLOCK (ATOMIC_FORCEON)
{
ctr_copy = ctr;
}
}
hil (ctr_copy !'= 0);

This will install the appropriate interrupt protection before accessing variable ct r, so it is guaranteed to be consistently
tested. If the global interrupt state were uncertain before entering the ATOMIC_BLOCK, it should be executed with the
parameter ATOMIC_RESTORESTATE rather than ATOMIC_FORCEON.

See Problems with reordering code for things to be taken into account with respect to compiler optimizations.

22.27.2 Macro Definition Documentation

22.27.2.1 #define ATOMIC_BLOCK( type )

Creates a block of code that is guaranteed to be executed atomically. Upon entering the block the Global Interrupt Status
flag in SREG is disabled, and re-enabled upon exiting the block from any exit path.

Two possible macro parameters are permitted, ATOMIC_RESTORESTATE and ATOMIC_FORCEON.
22.27.2.2 #define ATOMIC_FORCEON

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the ATOMIC_BLOCK to force the state of
the SREG register on exit, enabling the Global Interrupt Status flag bit. This saves on flash space as the previous value
of the SREG register does not need to be saved at the start of the block.

Care should be taken that ATOMIC_FORCEON is only used when it is known that interrupts are enabled before the
block’s execution or when the side effects of enabling global interrupts at the block’s completion are known and under-
stood.

22.27.2.3 #define ATOMIC_RESTORESTATE

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the ATOMIC_BLOCK to restore the previous
state of the SREG register, saved before the Global Interrupt Status flag bit was disabled. The net effect of this is to
make the ATOMIC_BLOCK's contents guaranteed atomic, without changing the state of the Global Interrupt Status flag
when execution of the block completes.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.27 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 270

22.27.2.4 #define NONATOMIC_BLOCK( type )

Creates a block of code that is executed non-atomically. Upon entering the block the Global Interrupt Status flag in
SREG is enabled, and disabled upon exiting the block from any exit path. This is useful when nested inside ATOMIC_-
BLOCK sections, allowing for non-atomic execution of small blocks of code while maintaining the atomic access of the
other sections of the parent ATOMIC_BLOCK.

Two possible macro parameters are permitted, NONATOMIC_RESTORESTATE and NONATOMIC_FORCEOFF.
22.27.25 #define NONATOMIC_FORCEOFF

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the NONATOMIC_BLOCK to force
the state of the SREG register on exit, disabling the Global Interrupt Status flag bit. This saves on flash space as the
previous value of the SREG register does not need to be saved at the start of the block.

Care should be taken that NONATOMIC_FORCEOFF is only used when it is known that interrupts are disabled before
the block’s execution or when the side effects of disabling global interrupts at the block’s completion are known and
understood.

22.27.2.6 #define NONATOMIC_RESTORESTATE

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the NONATOMIC_BLOCK to restore
the previous state of the SREG register, saved before the Global Interrupt Status flag bit was enabled. The net effect of
this is to make the NONATOMIC_BLOCK’s contents guaranteed non-atomic, without changing the state of the Global
Interrupt Status flag when execution of the block completes.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.28 <util/crc16.h>: CRC Computations 271

22.28 <utillcrc16.n>: CRC Computations

Functions

« static __inline__ uint16_t _crc16_update (uint16_t __ crc, uint8_t _ data)

« static __inline__ uint16_t _crc_xmodem_update (uint16_t _ crc, uint8_t __ data)
« static __inline__ uint16_t _crc_ccitt_update (uint16_t __ crc, uint8_t __ data)

« static __inline__ uint8_t _crc_ibutton_update (uint8_t __crc, uint8_t __data)

22.28.1 Detailed Description

#include <util/crclé6.h>

This header file provides a optimized inline functions for calculating cyclic redundancy checks (CRC) using common
polynomials.

References:

See the Dallas Semiconductor app note 27 for 8051 assembler example and general CRC optimization suggestions.
The table on the last page of the app note is the key to understanding these implementations.

Jack Crenshaw’s "Implementing CRCs" article in the January 1992 isue of Embedded Systems Programming. This may
be difficult to find, but it explains CRC’s in very clear and concise terms. Well worth the effort to obtain a copy.

A typical application would look like:

// Dallas iButton test vector.
uint8_t serno[] = { 0x02, Oxlc, 0xb8, 0x01, 0, 0, 0, Oxa2 };

int

checkcrc (void)

{

uint8_t crc = 0, 1i;
(i = 0; 1 < sizeof serno / sizeof serno[0]; i++)
crc = _crc_ibutton_update (crc, serno[i]);
return crc; // must be 0

22.28.2 Function Documentation

22.28.2.1 static __inline__uint16_t _crc16_update ( uint16_t __crc, uint8_t _data) [static]

Optimized CRC-16 calculation.

Polynomial: x*16 + x15 + x"2 + 1 (0xa001)

Initial value: Oxffff

This CRC is normally used in disk-drive controllers.

The following is the equivalent functionality written in C.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.28 <util/crc16.h>: CRC Computations 272

uintl6_t
crcl6_update (uintl6é6_t crc, uint8_t a)
{

int 1i;
crc "= a;
for (1 = 0; 1 < 8; ++1i)
{
- (crc & 1)
crc = (crc >> 1) ~ 0xA001;
else

crc = (crc >> 1);
}
retu crc;

22.28.2.2 static __inline__uint16_t _crc_ccitt_update ( uint16_t __crc, uint8_t __dafa) [static]

Optimized CRC-CCITT calculation.

Polynomial: x*16 + x12 + x5 + 1 (0x8408)
Initial value: Oxffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Note

Although the CCITT polynomial is the same as that used by the Xmodem protocol, they are quite different. The
difference is in how the bits are shifted through the alorgithm. Xmodem shifts the MSB of the CRC and the input
first, while CCITT shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

uintl6_t
crc_ccitt_update (uintl6_t crc, uint8_t data)

{

data 7= lo8 (crc);
data "= data << 4;

return ((((uintl6_t)data << 8) | hi8 (crc)) ~ (uint8_t) (

data >> 4)
~ ((uintlé6_t)data << 3));

22.28.2.3 static __inline__ uint8_t _crc_ibutton_update ( uint8_t __crc, uint8_t __data) [static]

Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
Polynomial: x*8 + x5 + x4 + 1 (0x8C)
Initial value: 0x0

See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

The following is the equivalent functionality written in C.

uint8_t

_crc_ibutton_update (uint8_t crc, uint8_t
data)

{

uint8_t 1i;

crc = crc * data;
f (1 = 0; 1 < 8; 1i++)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

22.28 <util/crc16.h>: CRC Computations 273

if (crc & 0x01)

crc = (crc >> 1) ~ 0x8C;
>1s

crc >>= 1;

re 1rn Crcy

22.28.2.4 static __inline__uint16_t _crc_xmodem_update ( uint16_t __crc, uint8_t _data) [static]

Optimized CRC-XMODEM calculation.

Polynomial: x*16 + x*12 + x5 + 1 (0x1021)

Initial value: 0x0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

uintl6_t
crc_xmodem_update (uintl6_t crc, uint8_t data)
{

int 1i;

crc = crc ~ ((uintl6_t)data << 8);
or (1i=0; 1<8; i++)

{
(crc & 0x8000)
crc = (crc << 1) ~ 0x1021;

crc <<= 1;

return crc;

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.29 <util/delay_basic.h>: Basic busy-wait delay loops 274

22.29 <util/delay_basic.h>: Basic busy-wait delay loops
Functions

» void _delay_loop_1 (uint8_t _ count)
» void _delay_loop_2 (uint16_t _ count)

22.29.1 Detailed Description

#include <util/delay_basic.h>

The functions in this header file implement simple delay loops that perform a busy-waiting. They are typically used to
facilitate short delays in the program execution. They are implemented as count-down loops with a well-known CPU
cycle count per loop iteration. As such, no other processing can occur simultaneously. It should be kept in mind that the
functions described here do not disable interrupts.

In general, for long delays, the use of hardware timers is much preferrable, as they free the CPU, and allow for concurrent
processing of other events while the timer is running. However, in particular for very short delays, the overhead of setting
up a hardware timer is too much compared to the overall delay time.

Two inline functions are provided for the actual delay algorithms.

22.29.2 Function Documentation

22.29.2.1 void _delay_loop_1 ( uint8_t __count )

Delay loop using an 8-bit counter ___count, so up to 256 iterations are possible. (The value 256 would have to be
passed as 0.) The loop executes three CPU cycles per iteration, not including the overhead the compiler needs to setup
the counter register.

Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds can be achieved.
22.29.2.2 void _delay_loop_2 ( uint16_t __count )

Delay loop using a 16-bit counter ___count, so up to 65536 iterations are possible. (The value 65536 would have to
be passed as 0.) The loop executes four CPU cycles per iteration, not including the overhead the compiler requires to
setup the counter register pair.

Thus, at a CPU speed of 1 MHz, delays of up to about 262.1 milliseconds can be achieved.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.30 <util/parity.h>: Parity bit generation 275

22,30 <util/parity.h>: Parity bit generation
Macros

« #define parity_even_bit(val)

22.30.1 Detailed Description

#include <util/parity.h>

This header file contains optimized assembler code to calculate the parity bit for a byte.

22.30.2 Macro Definition Documentation

22.30.2.1 #define parity_even_bit( val )

Value:

(__extension__ ({ \
unsigned char __t; \
__asm__ ( \

"mov __tmp_reg__,%0" "\n\t" \
l|Sanp %O" "\n\t" \
"eor %0,___tmp_reg__ " "\n\t" \
"mov __tmp_reg__ ,%0" "\n\t" \
"Isr %0" "\n\t" \
"Isr %0" "\n\t" \
"eor %0,__tmp_reg__ " \
) \
: "0" ((unsigned char) (val)) \
. wpQn \
)i \
(((t + 1) > 1) & 1); \
1))
Returns

1 if val has an odd number of bits set.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.31 <util/setbaud.h>: Helper macros for baud rate calculations 276

22.31 <util/setbaud.h>: Helper macros for baud rate calculations

Macros

« #define BAUD_TOL 2

« #define UBRR_VALUE
« #define UBRRL_VALUE
+ #define UBRRH_VALUE
* #define USE_2X 0

22.31.1 Detailed Description

ne F_CPU 11059200
ne BAUD 38400
#include <util/setbaud.h>

This header file requires that on entry values are already defined for F_CPU and BAUD. In addition, the macro BAUD_-
TOL will define the baud rate tolerance (in percent) that is acceptable during the calculations. The value of BAUD_TOL
will default to 2 %.

This header file defines macros suitable to setup the UART baud rate prescaler registers of an AVR. All calculations are
done using the C preprocessor. Including this header file causes no other side effects so it is possible to include this file
more than once (supposedly, with different values for the BAUD parameter), possibly even within the same function.

Assuming that the requested BAUD is valid for the given F_CPU then the macro UBRR_VALUE is set to the required
prescaler value. Two additional macros are provided for the low and high bytes of the prescaler, respectively: UBRRL_-
VALUE is set to the lower byte of the UBRR_VALUE and UBRRH_VALUE is set to the upper byte. An additional macro
USE_2X will be defined. Its value is set to 1 if the desired BAUD rate within the given tolerance could only be achieved
by setting the U2X bit in the UART configuration. It will be defined to 0 if U2X is not needed.

Example usage:

#include <avr/io.h>
#define F_CPU 4000000

static void

uart_9600 (void)

{

#define BAUD 9600
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;

#if USE_2X

UCSRA |= (1 << U2X);
#else

UCSRA &= ~ (1 << U2X);
#endif

}

static void
uart_38400 (void)
{

#undef BAUD // avoid compiler warning
> > BAUD 38400

#include <util/setbaud.h>

UBRRH = UBRRH_VALUE;

UBRRL = UBRRL_VALUE;

#if USE_2X

UCSRA |= (1 << U2X);

#else

UCSRA &= ~ (1 << U2X);

#endif

}

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.31 <util/setbaud.h>: Helper macros for baud rate calculations 277

In this example, two functions are defined to setup the UART to run at 9600 Bd, and 38400 Bd, respectively. Using a
CPU clock of 4 MHz, 9600 Bd can be achieved with an acceptable tolerance without setting U2X (prescaler 25), while
38400 Bd require U2X to be set (prescaler 12).

22.31.2 Macro Definition Documentation

22.31.2.1 #define BAUD_TOL 2

Input and output macro for <util/setbaud.h>

Define the acceptable baud rate tolerance in percent. If not set on entry, it will be set to its default value of 2.
22.31.2.2 #define UBRR_VALUE

Output macro from <util/setbaud.h>

Contains the calculated baud rate prescaler value for the UBRR register.
22.31.2.3 #define UBRRH_VALUE

Output macro from <util/setbaud.h>

Contains the upper byte of the calculated prescaler value (UBRR_VALUE).
22.31.2.4 #define UBRRL_VALUE

Output macro from <util/setbaud.h>

Contains the lower byte of the calculated prescaler value (UBRR_VALUE).
22.31.2.5 #define USE_2X 0

Output bacro from <util/setbaud.h>

Contains the value 1 if the desired baud rate tolerance could only be achieved by setting the U2X bit in the UART
configuration. Contains 0 otherwise.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.32 <util/twi.h>: TWI bit mask definitions 278

22.32 <util/twi.h>: TWI bit mask definitions
TWSR values

Mnemonics:

TW_MT_xxx - master transmitter
TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

- #define TW_START 0x08

- #define TW_REP_START 0x10

- #define TW_MT_SLA ACK 0x18

- #define TW_MT_SLA NACK 0x20

- #define TW_MT_DATA_ACK 0x28

- #define TW_MT_DATA_NACK 0x30

- #define TW_MT_ARB_LOST 0x38

- #define TW_MR_ARB_LOST 0x38

- #define TW_MR_SLA_ACK 0x40

- #define TW_MR_SLA_NACK 0x48

- #define TW_MR_DATA_ACK 0x50

- #define TW_MR_DATA_NACK 0x58

- #define TW_ST_SLA_ACK OxA8

- #define TW_ST_ARB_LOST SLA_ACK 0xB0
. #define TW_ST_DATA_ACK 0xBS8

- #define TW_ST_DATA_NACK 0xCO

. #define TW_ST_LAST DATA 0xC8

- #define TW_SR_SLA_ACK 0x60

- #define TW_SR_ARB_LOST SLA_ACK 0x68
- #define TW_SR_GCALL_ACK 0x70

- #define TW_SR_ARB_LOST GCALL_ACK 0x78
. #define TW_SR_DATA_ACK 0x80

- #define TW_SR_DATA_NACK 0x88

- #define TW_SR_GCALL_DATA ACK 0x90

- #define TW_SR_GCALL DATA NACK 0x98
- #define TW_SR_STOP 0xA0

- #define TW_NO_INFO 0xF8

« #define TW_BUS_ERROR 0x00

- #define TW_STATUS MASK

« #define TW_STATUS (TWSR & TW_STATUS_MASK)

R/~W bit in SLA+R/W address field.

* #define TW_READ 1
* #define TW_WRITE 0

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.32 <util/twi.h>: TWI bit mask definitions

279

22.32.1 Detailed Description

#include <util/twi.h>

This header file contains bit mask definitions for use with the AVR TWI interface.

22.32.2 Macro Definition Documentation

22.32.2.1 #define TW_BUS_ERROR 0x00
illegal start or stop condition

22.32.2.2 #define TW_MR_ARB_LOST 0x38
arbitration lost in SLA+R or NACK
22.32.2.3 #define TW_MR_DATA_ACK 0x50
data received, ACK returned

22.32.2.4 #define TW_MR_DATA_NACK 0x58
data received, NACK returned

22.32.25 #define TW_MR_SLA_ACK 0x40
SLA+R transmitted, ACK received
22.32.2.6 #define TW_MR_SLA_NACK 0x48
SLA+R transmitted, NACK received
22.32.2.7 #define TW_MT_ARB_LOST 0x38
arbitration lost in SLA+W or data
22.32.2.8 #define TW_MT_DATA_ACK 0x28
data transmitted, ACK received

22.32.2.9 #define TW_MT_DATA_NACK 0x30
data transmitted, NACK received
22.32.2.10 #define TW_MT_SLA_ACK 0x18
SLA+W transmitted, ACK received
22.32.2.11 #define TW_MT_SLA_NACK 0x20
SLA+W transmitted, NACK received
22.32.2.12 #define TW_NO_INFO 0xF8

no state information available

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.32 <util/twi.h>: TWI bit mask definitions

280

22.32.2.13 #define TW_READ 1
SLA+R address
22.32.2.14 #define TW_REP_START 0x10

repeated start condition transmitted

22.32.2.15 #define TW_SR_ARB_LOST_GCALL_ACK 0x78

arbitration lost in SLA+RW, general call received, ACK returned

22.32.2.16 #define TW_SR_ARB_LOST_SLA_ACK 0x68

arbitration lost in SLA+RW, SLA+W received, ACK returned

22.32.2.17 #define TW_SR_DATA_ACK 0x80

data received, ACK returned

22.32.2.18 #define TW_SR_DATA_NACK 0x88

data received, NACK returned

22.32.2.19 #define TW_SR_GCALL_ACK 0x70
general call received, ACK returned

22.32.2.20 #define TW_SR_GCALL _DATA_ACK 0x90
general call data received, ACK returned
22.32.2.21 #define TW_SR_GCALL_DATA _NACK 0x98
general call data received, NACK returned
22.32.2.22 #define TW_SR_SLA_ACK 0x60

SLA+W received, ACK returned

22.32.2.23 #define TW_SR_STOP 0xA0

stop or repeated start condition received while selected

22.32.2.24 #define TW_ST_ARB_LOST_SLA_ACK 0xB0

arbitration lost in SLA+RW, SLA+R received, ACK returned

22.32.2.25 #define TW_ST_DATA_ACK 0xB8
data transmitted, ACK received
22.32.2.26 #define TW_ST_DATA_NACK 0xC0

data transmitted, NACK received

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.32 <util/twi.h>: TWI bit mask definitions 281

22.32.2.27 #define TW_ST_LAST_DATA 0xC8

last data byte transmitted, ACK received

22.32.2.28 #define TW_ST_SLA_ACK 0xA8

SLA+R received, ACK returned

22.32.2.29 #define TW_START 0x08

start condition transmitted

22.32.2.30 #define TW_STATUS (TWSR & TW_STATUS_MASK)
TWSR, masked by TW_STATUS_MASK

22.32.2.31 #define TW_STATUS_MASK

Value:

(_BV(TWS7) | _BV (TWS6) | _BV (TWS5) |_BV (TWS4) |\
_BV(TWS3))

The lower 3 bits of TWSR are reserved on the ATmega163. The 2 LSB carry the prescaler bits on the newer ATmegas.

22.32.2.32 #define TW_WRITE 0

SLA+W address

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.33 <compat/deprecated.h>: Deprecated items 282

22.33 <compat/deprecated.h>: Deprecated items
Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to be enabled separately if interrupts
for this device are desired. While some devices maintain their interrupt enable bit inside the device’s register set, external
and timer interrupts have system-wide configuration registers.

Example:

// Enable timer 1 overflow interrupts.
timer_enable_int (_BV(TOIEl));

// Do some work...

// Disable all timer interrupts.
timer_enable_int (0);

Note

Be careful when you use these functions. If you already have a different interrupt enabled, you could inadvertantly
disable it by enabling another intterupt.

« static __inline__ void timer_enable_int (unsigned char ints)
« #define enable_external_int(mask) (__EICR = mask)

« #define INTERRUPT(signame)

+ #define __INTR_ATTRS used

Obsolete 10 macros

Back in a time when AVR-GCC and avr-libc could not handle 1O port access in the direct assignment form as they
are handled now, all IO port access had to be done through specific macros that eventually resulted in inline assembly
instructions performing the desired action.

These macros became obsolete, as reading and writing 10 ports can be done by simply using the 10 port name in
an expression, and all bit manipulation (including those on 10 ports) can be done using generic C bit manipulation
operators.

The macros in this group simulate the historical behaviour. While they are supposed to be applied to 10 ports, the
emulation actually uses standard C methods, so they could be applied to arbitrary memory locations as well.

« #define inp(port) (port)

« #define outp(val, port) (port) = (val)

« #define inb(port) (port)

+ #define outb(port, val) (port) = (val)

- #define sbi(port, bit) (port) |= (1 << (bit))

« #define cbi(port, bit) (port) &= ~(1 << (bit))

22.33.1 Detailed Description

This header file contains several items that used to be available in previous versions of this library, but have eventually
been deprecated over time.

#include <compat/deprecated.h>

These items are supplied within that header file for backward compatibility reasons only, so old source code that has
been written for previous library versions could easily be maintained until its end-of-life. Use of any of these items in
new code is strongly discouraged.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.33 <compat/deprecated.h>: Deprecated items 283

22.33.2 Macro Definition Documentation

22.33.2.1 #define cbi( port, bit ) (port) &= ~(1 << (bit))

Deprecated

Clear bit in IO port port.
22.33.2.2 #define enable_external_int( mask ) (__EICR = mask)

Deprecated

This macro gives access to the GIMSK register (or EIMSK register if using an AVR Mega device or GICR register for
others). Although this macro is essentially the same as assigning to the register, it does adapt slightly to the type of
device being used. This macro is unavailable if none of the registers listed above are defined.

22.33.2.3 #define inb( port ) (port)

Deprecated

Read a value from an 1O port port.
22.33.2.4 #define inp( port ) (port)

Deprecated

Read a value from an IO port port.
22.33.2.5 #define INTERRUPT( signame )
Value:

void signame (void) __attribute__ ((interrupt,__ INTR_ATTRS)); \
void signame (void)

Deprecated

Introduces an interrupt handler function that runs with global interrupts initially enabled. This allows interrupt handlers
to be interrupted.

As this macro has been used by too many unsuspecting people in the past, it has been deprecated, and will be removed
in a future version of the library. Users who want to legitimately re-enable interrupts in their interrupt handlers as quickly
as possible are encouraged to explicitly declare their handlers as described above.

22.33.2.6 #define outh( port, val ) (port) = (val)

Deprecated

Write val to IO port port.
22.33.2.7 #define outp( val, port ) (port) = (val)

Deprecated

Write val to IO port port.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.33 <compat/deprecated.h>: Deprecated items 284

22.33.2.8 #define shi( port, bit ) (port) |= (1 << (bit))

Deprecated

Setbit in 1O port port.

22.33.3 Function Documentation

22.33.3.1 static __inline__void timer_enable_int ( unsigned charints ) [static]

Deprecated

This function modifies the \c timsk register.
The value you pass via \c ints is device specific.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.34 <compat/ina90.h>: Compatibility with IAR EWB 3.x 285

22.34 <compat/ina90.h>: Compatibility with IAR EWB 3.x

#include <compat/ina90.h>

This is an attempt to provide some compatibility with header files that come with IAR C, to make porting applications
between different compilers easier. No 100% compatibility though.

Note

For actual documentation, please see the IAR manual.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.35 Demo projects 286

22.35 Demo projects

Modules

» Combining C and assembly source files

» A simple project

» A more sophisticated project

» Using the standard 10 facilities

+ Example using the two-wire interface (TWI)

22.35.1 Detailed Description

Various small demo projects are provided to illustrate several aspects of using the opensource utilities for the AVR
controller series. It should be kept in mind that these demos serve mainly educational purposes, and are normally
not directly suitable for use in any production environment. Usually, they have been kept as simple as sufficient to
demonstrate one particular feature.

The simple project is somewhat like the "Hello world!" application for a microcontroller, about the most simple project
that can be done. It is explained in good detalil, to allow the reader to understand the basic concepts behind using the
tools on an AVR microcontroller.

The more sophisticated demo project builds on top of that simple project, and adds some controls to it. It touches a
number of avr-libc’s basic concepts on its way.

A comprehensive example on using the standard 10 facilities intends to explain that complex topic, using a practical mi-
crocontroller peripheral setup with one RS-232 connection, and an HD44780-compatible industry-standard LCD display.

The Example using the two-wire interface (TWI) project explains the use of the two-wire hardware interface (also known
as "I2C") that is present on many AVR controllers.

Finally, the Combining C and assembly source files demo shows how C and assembly language source files can collab-
orate within one project. While the overall project is managed by a C program part for easy maintenance, time-critical
parts are written directly in manually optimized assembly language for shortest execution times possible. Naturally,
this kind of project is very closely tied to the hardware design, thus it is custom-tailored to a particular controller type
and peripheral setup. As an alternative to the assembly-language solution, this project also offers a C-only imple-
mentation (deploying the exact same peripheral setup) based on a more sophisticated (and thus more expensive) but
pin-compatible controller.

While the simple demo is meant to run on about any AVR setup possible where a LED could be connected to the
OCR1[A] output, the large and stdio demos are mainly targeted to the Atmel STK500 starter kit, and the TWI example
requires a controller where some 24Cxx two-wire EEPPROM can be connected to. For the STK500 demos, the default
CPU (either an AT90S8515 or an ATmega8515) should be removed from its socket, and the ATmega16 that ships with
the kit should be inserted into socket SCKT3100A3. The ATmega16 offers an on-board ADC that is used in the large
demo, and all AVRs with an ADC feature a different pinout than the industry-standard compatible devices.

In order to fully utilize the large demo, a female 10-pin header with cable, connecting to a 10 kOhm potentiometer will
be useful.

For the stdio demo, an industry-standard HD44780-compatible LCD display of at least 16x1 characters will be needed.
Among other things, the LCD4Linux project page describes many things around these displays, including common
pinouts.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://ssl.bulix.org/projects/lcd4linux/

22.36 Combining C and assembly source files 287

22.36 Combining C and assembly source files

For time- or space-critical applications, it can often be desirable to combine C code (for easy maintenance) and assembly
code (for maximal speed or minimal code size) together. This demo provides an example of how to do that.

The objective of the demo is to decode radio-controlled model PWM signals, and control an output PWM based on
the current input signal’'s value. The incoming PWM pulses follow a standard encoding scheme where a pulse width of
920 microseconds denotes one end of the scale (represented as 0 % pulse width on output), and 2120 microseconds
mark the other end (100 % output PWM). Normally, multiple channels would be encoded that way in subsequent pulses,
followed by a larger gap, so the entire frame will repeat each 14 through 20 ms, but this is ignored for the purpose of the
demo, so only a single input PWM channel is assumed.

The basic challenge is to use the cheapest controller available for the task, an ATtiny13 that has only a single timer
channel. As this timer channel is required to run the outgoing PWM signal generation, the incoming PWM decoding had
to be adjusted to the constraints set by the outgoing PWM.

As PWM generation toggles the counting direction of timer 0 between up and down after each 256 timer cycles, the
current time cannot be deduced by reading TCNTO only, but the current counting direction of the timer needs to be
considered as well. This requires servicing interrupts whenever the timer hits TOP (255) and BOTTOM (0) to learn
about each change of the counting direction. For PWM generation, it is usually desired to run it at the highest possible
speed so filtering the PWM frequency from the modulated output signal is made easy. Thus, the PWM timer runs at full
CPU speed. This causes the overflow and compare match interrupts to be triggered each 256 CPU clocks, so they must
run with the minimal number of processor cycles possible in order to not impose a too high CPU load by these interrupt
service routines. This is the main reason to implement the entire interrupt handling in fine-tuned assembly code rather
than in C.

In order to verify parts of the algorithm, and the underlying hardware, the demo has been set up in a way so the pin-
compatible but more expensive ATtiny45 (or its siblings ATtiny25 and ATtiny85) could be used as well. In that case, no
separate assembly code is required, as two timer channels are avaible.

22.36.1 Hardware setup
The incoming PWM pulse train is fed into PB4. It will generate a pin change interrupt there on eache edge of the
incoming signal.

The outgoing PWM is generated through OCOB of timer channel 0 (PB1). For demonstration purposes, a LED should
be connected to that pin (like, one of the LEDs of an STK500).

The controllers run on their internal calibrated RC oscillators, 1.2 MHz on the ATtiny13, and 1.0 MHz on the ATtiny45.

22.36.2 A code walkthrough

22.36.2.1 asmdemo.c

After the usual include files, two variables are defined. The first one, pwm_incoming is used to communicate the
most recent pulse width detected by the incoming PWM decoder up to the main loop.

The second variable actually only constitutes of a single bit, intbits.pwm_received. This bit will be set whenever
the incoming PWM decoder has updated pwm_incoming.

Both variables are marked volatile to ensure their readers will always pick up an updated value, as both variables will be
set by interrupt service routines.

The function 1ioinit () initializes the microcontroller peripheral devices. In particular, it starts timer 0 to generate the
outgoing PWM signal on OCOB. Setting OCROA to 255 (which is the TOP value of timer 0) is used to generate a timer
0 overflow A interrupt on the ATtiny13. This interrupt is used to inform the incoming PWM decoder that the counting
direction of channel 0 is just changing from up to down. Likewise, an overflow interrupt will be generated whenever

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.36 Combining C and assembly source files 288

the countdown reached BOTTOM (value 0), where the counter will again alter its counting direction to upwards. This
information is needed in order to know whether the current counter value of TCNTO is to be evaluated from bottom or
top.

Further, ioinit () activates the pin-change interrupt PCINTO on any edge of PB4. Finally, PB1 (OCOB) will be
activated as an output pin, and global interrupts are being enabled.

In the ATtiny45 setup, the C code contains an ISR for PCINTO. At each pin-change interrupt, it will first be analyzed
whether the interrupt was caused by a rising or a falling edge. In case of the rising edge, timer 1 will be started with a
prescaler of 16 after clearing the current timer value. Then, at the falling edge, the current timer value will be recorded
(and timer 1 stopped), the pin-change interrupt will be suspended, and the upper layer will be notified that the incoming
PWM measurement data is available.

Function main () first initializes the hardware by calling ioinit (), and then waits until some incoming PWM value
is available. If it is, the output PWM will be adjusted by computing the relative value of the incoming PWM. Finally, the
pin-change interrupt is re-enabled, and the CPU is put to sleep.

22.36.2.2 project.h

In order for the interrupt service routines to be as fast as possible, some of the CPU registers are set aside completely
for use by these routines, so the compiler would not use them for C code. This is arranged for in project . h.

The file is divided into one section that will be used by the assembly source code, and another one to be used by C
code. The assembly part is distinguished by the preprocessing macro ASSEMBLER (which will be automatically set by
the compiler front-end when preprocessing an assembly-language file), and it contains just macros that give symbolic
names to a number of CPU registers. The preprocessor will then replace the symbolic names by their right-hand side
definitions before calling the assembler.

In C code, the compiler needs to see variable declarations for these objects. This is done by using declarations that
bind a variable permanently to a CPU register (see fag_regbind). Even in case the C code never has a need to access
these variables, declaring the register binding that way causes the compiler to not use these registers in C code at all.

The flags variable needs to be in the range of r16 through r31 as it is the target of a load immediate (or SER)
instruction that is not applicable to the entire register file.

22.36.2.3 isrs.S

This file is a preprocessed assembly source file. The C preprocessor will be run by the compiler front-end first, resolving
all #include, #define etc. directives. The resulting program text will then be passed on to the assembler.

As the C preprocessor strips all C-style comments, preprocessed assembly source files can have both, C-style (/x
x/,// ...)aswell as assembly-style (; ...)comments.

At the top, the 10 register definition file avr/io.h and the project declaration file project .h are included. The
remainder of the file is conditionally assembled only if the target MCU type is an ATtiny13, so it will be completely
ignored for the ATtiny45 option.

Next are the two interrupt service routines for timer 0 compare A match (timer 0 hits TOP, as OCROA is set to 255) and
timer 0 overflow (timer 0 hits BOTTOM). As discussed above, these are kept as short as possible. They only save SREG
(as the flags will be modified by the INC instruction), increment the counter_hi variable which forms the high part
of the current time counter (the low part is formed by querying TCNTO directly), and clear or set the variable f1ags,
respectively, in order to note the current counting direction. The RETI instruction terminates these interrupt service
routines. Total cycle count is 8 CPU cycles, so together with the 4 CPU cycles needed for interrupt setup, and the 2
cycles for the RIMP from the interrupt vector to the handler, these routines will require 14 out of each 256 CPU cycles,
or about 5 % of the overall CPU time.

The pin-change interrupt PCINTO will be handled in the final part of this file. The basic algorithm is to quickly eval-
uate the current system time by fetching the current timer value of TCNTO, and combining it with the overflow part
in counter_hi. If the counter is currently counting down rather than up, the value fetched from TCNTO must be
negated. Finally, if this pin-change interrupt was triggered by a rising edge, the time computed will be recorded as the

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.36 Combining C and assembly source files 289

start time only. Then, at the falling edge, this start time will be subracted from the current time to compute the actual
pulse width seen (left in pwm_incoming), and the upper layers are informed of the new value by setting bit 0 in the
intbits flags. At the same time, this pin-change interrupt will be disabled so no new measurement can be performed
until the upper layer had a chance to process the current value.

22.36.3 The source code

The source code is installed under
Sprefix/share/doc/avr-libc/examples/asmdemo/,

where $Sprefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 290

22.37 A simple project

At this point, you should have the GNU tools configured, built, and installed on your system. In this chapter, we present
a simple example of using the GNU tools in an AVR project. After reading this chapter, you should have a better feel as
to how the tools are used and how a Makefile can be configured.

22.37.1 The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off every two seconds. An AT90S2313
processor will be used as the controller. The circuit for this demonstration is shown in the schematic diagram. If you
have a development kit, you should be able to use it, rather than build the circuit, for this project.

Note

Meanwhile, the AT90S2313 became obsolete. Either use its successor, the (pin-compatible) ATtiny2313 for the
project, or perhaps the ATmega8 or one of its successors (ATmega48/88/168) which have become quite popular
since the original demo project had been established. For all these more modern devices, it is no longer necessary
to use an external crystal for clocking as they ship with the internal 1 MHz oscillator enabled, so C1, C2, and Q1
can be omitted. Normally, for this experiment, the external circuitry on /RESET (R1, C3) can be omitted as well,
leaving only the AVR, the LED, the bypass capacitor C4, and perhaps R2. For the ATmega8/48/88/168, use PB1
(pin 15 at the DIP-28 package) to connect the LED to. Additionally, this demo has been ported to many different
other AVRs. The location of the respective OC pin varies between different AVRs, and it is mandated by the AVR
hardware.

I CL

RL . ( SCK) PB7
< N RESET (M so) PB6
a @2 £ (MOSI ) PB5
(@

%l |—00"—A; XTAL2 PB4

18pf &2 (oc) PB3
XTAL1 PE2

% LED5MM
R2 DL

See note [8] A

18pf 20|y (Al NL) PBL
10 o (AIND)PEO

oD (T1) PD5

(TO) PD4

(I NT1) PD3

(1 NTO) PD2

( TXD) PDL

( RXD) PDO
AT90S2313P

3 fé (1 CP) PD6
G\D

PEPRPEE KEEBEREE

Figure 5: Schematic of circuit for demo project

The source code is given in demo.c. For the sake of this example, create a file called demo . ¢ containing this source
code. Some of the more important parts of the code are:

Note [1]:

As the AVR microcontroller series has been developed during the past years, new features have been added over
time. Even though the basic concepts of the timer/counter1 are still the same as they used to be back in early 2001
when this simple demo was written initially, the names of registers and bits have been changed slightly to reflect
the new features. Also, the port and pin mapping of the output compare match 1A (or 1 for older devices) pin which
is used to control the LED varies between different AVRs. The file iocompat . h tries to abstract between all this
differences using some preprocessor #1ifdef statements, so the actual program itself can operate on a common
set of symbolic names. The macros defined by that file are:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 291

* OCR the name of the OCR register used to control the PWM (usually either OCR1 or OCR1A)
* DDROC the name of the DDR (data direction register) for the OC output
* OC1 the pin number of the OC1[A] output within its port

 TIMER1_TOP the TOP value of the timer used for the PWM (1023 for 10-bit PWMs, 255 for devices that can
only handle an 8-bit PWM)

« TIMER1_PWM_INIT the initialization bits to be set into control register 1A in order to setup 10-bit (or 8-bit)
phase and frequency correct PWM mode

« TIMER1_CLOCKSOURCE the clock bits to set in the respective control register to start the PWM timer; usually
the timer runs at full CPU clock for 10-bit PWMs, while it runs on a prescaled clock for 8-bit PWMs

Note [2]:

ISR() is a macro that marks the function as an interrupt routine. In this case, the function will get called when timer
1 overflows. Setting up interrupts is explained in greater detail in <avr/interrupt.h>: Interrupts.

Note [3]:

The PWM is being used in 10-bit mode, so we need a 16-bit variable to remember the current value.
Note [4]:

This section determines the new value of the PWM.
Note [5]:

Here’s where the newly computed value is loaded into the PWM register. Since we are in an interrupt routine, it is safe
to use a 16-bit assignment to the register. Outside of an interrupt, the assignment should only be performed with
interrupts disabled if there’s a chance that an interrupt routine could also access this register (or another register
that uses TEMP), see the appropriate FAQ entry.

Note [6]:

This routine gets called after a reset. It initializes the PWM and enables interrupts.

Note [7]:

The main loop of the program does nothing — all the work is done by the interrupt routine! The sleep_mode ()
puts the processor on sleep until the next interrupt, to conserve power. Of course, that probably won’t be noticable
as we are still driving a LED, it is merely mentioned here to demonstrate the basic principle.

Note [8]:

Early AVR devices saturate their outputs at rather low currents when sourcing current, so the LED can be connected
directly, the resulting current through the LED will be about 15 mA. For modern parts (at least for the ATmega 128),
however Atmel has drastically increased the 10 source capability, so when operating at 5 V Vcc, R2 is needed. lts
value should be about 150 Ohms. When operating the circuit at 3 V, it can still be omitted though.

22.37.2 The Source Code

*

"THE BEER-WARE LICENSE" (Revision 42):

<joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
can do whatever you want with this stuff. If we meet some day, and you think
this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

PR

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

292

*

Simple AVR demonstration.
connected from OC1/0ClA to
controlled with the PWM.

$Id: demo.c 1637 2008-03-1

R A

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#include "iocompat.h"
enum { UP, DOWN };
ISR (TIMER1_OVF_vect)
{
static uintl6_t pwm;

static uint8_t direction;

ch (direction)

> UP:

Controls a LED that can be directly
GND. The brightness of the LED is

After each period of the PWM,
value is either incremented or decremented, that’s all.

7 21:49:412 joerg_wunsch $

/* Note [1] =/

/+ Note [2] */

/x Note [3] */

/* Note [4] «/

1T (++pwm == TIMERI1_TOP)

direction = DOWN;

break;

e DOWN:
1f (——pwm == 0)

direction = UP;

preaky;

OCR = pwm;

void
ioinit (void)
{
/+ Timer 1 is 10-bit PWM
TCCR1A = TIMER1_PWM_INIT;
/*
« Start timer 1.
*

/% Note [5] =/

/+ Note [6] */

(8-bit PWM on some ATtinys).

the PWM

*/

* NB: TCCR1A and TCCR1B could actually be the same register,

* take care to not clobber it.
x/
TCCR1B |= TIMER1_CLOCKSOURCE;
/*

* Run any device-dependent timer 1 setup hook if present.

*/

#if defined(TIMER1_SETUP_HOOK)

TIMER1_SETUP_HOOK () ;
#endif

/% Set PWM value to 0. =/
OCR = 0;

/+ Enable OCl as output.
DDROC = _BV (OC1);

*/

/* Enable timer 1 overflow interrupt. =*/

TIMSK = _BV (TOIEL);
sei ();

int
main (void)
{
ioinit ();
/+ loop forever, the inte

for (;7)
sleep_mode () ;

rrupts are doing the rest =/

/* Note [7] x/

SO

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 293

22.37.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the compiler needs to know the processor
type so the -mmcu option is specified. The —Os option will tell the compiler to optimize the code for efficient space
usage (at the possible expense of code execution speed). The —g is used to embed debug info. The debug info is useful
for disassemblies and doesn’t end up in the .hex files, so | usually specify it. Finally, the —c tells the compiler to compile
and stop —don’t link. This demo is small enough that we could compile and link in one step. However, real-world projects
will have several modules and will typically need to break up the building of the project into several compiles and one
link.

$ avr-gcc -g -0Os -mmcu=atmega8 -c demo.c

The compilation will create a demo . o file. Next we link it into a binary called demo .elf.

$ avr-gcc —-g -mmcu=atmega8 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses the —mmcu option to choose start-up files
and run-time libraries that get linked together. If this option isn’t specified, the compiler defaults to the 8515 processor
environment, which is most certainly what you didn’t want.

22.37.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the processor?) The GNU Binutils suite
is made up of many useful tools for manipulating object files that get generated. One tool is avr—ob jdump, which
takes information from the object file and displays it in many useful ways. Typing the command by itself will cause it to
list out its options.

For instance, to get a feel of the application’s size, the —h option can be used. The output of this option shows how
much space is used in each of the sections (the .stab and .stabstr sections hold the debugging information and won’t
make it into the ROM file).

An even more useful option is —S. This option disassembles the binary file and intersperses the source code in the
output! This method is much better, in my opinion, than using the —S with the compiler because this listing includes
routines from the libraries and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words, the
listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.lst

Here’s the output as saved in the demo . 1st file:

demo.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000000e0 00000000 00000000 00000094 2%x1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .data 00000000 00800060 000000e0 00000174 2%%0
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000003 00800060 00800060 00000174 2x%x0
ALLOC

3 .debug_aranges 00000068 00000000 00000000 00000178 2%x3
CONTENTS, READONLY, DEBUGGING

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

294

4 .debug_info 000002d6 00000000 00000000 000001e0 2%x0
CONTENTS, READONLY, DEBUGGING

5 .debug_abbrev 000000£9 00000000 00000000 000004b6 2xx%0
CONTENTS, READONLY, DEBUGGING

6 .debug_line 000001dc 00000000 00000000 000005af 2%x0
CONTENTS, READONLY, DEBUGGING

7 .debug_frame 00000060 00000000 00000000 0000078c 2x=*2
CONTENTS, READONLY, DEBUGGING

8 .debug_str 000000cc 00000000 00000000 000007ec 20
CONTENTS, READONLY, DEBUGGING
9 .debug_loc 00000056 00000000 00000000 000008b8 2x*0

CONTENTS, READONLY, DEBUGGING
10 .debug_ranges 00000018 00000000 00000000 0000090e 2x%0
CONTENTS, READONLY, DEBUGGING

Disassembly of section .text:

00000000 <__ctors_end>:
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, rl7

brne .L__do_copy_data_loop

#elif !defined(___AVR_HAVE_ELPMX_ ) && !defined(___AVR_HAVE_ELPM_ )
1di rl7, hi8(__data_end)

0: 10 e0 1di r17, 0x00 ; O
1di r26, lo8(__data_start)

2: a0 eb6 1di r26, 0x60 ; 96
1di r27, hi8(__data_start)

4: b0 e0 1di r27, 0x00 ; O
1di r30, lo8(__data_locad_start)

6: el ee 1di r30, OxEOQ ; 224
1di r31, hi8(__data_load_start)

8: f0 e0 1di r31, 0x00 ; O
rijmp .L__do_copy_data_start

a: 02 cO rjmp .+4 ; 0x10 <__zero_reg__ +0xf>
.L__do_copy_data_loop:
#1if defined (__AVR_HAVE_LPMX_ )
lpm r0, Z+

c: 05 90 lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
st X+, r0

e: 0d 92 st X+, r0

.L__do_copy_data_start:
cpi r26, lo8(__data_end)

10: a0 36 cpi r26, 0x60 ; 96
cpc r27, rl7
12: bl 07 cpc r27, rl7
brne .L__do_copy_data_loop
14: d9 f7 brne .-10 ; Oxc <__zero_reg__+0xb>

00000016 <__do_clear_lbss>:

#ifdef IL_clear_bss

.section .init4, "ax",@progbits
.global __do_clear_bss
__do_clear_bss:

1di rl1l7, hi8(_bss_end)

16: 10 e0 1di r17, 0x00 ; O
1di r26, 1lo8(__bss_start)
18: a0 e6 1di r26, 0x60 ; 96
1di r27, hi8(__bss_start)
la: b0 €0 1di r27, 0x00 ; O
rijmp .do_clear_bss_start
lc: 01 cO rjmp .+2 ; 0x20 <.do_clear_bss_start>

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 295

0000001le <.do_clear_bss_loop>:
.do_clear_bss_loop:
st X+, __zero_reg___

le: 1d 92 st X+, rl

00000020 <.do_clear_bss_start>:
.do_clear_bss_start:
cpi r26, lo8(__bss_end)

20: a3 36 cpi r26, 0x63 ; 99
cpc r27, rl7
22: bl 07 cpc r27, rl7
brne .do_clear_bss_loop
24: el f7 brne .-8 ; Oxle <.do_clear_bss_loop>

00000026 <__vector_8>:
#include "iocompat.h" /% Note [1] =/

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /x Note [2] =/
{

26: 1f 92 push rl

28: 0f 92 push r0

2a: 0f bo in r0, 0x3f ; 63
2c: 0f 92 push r0

2e: 11 24 eor rl, rl

30: 2f 93 push rl8

32: 8f 93 push r24

34: 9f 93 push r25

static uintl6_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /% Note [4] =/
36: 80 91 60 00 1ds r24, 0x0060

3a: 88 23 and r24, r24
3c: b9 f4 brne .+46 ; Ox6c <__SREG__+0x2d>
{
case UP:
if (++pwm == TIMER1_TOP)

3e: 80 91 61 00 1ds r24, 0x0061
42: 90 91 62 00 1lds r25, 0x0062
46: 01 96 adiw r24, 0x01 ; 1
48: 90 93 62 00 sts 0x0062, r25
4c: 80 93 61 00 sts 0x0061, r24

50: 23 e0 1di r18, 0x03 ; 3

52: 8f 3f cpi r24, OxFF ; 255

54: 92 07 cpc r25, rl8

56: £f9 fO breq .+62 ; 0x96 <__SREG__+0x57>

if (-—pwm == 0)
direction = UP;
break;

OCR = pwm; /* Note [5] */

58: 9b bd out 0x2b, r25 ; 43
5a: 8a bd out 0x2a, r24 ; 42
}

5c: 9f 91 pop r25

Se: 8f 91 pop r24

60: 2f 91 pop rl8

62: 0f 90 pop r0

64: 0f be out 0x3f, r0 ; 63
66: 0f 90 pop r0

68: 1f 90 pop rl

6a: 18 95 reti

ISR (TIMER1_OVF_vect) /= Note [2] x/

{
static uintl6_t pwm; /* Note [3] */

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

296

static uint8_t direction;

switch (direction) /% Note [4] =/
6c: 81 30 cpi r24, 0x01 ; 1

6e: 29 fO breq .+10 ; 0x7a <__SREG__+0x3b>

70: 80 91 61 00 1ds r24, 0x0061
74: 90 91 62 00 1lds r25, 0x0062

78: ef cf rjmp .-34 ; 0x58 <__ SREG__+0x19>
if (++pwm == TIMER1_TOP)
direction = DOWN;
break;
case DOWN:

if (-—pwm == 0)
7a: 80 91 61 00 1ds r24, 0x0061
7e: 90 91 62 00 1lds r25, 0x0062
82: 01 97 sbiw r24, 0x01 ; 1
84: 90 93 62 00 sts 0x0062, r25
88: 80 93 61 00 sts 0x0061, r24
8c: 00 97 sbiw r24, 0x00 ; O

8e: 21 f7 brne .-56 ; 0x58 <_ SREG__+0x19>

direction = UP;
90: 10 92 60 00 sts 0x0060, rl

94: el cf rjmp .-62 ; 0x58 <__ SREG__+0x19>

switch (direction) /=% Note [4] =/
{

case UP:
if (++pwm == TIMER1_TOP)
direction = DOWN;
96: 21 e0 1di r18, 0x01 ; 1

98: 20 93 60 00 sts 0x0060, rl8

9c: dd cf rjmp .-70 ; 0x58 <__ _SREG___+0x19>

0000009e <ioinit>:

void
ioinit (void) /x Note [6] x/
{

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys).

TCCR1A = TIMER1_PWM_INIT;
9e: 83 e8 1di r24, 0x83 ; 131
a0: 8f bd out 0x2f, r24 ; 47
* Start timer 1.

*

* NB: TCCR1A and TCCR1B could actually be the same register,

* take care to not clobber it.

*/
TCCR1B |= TIMER1_CLOCKSOURCE;
a2: 8e b5 in r24, 0x2e ; 46
ad: 81 60 ori r24, 0x01 ; 1
a6: 8e bd out 0x2e, r24 ; 46

#if defined (TIMERI1_SETUP_HOOK)
TIMER1_SETUP_HOOK () ;
#endif

/+ Set PWM value to 0. x/

OCR = 0;
ag8: 1lb bc out 0x2b, rl ; 43
aa: la bc out Ox2a, rl ; 42

/* Enable OCl as output. =*/

DDROC = _BV (OC1l);
ac: 82 e0 1di r24, 0x02 ; 2
ae: 87 bb out 0x17, r24 ; 23

/+ Enable timer 1 overflow interrupt.

TIMSK = _BV (TOIEl);

*/

*/

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

297

b0: 84 e0 1di r24, 0x04 ; 4
b2: 89 bf out 0x39, r24 ; 57
sei ();
b4: 78 94 sei
}
b6: 08 95 ret

000000b8 <main>:

void
ioinit (void) /x Note [6] x/
{

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys) .

TCCR1A = TIMER1_PWM_INIT;

b8: 83 e8 1di r24, 0x83 ; 131
ba: 8f bd out 0x2f, r24 ; 47
* Start timer 1.
*
*

* take care to not clobber it.

*/
TCCR1B |= TIMER1_CLOCKSOURCE;
bc: 8e b5 in r24, 0x2e ; 46
be: 81 60 ori r24, 0x01 ; 1
cO: 8e bd out 0x2e, r24 ; 46

#if defined (TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOK () ;
#endif

/* Set PWM value to 0. %/

OCR = 0;
c2: 1lb bc out 0x2b, rl ; 43
cd: la bc out 0x2a, rl ; 42

/+ Enable OCl as output. =/

DDROC = _BV (OC1l);
c6: 82 e0 1di r24, 0x02 ; 2
c8: 87 bb out 0x17, r24 ; 23

/* Enable timer 1 overflow interrupt. =/

TIMSK = _BV (TOIE1l);
ca: 84 e0 1di r24, 0x04 ; 4
cc: 89 bf out 0x39, r24 ; 57
seli ();
ce: 78 94 sei
ioinit ();

/+ loop forever, the interrupts are doing the rest x/

for (;;) /* Note [7] =/
sleep_mode () ;

do: 85 b7 in r24, 0x35 ; 53

d2: 80 68 ori r24, 0x80 ; 128

dd: 85 bf out 0x35, r24 ; 53

dé6: 88 95 sleep

d8: 85 b7 in r24, 0x35 ; 53

da: 8f 77 andi r24, 0x7F ; 127

dc: 85 bf out 0x35, r24 ; 53

de: £8 cf rijmp .-16 ; 0xd0 <main+0x18>

22.37.5 Linker Map Files

*/

NB: TCCR1A and TCCR1B could actually be the same register,

SO

avr-objdump is very useful, but sometimes it's necessary to see information about the link that can only be generated
by the linker. A map file contains this information. A map file is useful for monitoring the sizes of your code and data.
It also shows where modules are loaded and which modules were loaded from libraries. It is yet another view of your

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

298

application. To get a map file, | usually add —W1, -Map, demo .map to my link command. Relink the application using
the following command to generate demo . map (a portion of which is shown below).

$ avr-gcc -g -mmcu=atmega8 -Wl,-Map,demo.map -o demo.elf demo.o

Some points of interest in the demo . map file are:

.rela.plt
*(.rela.plt)

.text 0x0000000000000000
* (.vectors)
* (.vectors)
* (.progmem.gccx)
* (.progmemx)
0x0000000000000000
0x0000000000000000
* (.trampolines)
.trampolines 0x0000000000000000
* (.trampolinesx)

0x0000000000000000
* (.jumptables)
* (.Jjumptablesx)
* (.lowtext)
* (.lowtextx)
0x0000000000000000

0xe0

= ALIGN (0x2)
__trampolines_start =

0x0 linker stubs

__trampolines_end =

__ctors_start =

The .text segment (where program instructions are stored) starts at location 0x0.

*(.fini2)
% (.£fini2)
*(.finil)

*(.finil)
*(.£ini0)

*(.fini0)
0x00000000000000e0
.data 0x0000000000800060
0x0000000000800060
* (.data)
.data 0x0000000000800060
.data 0x0000000000800060

_etext =

0x0 load address 0x00000000000000e0
PROVIDE (__data_start, .)

0x0 demo.o
0x0 /home/tools/hudson/workspace/avr8

-gnu-toolchain/avr8-gnu-toolchain-linux_x86_64/1lib/gcc/avr/4.6.2/avrd/libgcc.a (

_copy_data.o)
.data 0x0000000000800060

0x0 /home/tools/hudson/workspace/avr8

—gnu-toolchain/avr8-gnu-toolchain-linux_x86_64/1ib/gcc/avr/4.6.2/avrd/libgcc.a(

_clear_Dbss.o)

* (.datax)

* (.rodata)

* (.rodatax)

* (.gnu.linkonce.dx)
0x0000000000800060
0x0000000000800060
0x0000000000800060

.bss 0x0000000000800060
0x0000000000800060

* (.bss)

.bss 0x0000000000800060

.bss 0x0000000000800063

= ALIGN (0x2)

_edata =

PROVIDE (__data_end, .)
0x3

PROVIDE (__bss_start, .)

0x3 demo.o
0x0 /home/tools/hudson/workspace/avr8

—gnu-toolchain/avr8-gnu-toolchain-linux_x86_64/1ib/gcc/avr/4.6.2/avrd/libgcc.a(

_copy_data.o)
.bss 0x0000000000800063

0x0 /home/tools/hudson/workspace/avr8

—gnu-toolchain/avr8—-gnu-toolchain-linux_x86_64/1lib/gcc/avr/4.6.2/avrd/libgcc.a (

_clear_bss.o)

* (.bssx)
* (COMMON)
0x0000000000800063
0x00000000000000e0
(.data)
0x00000000000000e0

_ data_load_start + SIZEOF (.data))

.noinit 0x0000000000800063

PROVIDE (__bss_end, .)
_ _data_load_start = LOADADDR

__data_load_end = (

0x0

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 299

0x0000000000800063 PROVIDE (__noinit_start, .)
* (.noinit«)
0x0000000000800063 PROVIDE (__noinit_end, .)
0x0000000000800063 _end = .
0x0000000000800063 PROVIDE (__heap_start, .)
.eeprom 0x0000000000810000 0x0
* (.eepromx)
0x0000000000810000 __eeprom_end =

The last address in the .text segment is location 0x114 ( denoted by _etext ), so the instructions use up 276 bytes
of FLASH.

The .data segment (where initialized static variables are stored) starts at location 0x60, which is the first address after
the register bank on an ATmega8 processor.

The next available address in the .data segment is also location 0x 60, so the application has no initialized data.
The .bss segment (where uninitialized data is stored) starts at location 0x60.

The next available address in the .bss segment is location 0x63, so the application uses 3 bytes of uninitialized data.
The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t any EEPROM variables.

22.37.6 Generating Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if not all) programmers will not
accept a GNU executable as an input file, so we need to do a little more processing. The next step is to extract portions
of the binary and save the information into .hex files. The GNU utility that does this is called avr—-objcopy.

The ROM contents can be pulled from our project’s binary and put into the file demo.hex using the following command:

$ avr-objcopy -3j .text —-j .data -O ihex demo.elf demo.hex

The resulting demo . hex file contains:

:1000000010E0AOE6BOEOEOEEFOE002C005900D9256
:10001000A036B107D9F710EOAQOE6BOEO01CO01D920C
:10002000A336B107E1F71F920F920FB60F9211247A
:100030002F938F939F93809160008823B9F48091D0
:10004000610090916200019690936200809361003C
:1000500023E08F3F9207F9F09BBD8ABDIF918F915E
:100060002F910F900FBEOF901F901895813029F09F
:100070008091610090916200EFCF8091610090913A
:10008000620001979093620080936100009721F7CE
:1000900010926000E1CF21E020936000DDCF83E883
:1000A0008FBD8EB581608EBD1BBCIABC82E087BB44
:1000BO0084E089BF7894089583E88FBD8EBS5816010
:1000CO008EBD1BBC1ABC82E087BB84E089BEF7894DC
:1000D00085B7806885BF889585B78F7785BFF8CF4E
:00000001FF

The —3j option indicates that we want the information from the .text and .data segment extracted. If we specify the
EEPROM segment, we can generate a .hex file that can be used to program the EEPROM:

$ avr-objcopy -7j .eeprom —--change-section-lma .eeprom=0 -O ihex demo.elf demo_eeprom.hex

There is no demo_eeprom. hex file written, as that file would be empty.

Starting with version 2.17 of the GNU binutils, the avr—ob jcopy command that used to generate the empty EEPROM
files now aborts because of the empty input section .eeprom, so these empty files are not generated. It also signals an
error to the Makefile which will be caught there, and makes it print a message about the empty file not being generated.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 300

22.37.7 Letting Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file. To build the demo project using
make, save the following in a file called Makefile.

Note

This Makefile can only be used as input for the GNU version of make.
PRG = demo
OBJ = demo.o
#MCU_TARGET = at90s2313
#MCU_TARGET = at90s2333
#MCU_TARGET = at90s4414
#MCU_TARGET = at90s4433
#MCU_TARGET = at90s4434
#MCU_TARGET = at90s8515
#MCU_TARGET = at90s8535
#MCU_TARGET = atmegal28
#MCU_TARGET = atmegal280
#MCU_TARGET = atmegal28l
#MCU_TARGET = atmegal284p
#MCU_TARGET = atmegaléb
#MCU_TARGET = atmegalé63
#MCU_TARGET = atmegal6dp
#MCU_TARGET = atmegal65
#MCU_TARGET = atmegal65p
#MCU_TARGET = atmegal68
#MCU_TARGET = atmegalé69
#MCU_TARGET = atmegal69p
#MCU_TARGET = atmega2560
#MCU_TARGET = atmega2561
#MCU_TARGET = atmega32
#MCU_TARGET = atmega324p
#MCU_TARGET = atmega325
#MCU_TARGET = atmega3250
#MCU_TARGET = atmega329
#MCU_TARGET = atmega3290
#MCU_TARGET = atmega48
#MCU_TARGET = atmega64
#MCU_TARGET = atmega640
#MCU_TARGET = atmega644
#MCU_TARGET = atmega644p
#MCU_TARGET = atmega645
#MCU_TARGET = atmega6450
#MCU_TARGET = atmega649
#MCU_TARGET = atmega6490
MCU_TARGET = atmega8
#MCU_TARGET = atmega8515
#MCU_TARGET = atmega8535
#MCU_TARGET = atmega88
#MCU_TARGET = attiny2313
#MCU_TARGET = attiny24
#MCU_TARGET = attiny25
#MCU_TARGET = attiny26
#MCU_TARGET = attiny261
#MCU_TARGET = attiny44
#MCU_TARGET = attiny45
#MCU_TARGET = attiny461l
#MCU_TARGET = attiny84
#MCU_TARGET = attiny85
#MCU_TARGET = attiny861
OPTIMIZE = -02
DEFS =
LIBS =

# You should not

cc =

# Override is on

override CFLAGS
override LDFLAGS

OBJCOPY =

have to change anything below here.
avr-gcc
ly needed by avr-1lib build system.

= -g -Wall $(OPTIMIZE)
= -Wl,-Map, $ (PRG) .map

—mmcu=$ (MCU_TARGET)

avr-objcopy

$ (DEFS)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project

301

OBJDUMP = avr-objdump
all: $(PRG).elf lst text eeprom

$(PRG) .elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $” $(LIBS

# dependency:
demo.o: demo.c iocompat.h

clean:

)

rm -rf x.0 $(PRG).elf x.eps x.png *.pdf *.bak

rm -rf x.lst x.map $(EXTRA_CLEAN_FILES)
1st: $(PRG).lst

%.1lst: %.elf
$ (OBJDUMP) -h -S $< > $@

# Rules for building the .text rom images
text: hex bin srec

hex: $(PRG) .hex

bin: $(PRG) .bin

srec: $(PRG).srec

%.hex: %.elf
$ (OBJCOPY) —3j .text —j .data -0 ihex $< s@

%.srec: %.elf
$ (OBJCOPY) -j .text -j .data -0 srec $< $@

%$.bin: %.elf

$ (OBJCOPY) -3 .text -j .data -0 binary $< $@

# Rules for building the .eeprom rom images
eeprom: ehex ebin esrec

ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin
esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %$.elf
$ (OBJCOPY) -3j .eeprom —--change-section-lma
|| { echo empty $@ not generated; exit 0;

%_eeprom.srec: %.elf
$ (OBJCOPY) -7 .eeprom --change-section-lma
|| { echo empty $@ not generated; exit 0;
%_eeprom.bin: %$.elf
$ (OBJCOPY) -7 .eeprom --change-section-lma
|| { echo empty $@ not generated; exit 0;

}

}

}

.eeprom=0 -0

.eeprom=0 -0

.eeprom=0 -0

# Every thing below here is used by avr-libc’s build system and

# by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = x.hex *.bin *.srec

dox: eps png pdf

eps: $(PRG) .eps
png: $(PRG) .png
pdf: $(PRG) .pdf

%.eps: %.fig
$ (FIG2DEV) -L eps $< $@

o

.pdf: %.fig
S (FIG2DEV) -L pdf $< s@

o

.png: %.fig
$(FIG2DEV) -L png $< $@

ihex $< $@ \

srec $< $@ \

binary $< $@ \

can be ignored

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.37 A simple project 302

22.37.8 Reference to the source code

The source code is installed under
Sprefix/share/doc/avr-libc/examples/demo/,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project 303

22.38 A more sophisticated project

This project extends the basic idea of the simple project to control a LED with a PWM output, but adds methods to adjust
the LED brightness. It employs a lot of the basic concepts of avr-libc to achieve that goal.

Understanding this project assumes the simple project has been understood in full, as well as being acquainted with the
basic hardware concepts of an AVR microcontroller.

22.38.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the STK500 development kit. The only
external part needed is a potentiometer attached to the ADC. It is connected to a 10-pin ribbon cable for port A, both
ends of the potentiometer to pins 9 (GND) and 10 (VCC), and the wiper to pin 1 (port A0). A bypass capacitor from pin
1 to pin 9 (like 47 nF) is recommendable.

Figure 6: Setup of the STK500

The coloured patch cables are used to provide various interconnections. As there are only four of them in the ST-
K500, there are two options to connect them for this demo. The second option for the yellow-green cable is shown in
parenthesis in the table. Alternatively, the "squid" cable from the JTAG ICE kit can be used if available.

Port Header Color Function Connect to

Do 1 brown RxD RXD of the RS-232
header

D1 2 grey TxD TXD of the RS-232
header

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project

304

D2 3 black button "down" SWO (pin 1 switches
header)

D3 4 red button "up” SW1 (pin 2 switches
header)

D4 5 green button "ADC" SW2 (pin 3 switches
header)

D5 6 blue LED LEDO (pin 1 LEDs
header)

D6 7 (green) clock out LED1 (pin 2 LEDs
header)

D7 8 white 1-second flash LED2 (pin 3 LEDs
header)

GND 9 unused

VCC 10 unused

The following picture shows the alternate wiring where LED1 is connected but SW2 is not:

TR

i

Figure 7: Wiring of the STK500

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project 305

Figure 8: Wiring option #2 of the STK500

As an alternative, this demo can also be run on the popular ATmega8 controller, or its successor ATmega88 as well as
the ATmega48 and ATmega168 variants of the latter. These controllers do not have a port named "A", so their ADC
inputs are located on port C instead, thus the potentiometer needs to be attached to port C. Likewise, the OC1A output
is not on port D pin 5 but on port B pin 1 (PB1). Thus, the above cabling scheme needs to be changed so that PB1
connects to the LEDO pin. (PD6 remains unconnected.) When using the STK500, use one of the jumper cables for this
connection. All other port D pins should be connected the same way as described for the ATmega16 above.

When not using an STK500 starter kit, attach the LEDs through some resistor to Vcc (low-active LEDs), and attach
pushbuttons from the respective input pins to GND. The internal pull-up resistors are enabled for the pushbutton pins,
so no external resistors are needed.

Finally, the demo has been ported to the ATtiny2313 as well. As this AVR does not offer an ADC, everything related to
handling the ADC is disabled in the code for that MCU type. Also, port D of this controller type only features 6 pins, so
the 1-second flash LED had to be moved from PD6 to PD4. (PD4 is used as the ADC control button on the other MCU
types, but that is not needed here.) OC1A is located at PB3 on this device.

The MCU_TARGET macro in the Makefile needs to be adjusted appropriately for the alternative controller types.

The flash ROM and RAM consumption of this demo are way below the resources of even an ATmega48, and still well
within the capabilities of an ATtiny2313. The major advantage of experimenting with the ATmega16 (in addition that it
ships together with an STK500 anyway) is that it can be debugged online via JTAG. Likewise, the ATmega48/88/168
and ATtiny2313 devices can be debugged through debugWire, using the Atmel JTAG ICE mkll or the low-cost AVR
Dragon.

Note that in the explanation below, all port/pin names are applicable to the ATmegai16 setup.

22.38.2 Functional overview

PD6 will be toggled with each internal clock tick (approx. 10 ms). PD7 will flash once per second.

PDO and PD1 are configured as UART IO, and can be used to connect the demo kit to a PC (9600 Bd, 8N1 frame
format). The demo application talks to the serial port, and it can be controlled from the serial port.

PD2 through PD4 are configured as inputs, and control the application unless control has been taken over by the serial
port. Shorting PD2 to GND will decrease the current PWM value, shorting PD3 to GND will increase it.

While PD4 is shorted to GND, one ADC conversion for channel 0 (ADC input is on PAOQ) will be triggered each internal
clock tick, and the resulting value will be used as the PWM value. So the brightness of the LED follows the analog input

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project 306

value on PC0O. VAREF on the STK500 should be set to the same value as VCC.

When running in serial control mode, the function of the watchdog timer can be demonstrated by typing an ‘r’. This will
make the demo application run in a tight loop without retriggering the watchdog so after some seconds, the watchdog
will reset the MCU. This situation can be figured out on startup by reading the MCUCSR register.

The current value of the PWM is backed up in an EEPROM cell after about 3 seconds of idle time after the last change.
If that EEPROM cell contains a reasonable (i. e. non-erased) value at startup, it is taken as the initial value for the PWM.
This virtually preserves the last value across power cycles. By not updating the EEPROM immmediately but only after
a timeout, EEPROM wear is reduced considerably compared to immediately writing the value at each change.

22.38.3 A code walkthrough

This section explains the ideas behind individual parts of the code. The source code has been divided into numbered
parts, and the following subsections explain each of these parts.

22.38.3.1 Part 1: Macro definitions

A number of preprocessor macros are defined to improve readability and/or portability of the application.

The first macros describe the 10 pins our LEDs and pushbuttons are connected to. This provides some kind of mini-HAL
(hardware abstraction layer) so should some of the connections be changed, they don’t need to be changed inside the
code but only on top. Note that the location of the PWM output itself is mandated by the hardware, so it cannot be
easily changed. As the ATmega48/88/168 controllers belong to a more recent generation of AVRs, a number of register
and bit names have been changed there, so they are mapped back to their ATmega8/16 equivalents to keep the actual
program code portable.

The name F__CPU is the conventional name to describe the CPU clock frequency of the controller. This demo project just
uses the internal calibrated 1 MHz RC oscillator that is enabled by default. Note that when using the <util/delay.-
h> functions, F_CPU needs to be defined before including that file.

The remaining macros have their own comments in the source code. The macro TMR1_SCALE shows how to use the
preprocessor and the compiler’s constant expression computation to calculate the value of timer 1’s post-scaler in a
way so it only depends on F_CPU and the desired software clock frequency. While the formula looks a bit complicated,
using a macro offers the advantage that the application will automatically scale to new target softclock or master CPU
frequencies without having to manually re-calculate hardcoded constants.

22.38.3.2 Part 2: Variable definitions
The int f1ags structure demonstrates a way to allocate bit variables in memory. Each of the interrupt service routines
just sets one bit within that structure, and the application’s main loop then monitors the bits in order to act appropriately.

Like all variables that are used to communicate values between an interrupt service routine and the main application, it
is declared volatile.

The variable ee_pwm is not a variable in the classical C sense that could be used as an Ivalue or within an expression
to obtain its value. Instead, the

__attribute_ ((section(".eeprom")))

marks it as belonging to the EEPROM section. This section is merely used as a placeholder so the compiler can
arrange for each individual variable’s location in EEPROM. The compiler will also keep track of initial values assigned,
and usually the Makefile is arranged to extract these initial values into a separate load file (Largedemo_eeprom.x in
this case) that can be used to initialize the EEPROM.

The actual EEPROM IO must be performed manually.

Similarly, the variable mcucsr is kept in the .noinit section in order to prevent it from being cleared upon application
startup.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project 307

22.38.3.3 Part 3: Interrupt service routines

The ISR to handle timer 1’s overflow interrupt arranges for the software clock. While timer 1 runs the PWM, it calls its
overflow handler rather frequently, so the TMR1__SCALE value is used as a postscaler to reduce the internal software
clock frequency further. If the software clock triggers, it sets the tmr__int bitfield, and defers all further tasks to the
main loop.

The ADC ISR just fetches the value from the ADC conversion, disables the ADC interrupt again, and announces the
presence of the new value in the adc_int bitfield. The interrupt is kept disabled while not needed, because the ADC
will also be triggered by executing the SLEEP instruction in idle mode (which is the default sleep mode). Another option
would be to turn off the ADC completely here, but that increases the ADC’s startup time (not that it would matter much
for this application).

22.38.3.4 Part 4: Auxiliary functions

The function handle_mcucsr () uses two attribute declarators to achieve specific goals. First, it will instruct
the compiler to place the generated code into the .init3 section of the output. Thus, it will become part of the application
initialization sequence. This is done in order to fetch (and clear) the reason of the last hardware reset from MCUCSR as
early as possible. There is a short period of time where the next reset could already trigger before the current reason
has been evaluated. This also explains why the variable mcucsr that mirrors the register’s value needs to be placed
into the .noinit section, because otherwise the default initialization (which happens after .init3) would blank the value
again.

As the initialization code is not called using CALL/RET instructions but rather concatenated together, the compiler needs
to be instructed to omit the entire function prologue and epilogue. This is performed by the naked attribute. So while
syntactically, handle_mcucsr () is a function to the compiler, the compiler will just emit the instructions for it without
setting up any stack frame, and not even a RET instruction at the end.

Function ioinit () centralizes all hardware setup. The very last part of that function demonstrates the use of the
EEPROM variable ee_pwm to obtain an EEPROM address that can in turn be applied as an argument to eeprom_ -
read_word ().

The following functions handle UART character and string output. (UART input is handled by an ISR.) There are
two string output functions, printstr () and printstr_p (). The latter function fetches the string from program
memory. Both functions translate a newline character into a carriage return/newline sequence, so a simple \n can be
used in the source code.

The function set_pwm () propagates the new PWM value to the PWM, performing range checking. When the value
has been changed, the new percentage will be announced on the serial link. The current value is mirrored in the variable
pwm so others can use it in calculations. In order to allow for a simple calculation of a percentage value without requiring
floating-point mathematics, the maximal value of the PWM is restricted to 1000 rather than 1023, so a simple division
by 10 can be used. Due to the nature of the human eye, the difference in LED brightness between 1000 and 1023 is not
noticable anyway.

22.38.3.5 Part 5: main()

At the start of main (), a variable mode is declared to keep the current mode of operation. An enumeration is used to
improve the readability. By default, the compiler would allocate a variable of type int for an enumeration. The packed
attribute declarator instructs the compiler to use the smallest possible integer type (which would be an 8-bit type here).

After some initialization actions, the application’s main loop follows. In an embedded application, this is normally an
infinite loop as there is nothing an application could "exit" into anyway.

At the beginning of the loop, the watchdog timer will be retriggered. If that timer is not triggered for about 2 seconds, it
will issue a hardware reset. Care needs to be taken that no code path blocks longer than this, or it needs to frequently
perform watchdog resets of its own. An example of such a code path would be the string 10 functions: for an overly
large string to print (about 2000 characters at 9600 Bd), they might block for too long.

The loop itself then acts on the interrupt indication bitfields as appropriate, and will eventually put the CPU on sleep at

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.38 A more sophisticated project 308

its end to conserve power.

The first interrupt bit that is handled is the (software) timer, at a frequency of approximately 100 Hz. The CLOCKOUT
pin will be toggled here, so e. g. an oscilloscope can be used on that pin to measure the accuracy of our software
clock. Then, the LED flasher for LED2 ("We are alive"-LED) is built. It will flash that LED for about 50 ms, and pause
it for another 950 ms. Various actions depending on the operation mode follow. Finally, the 3-second backup timer is
implemented that will write the PWM value back to EEPROM once it is not changing anymore.

The ADC interrupt will just adjust the PWM value only.
Finally, the UART Rx interrupt will dispatch on the last character received from the UART.

All the string literals that are used as informational messages within main () are placed in program memory so no SR-
AM needs to be allocated for them. This is done by using the PSTR macro, and passing the string to printstr_p ().

22.38.4 The source code

The source code is installed under
Sprefix/share/doc/avr—-libc/examples/largedemo/largedemo.c,

where $Sprefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 309

22.39 Using the standard 10 facilities

This project illustrates how to use the standard 10 facilities (stdio) provided by this library. It assumes a basic knowledge
of how the stdio subsystem is used in standard C applications, and concentrates on the differences in this library’s imple-
mentation that mainly result from the differences of the microcontroller environment, compared to a hosted environment
of a standard computer.

This demo is meant to supplement the documentation, not to replace it.

22.39.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the STK500 development kit. The UART
port needs to be connected to the RS-232 "spare" port by a jumper cable that connects PD0 to RxD and PD1 to TxD.
The RS-232 channel is set up as standard input (st din) and standard output (st dout), respectively.

In order to have a different device available for a standard error channel (stderr), an industry-standard LCD display
with an HD44780-compatible LCD controller has been chosen. This display needs to be connected to port A of the
STK500 in the following way:

Port Header Function
A0 1 LCD D4
A1 2 LCD D5
A2 3 LCD D6
A3 4 LCD D7
A4 5 LCD R/~W
A5 6 LCDE
A6 7 LCD RS
A7 8 unused
GND 9 GND
VCC 10 Vce

Figure 9: Wiring of the STK500

The LCD controller is used in 4-bit mode, including polling the "busy" flag so the R/~W line from the LCD controller
needs to be connected. Note that the LCD controller has yet another supply pin that is used to adjust the LCD’s contrast
(V5). Typically, that pin connects to a potentiometer between Vcc and GND. Often, it might work to just connect that pin
to GND, while leaving it unconnected usually yields an unreadable display.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 310

Port A has been chosen as 7 pins are needed to connect the LCD, yet all other ports are already partially in use: port B
has the pins for in-system programming (ISP), port C has the ports for JTAG (can be used for debugging), and port D is
used for the UART connection.

22.39.2 Functional overview
The project consists of the following files:

* stdiodemo. c This is the main example file.

+ defines.h Contains some global defines, like the LCD wiring

* hd44780 . c Implementation of an HD44780 LCD display driver

* hd44780.h Interface declarations for the HD44780 driver

* lcd. c Implementation of LCD character 10 on top of the HD44780 driver
* lcd.h Interface declarations for the LCD driver

* uart.c Implementation of a character IO driver for the internal UART

* uart.h Interface declarations for the UART driver

22.39.3 A code walkthrough

22.39.3.1 stdiodemo.c

As usual, include files go first. While conventionally, system header files (those in angular brackets < ... >) go before
application-specific header files (in double quotes), defines.h comes as the first header file here. The main reason
is that this file defines the value of F_CPU which needs to be known before including <utils/delay.h>.

The function 10oinit () summarizes all hardware initialization tasks. As this function is declared to be module-internal
only (static), the compiler will notice its simplicity, and with a reasonable optimization level in effect, it will inline
that function. That needs to be kept in mind when debugging, because the inlining might cause the debugger to "jump
around wildly" at a first glance when single-stepping.

The definitions of uart_str and 1cd_str set up two stdio streams. The initialization is done using the FDEV_SET-
UP_STREAM () initializer template macro, so a static object can be constructed that can be used for 10 purposes. This
initializer macro takes three arguments, two function macros to connect the corresponding output and input functions,
respectively, the third one describes the intent of the stream (read, write, or both). Those functions that are not required
by the specified intent (like the input function for 1cd__st r which is specified to only perform output operations) can be
given as NULL.

The stream uart_str corresponds to input and output operations performed over the RS-232 connection to a terminal
(e.g. from/to a PC running a terminal program), while the 1cd_ st r stream provides a method to display character data
on the LCD text display.

The function delay_1s () suspends program execution for approximately one second. This is done using the _—
delay_ms () function from <util/delay.h> which in turn needs the F_CPU macro in order to adjust the cycle
counts. As the _delay_ms () function has a limited range of allowable argument values (depending on F_CPU), a
value of 10 ms has been chosen as the base delay which would be safe for CPU frequencies of up to about 26 MHz.
This function is then called 100 times to accomodate for the actual one-second delay.

In a practical application, long delays like this one were better be handled by a hardware timer, so the main CPU would
be free for other tasks while waiting, or could be put on sleep.

At the beginning of main (), after initializing the peripheral devices, the default stdio streams stdin, stdout, and
stderr are set up by using the existing static FILE stream objects. While this is not mandatory, the availability of

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 311

stdin and stdout allows to use the shorthand functions (e.g. printf () instead of fprintf ()), and stderr
can mnemonically be referred to when sending out diagnostic messages.

Just for demonstration purposes, stdin and stdout are connected to a stream that will perform UART IO, while
stderr is arranged to output its data to the LCD text display.

Finally, a main loop follows that accepts simple "commands" entered via the RS-232 connection, and performs a few
simple actions based on the commands.

First, a prompt is sent out using print £_P () (which takes a program space string). The string is read into an internal
buffer as one line of input, using fgets (). While it would be also possible to use gets () (which implicitly reads from
stdin), gets () has no control that the user’s input does not overflow the input buffer provided so it should never be
used at all.

If fgets () fails to read anything, the main loop is left. Of course, normally the main loop of a microcontroller application
is supposed to never finish, but again, for demonstrational purposes, this explains the error handling of stdio. fgets ()
will return NULL in case of an input error or end-of-file condition on input. Both these conditions are in the domain of
the function that is used to establish the stream, uart_putchar () in this case. In short, this function returns EOF
in case of a serial line "break" condition (extended start condition) has been recognized on the serial line. Common PC
terminal programs allow to assert this condition as some kind of out-of-band signalling on an RS-232 connection.

When leaving the main loop, a goodbye message is sent to standard error output (i.e. to the LCD), followed by three
dots in one-second spacing, followed by a sequence that will clear the LCD. Finally, main () will be terminated, and the
library will add an infinite loop, so only a CPU reset will be able to restart the application.

There are three "commands” recognized, each determined by the first letter of the line entered (converted to lower
case):

» The’q’ (quit) command has the same effect of leaving the main loop.

« The I (LCD) command takes its second argument, and sends it to the LCD.

« The v’ (UART) command takes its second argument, and sends it back to the UART connection.

Command recognition is done using sscanf () where the first format in the format string just skips over the command
itself (as the assignment suppression modifier * is given).

22.39.3.2 defines.h

This file just contains a few peripheral definitions.

The F_CPU macro defines the CPU clock frequency, to be used in delay loops, as well as in the UART baud rate
calculation.

The macro UART_BAUD defines the RS-232 baud rate. Depending on the actual CPU frequency, only a limited range
of baud rates can be supported.

The remaining macros customize the 10 port and pins used for the HD44780 LCD driver. Each definition consists of a
letter naming the port this pin is attached to, and a respective bit number. For accessing the data lines, only the first
data line gets its own macro (line D4 on the HD44780, lines DO through D3 are not used in 4-bit mode), all other data
lines are expected to be in ascending order next to D4.

22.39.3.3 hd44780.h

This file describes the public interface of the low-level LCD driver that interfaces to the HD44780 LCD controller. Public
functions are available to initialize the controller into 4-bit mode, to wait for the controller’s busy bit to be clear, and to
read or write one byte from or to the controller.

As there are two different forms of controller 10, one to send a command or receive the controller status (RS signal
clear), and one to send or receive data to/from the controller's SRAM (RS asserted), macros are provided that build on
the mentioned function primitives.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 312

Finally, macros are provided for all the controller commands to allow them to be used symbolically. The HD44780
datasheet explains these basic functions of the controller in more detail.

22.39.3.4 hd44780.c

This is the implementation of the low-level HD44780 LCD controller driver.

On top, a few preprocessor glueing tricks are used to establish symbolic access to the hardware port pins the LCD
controller is attached to, based on the application’s definitions made in defines.h.

The hd44780_pulse_e () function asserts a short pulse to the controller's E (enable) pin. Since reading back the
data asserted by the LCD controller needs to be performed while E is active, this function reads and returns the input
data if the parameter readback is true. When called with a compile-time constant parameter that is false, the compiler
will completely eliminate the unused readback operation, as well as the return value as part of its optimizations.

As the controller is used in 4-bit interface mode, all byte 10 to/from the controller needs to be handled as two nibble |Os.
The functions hd44780_outnibble () and hd44780_innibble () implement this. They do not belong to the
public interface, so they are declared static.

Building upon these, the public functions hd44780_outbyte () and hd44780_inbyte () transfer one byte
to/from the controller.

The function hd44780_wait_ready () waits for the controller to become ready, by continuously polling the con-
troller’s status (which is read by performing a byte read with the RS signal cleard), and examining the BUSY flag within
the status byte. This function needs to be called before performing any controller IO.

Finally, hd44780_init () initializes the LCD controller into 4-bit mode, based on the initialization sequence mandated
by the datasheet. As the BUSY flag cannot be examined yet at this point, this is the only part of this code where timed
delays are used. While the controller can perform a power-on reset when certain constraints on the power supply rise
time are met, always calling the software initialization routine at startup ensures the controller will be in a known state.
This function also puts the interface into 4-bit mode (which would not be done automatically after a power-on reset).

22.39.35 lcd.h
This function declares the public interface of the higher-level (character 10) LCD driver.
22.39.36 lcd.c

The implementation of the higher-level LCD driver. This driver builds on top of the HD44780 low-level LCD controller
driver, and offers a character 10 interface suitable for direct use by the standard 10 facilities. Where the low-level H-
D44780 driver deals with setting up controller SRAM addresses, writing data to the controller's SRAM, and controlling
display functions like clearing the display, or moving the cursor, this high-level driver allows to just write a character to
the LCD, in the assumption this will somehow show up on the display.

Control characters can be handled at this level, and used to perform specific actions on the LCD. Currently, there is only
one control character that is being dealt with: a newline character (\n) is taken as an indication to clear the display
and set the cursor into its initial position upon reception of the next character, so a "new line" of text can be displayed.
Therefore, a received newline character is remembered until more characters have been sent by the application, and
will only then cause the display to be cleared before continuing. This provides a convenient abstraction where full lines
of text can be sent to the driver, and will remain visible at the LCD until the next line is to be displayed.

Further control characters could be implemented, e. g. using a set of escape sequences. That way, it would be possible
to implement self-scrolling display lines etc.

The public function 1cd_init () first calls the initialization entry point of the lower-level HD44780 driver, and then
sets up the LCD in a way we’d like to (display cleared, non-blinking cursor enabled, SRAM addresses are increasing so
characters will be written left to right).

The public function 1cd_putchar () takes arguments that make it suitable for being passed as a put () function
pointer to the stdio stream initialization functions and macros (fdevopen (), FDEV_SETUP_STREAM () etc.). Thus,

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 313

it takes two arguments, the character to display itself, and a reference to the underlying stream object, and it is expected
to return 0 upon success.

This function remembers the last unprocessed newline character seen in the function-local static variable n1_seen. If
a newline character is encountered, it will simply set this variable to a true value, and return to the caller. As soon as the
first non-newline character is to be displayed with n1__seen still true, the LCD controller is told to clear the display, put
the cursor home, and restart at SRAM address 0. All other characters are sent to the display.

The single static function-internal variable n1_seen works for this purpose. If multiple LCDs should be controlled
using the same set of driver functions, that would not work anymore, as a way is needed to distinguish between the
various displays. This is where the second parameter can be used, the reference to the stream itself: instead of keeping
the state inside a private variable of the function, it can be kept inside a private object that is attached to the stream
itself. A reference to that private object can be attached to the stream (e.g. inside the function 1cd_init () that
then also needs to be passed a reference to the stream) using fdev_set_udata (), and can be accessed inside
lcd_putchar () using fdev_get_udata().

22.39.3.7 uart.h
Public interface definition for the RS-232 UART driver, much like in lcd.h except there is now also a character input
function available.

As the RS-232 input is line-buffered in this example, the macro RX_BUF SIZE determines the size of that buffer.
22.39.3.8 uart.c

This implements an stdio-compatible RS-232 driver using an AVR'’s standard UART (or USART in asynchronous opera-
tion mode). Both, character output as well as character input operations are implemented. Character output takes care
of converting the internal newline \n into its external representation carriage return/line feed (\ r\n).

Character input is organized as a line-buffered operation that allows to minimally edit the current line until it is "sent"
to the application when either a carriage return (\ r) or newline (\n) character is received from the terminal. The line
editing functions implemented are:

* \Db (back space) or \177 (delete) deletes the previous character

« "u (control-U, ASCII NAK) deletes the entire input buffer

+ "w (control-W, ASCII ETB) deletes the previous input word, delimited by white space
« r (control-R, ASCII DC2) sends a \ r, then reprints the buffer (refresh)

* \t (tabulator) will be replaced by a single space

The function uart_init () takes care of all hardware initialization that is required to put the UART into a mode with
8 data bits, no parity, one stop bit (commonly referred to as 8N1) at the baud rate configured in defines.h. At low CPU
clock frequencies, the U2X bit in the UART is set, reducing the oversampling from 16x to 8x, which allows for a 9600 Bd
rate to be achieved with tolerable error using the default 1 MHz RC oscillator.

The public function uart_putchar () again has suitable arguments for direct use by the stdio stream interface. It
performs the \n into \ r\n translation by recursively calling itself when it sees a \n character. Just for demonstration
purposes, the \a (audible bell, ASCII BEL) character is implemented by sending a string to stderr, so it will be
displayed on the LCD.

The public function uart_getchar () implements the line editor. If there are characters available in the line buffer
(variable rxp is not NULL), the next character will be returned from the buffer without any UART interaction.

If there are no characters inside the line buffer, the input loop will be entered. Characters will be read from the UART,
and processed accordingly. If the UART signalled a framing error (FE bit set), typically caused by the terminal sending
a line break condition (start condition held much longer than one character period), the function will return an end-of-file

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.39 Using the standard 10 facilities 314

condition using _FDEV_EOF. If there was a data overrun condition on input (DOR bit set), an error condition will be
returned as _FDEV_ERR.

Line editing characters are handled inside the loop, potentially modifying the buffer status. If characters are attempted
to be entered beyond the size of the line buffer, their reception is refused, and a \ a character is sent to the terminal. If
a \r or \n character is seen, the variable rxp (receive pointer) is set to the beginning of the buffer, the loop is left, and
the first character of the buffer will be returned to the application. (If no other characters have been entered, this will just
be the newline character, and the buffer is marked as being exhausted immediately again.)

22.39.4 The source code

The source code is installed under
Sprefix/share/doc/avr-libc/examples/stdiodemo/,

where $Sprefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.40 Example using the two-wire interface (TWI) 315

22.40 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the microcontroller to a two-wire bus,
called TWI. This is essentially the same called 12C by Philips, but that term is avoided in Atmel’s documentation due to
patenting issues.

For further documentation, see:

http://www.nxp.com/documents/user_manual/UM10204.pdf

22.40.1 Introduction into TWI

The two-wire interface consists of two signal lines named SDA (serial data) and SCL (serial clock) (plus a ground line, of
course). All devices participating in the bus are connected together, using open-drain driver circuitry, so the wires must
be terminated using appropriate pullup resistors. The pullups must be small enough to recharge the line capacity in short
enough time compared to the desired maximal clock frequency, yet large enough so all drivers will not be overloaded.
There are formulas in the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a slave (they only act when being
called by a master). The bus is multi-master capable, and a particular device implementation can act as either master
or slave at different times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered as the first
byte after the so-called start condition. The LSB of that byte is R/~W, i. e. it determines whether the request to the
slave is to read or write data during the next cycles. (There is also an option to have devices using 10-bit addresses but
that is not covered by this example.)

22.40.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example will only demonstrate how to use
an AVR microcontroller as TWI master. The implementation is kept simple in order to concentrate on the steps that are
required to talk to a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to indicate that the
next processing step is due (by setting the TWINT interrupt bit). If it is desired to have the entire TWI communication
happen in "background", all this can be implemented in an interrupt-controlled way, where only the start condition needs
to be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the purpose of this example, an
EEPROM device out of the industry-standard 24Cxx series has been chosen (where xx can be one of 01, 02, 04, 08, or
16) which are available from various vendors. The choice was almost arbitrary, mainly triggered by the fact that an EEP-
ROM device is being talked to in both directions, reading and writing the slave device, so the example will demonstrate
the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system that way: the smallest possible
AVR device that offers hardware TWI support is the ATmega8 which comes with 512 bytes of EEPROM, which is
equivalent to an 24C04 device. The ATmega128 already comes with twice as much EEPROM as the 24C16 would
offer. One exception might be to use an externally connected EEPROM device that is removable; e. g. SDRAM PC
memory comes with an integrated TWI EEPROM that carries the RAM configuration information.

22.40.3 The Source Code

The source code is installed under
Sprefix/share/doc/avr—-libc/examples/twitest/twitest.c,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen


http://www.nxp.com/documents/user_manual/UM10204.pdf

22.40 Example using the two-wire interface (TWI) 316

Note [1]

The header file <util/twi.h> contains some macro definitions for symbolic constants used in the TWI status
register. These definitions match the names used in the Atmel datasheet except that all names have been prefixed with
TW_.

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits. The following three bits are
normally available as slave sub-addresses, allowing to operate more than one device of the same type on a single bus,
where the actual subaddress used for each device is configured by hardware strapping. However, since the next data
packet following the device selection only allows for 8 bits that are used as an EEPROM address, devices that require
more than 8 address bits (24C04 and above) "steal" subaddress bits and use them for the EEPROM cell address bits 9
to 11 as required. This example simply assumes all subaddress bits are 0 for the smaller devices, so the EO, E1, and
E2 inputs of the 24Cxx must be grounded.

Note [3a]

EEPROMs of type 24C32 and above cannot be addressed anymore even with the subaddress bit trick. Thus, they
require the upper address bits being sent separately on the bus. When activating the WORD_ADDRESS_16BIT define,
the algorithm implements that auxiliary address byte transmission.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate error. This will allow a 9600 Bd
communication using the standard 1 MHz calibrated RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when running in master mode. Thus,
for system clocks below 3.6 MHz, we cannot run the bus at the intented clock rate of 100 kHz but have to slow down
accordingly.

Note [6]

This function is used by the standard output facilities that are utilized in this example for debugging and demonstration
purposes.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.40 Example using the two-wire interface (TWI) 317

Note [7]

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMSs support multiple data bytes transfered
within a single request, maintaining an internal address counter that is updated after each data byte transfered success-
fully. When reading data, one request can read the entire device memory if desired (the counter would wrap around and
start back from 0 when reaching the end of the device).

Note [8]

When reading the EEPROM, a first device selection must be made with write intent (R/~W bit set to 0 indicating a write
operation) in order to transfer the EEPROM address to start reading from. This is called master transmitter mode. Each
completion of a particular step in TWI communication is indicated by an asserted TWINT bit in TWCR. (An interrupt
would be generated if allowed.) After performing any actions that are needed for the next communication step, the
interrupt condition must be manually cleared by setting the TWINT bit. Unlike with many other interrupt sources, this
would even be required when using a true interrupt routine, since as soon as TWINT is re-asserted, the next bus
transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when one master starts to access
the bus. Normally, the TWI bus interface unit will detect this situation, and will not initiate a start condition while the
bus is busy. However, in case two masters were starting at exactly the same time, the way bus arbitration works, there
is always a chance that one master could lose arbitration of the bus during any transmit operation. A master that has
lost arbitration is required by the protocol to immediately cease talking on the bus; in particular it must not initiate a
stop condition in order to not corrupt the ongoing transfer from the active master. In this example, upon detecting a lost
arbitration condition, the entire transfer is going to be restarted. This will cause a new start condition to be initiated,
which will normally be delayed until the currently active master has released the bus.

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start condition which is meant to guarantee
that the bus arbitration will remain at the current master) using the same slave address (SLA), but this time with read
intent (R/~W bit set to 1) in order to request the device slave to start transfering data from the slave to the master in the
next packet.

Note [11]

If the EEPROM device is still busy writing one or more cells after a previous write request, it will simply leave its bus
interface drivers at high impedance, and does not respond to a selection in any way at all. The master selecting the
device will see the high level at SDA after transfering the SLA+R/W packet as a NACK to its selection request. Thus,
the select process is simply started over (effectively causing a repeated start condition), until the device will eventually
respond. This polling procedure is recommended in the 24Cxx datasheet in order to minimize the busy wait time when
writing. Note that in case a device is broken and never responds to a selection (e. g. since it is no longer present at
all), this will cause an infinite loop. Thus the maximal number of iterations made until the device is declared to be not
responding at all, and an error is returned, will be limited to MAX_ITER.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



22.40 Example using the two-wire interface (TWI) 318

Note [12]

This is called master receiver mode: the bus master still supplies the SCL clock, but the device slave drives the SDA line
with the appropriate data. After 8 data bits, the master responds with an ACK bit (SDA driven low) in order to request
another data transfer from the slave, or it can leave the SDA line high (NACK), indicating to the slave that it is going to
stop the transfer now. Assertion of ACK is handled by setting the TWEA bit in TWCR when starting the current transfer.

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is initially set up to assert the TWEA bit.
During the last loop iteration, TWEA is de-asserted so the client will get informed that no further transfer is desired.

Note [14]

Except in the case of lost arbitration, all bus transactions must properly be terminated by the master initiating a stop
condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter mode transfer is needed. Note
that the first packet after the SLA+W selection is always considered to be the EEPROM address for the next operation.
(This packet is exactly the same as the one above sent before starting to read the device.) In case a master transmitter
mode transfer is going to send more than one data packet, all following packets will be considered data bytes to write at
the indicated address. The internal address pointer will be incremented after each write operation.

Note [16]

24Cxx devices can become write-protected by strapping their ~WC pin to logic high. (Leaving it unconnected is explicitly
allowed, and constitutes logic low level, i. e. no write protection.) In case of a write protected device, all data transfer
attempts will be NACKed by the device. Note that some devices might not implement this.

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



23 Data Structure Documentation

319

23 Data Structure Documentation

23.1 div_t Struct Reference

Data Fields
* int quot
e intrem

23.1.1 Detailed Description

Result type for function div().

23.1.2 Field Documentation
23.1.2.1 intdiv_t::quot

The Quotient.

23.1.2.2 intdiv_t:irem

The Remainder.

The documentation for this struct was generated from the following file:

« stdlib.h

23.2 Idiv_t Struct Reference
Data Fields

* long quot
* long rem

23.2.1 Detailed Description

Result type for function Idiv().

23.2.2 Field Documentation

23.2.2.1 long Idiv_t::quot
The Quotient.
23.2.2.2 long Idiv_t::rem

The Remainder.

The documentation for this struct was generated from the following file:

« stdlib.h

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24 File Documentation

320

24

241

Macr

241,

24.2

24.2.

24.3

24.3.

244

Macr

24.4,

24.5

Macr

File Documentation

assert.h File Reference

0S8

+ #define assert(expression)

1 Detailed Description

atoi.S File Reference

1 Detailed Description

atol.S File Reference

1 Detailed Description

atomic.h File Reference

0S

- #define ATOMIC_BLOCK(type)
« #define NONATOMIC_BLOCK(type)

. #define ATOMIC_RESTORESTATE

- #define ATOMIC_FORCEON

- #define NONATOMIC_RESTORESTATE
« #define NONATOMIC_FORCEOFF

1 Detailed Description

boot.h File Reference

0S8

« #define BOOTLOADER_SECTION __attribute__ ((section (".bootloader")))

+ #define __ COMMON_ASB RWWSB

* #define __ COMMON_ASRE RWWSRE

* #define BLB12 5

* #define BLB11 4

+ #define BLB02 3

+ #define BLBO1 2

- #define boot_spm_interrupt_enable() (_ SPM_REG |= (uint8_t)_BV(SPMIE))
+ #define boot_spm_interrupt_disable() (__ SPM_REG &= (uint8_t)~_BV(SPMIE))
* #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))

+ #define boot_rww_busy() (_ SPM_REG & (uint8_t)_BV(__ COMMON_ASB))
« #define boot_spm_busy() (__ SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
« #define boot_spm_busy_wait() do{}while(boot_spm_busy())

« #define __BOOT_PAGE_ERASE (_BV(__SPM_ENABLE) | _BV(PGERS))

+ #define __BOOT_PAGE_WRITE (_BV(__SPM_ENABLE) | _BV(PGWRT))

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.5 boot.h File Reference 321

« #define _ BOOT_PAGE_FILL _BV(__SPM_ENABLE)

+ #define __ BOOT_RWW_ENABLE (_BV(__SPM_ENABLE) | _BV(__ COMMON_ASRE))
« #define __boot_page_fill_normal(address, data)

« #define __boot_page_fill_alternate(address, data)

« #define __boot_page_fill_extended(address, data)

« #define __boot_page_erase_normal(address)

 #define __boot_page_erase_alternate(address)

 #define __boot_page_erase_extended(address)

« #define __boot_page_write_normal(address)

 #define __boot_page_write_alternate(address)

 #define __boot_page_write_extended(address)

« #define __boot_rww_enable()

« #define __boot_rww_enable_alternate()

« #define __boot_lock_bits_set(lock_bits)

« #define __boot_lock_bits_set_alternate(lock_bits)

* #define GET_LOW_FUSE_BITS (0x0000)

« #define GET_LOCK_BITS (0x0001)

« #define GET_EXTENDED_FUSE_BITS (0x0002)

« #define GET_HIGH_FUSE_BITS (0x0003)

« #define boot_lock_fuse_bits_get(address)

- #define __BOOT_SIGROW_READ (_BV(__SPM_ENABLE) | _BV(SIGRD))
+ #define boot_signature_byte_get(addr)

« #define boot_page_fill(address, data) _ boot_page_fill_normal(address, data)
« #define boot_page_erase(address) _ boot_page_erase_normal(address)
« #define boot_page_write(address) __boot_page_write_normal(address)

« #define boot_rww_enable() __boot_rww_enable()

« #define boot_lock_bits_set(lock_bits) _ boot_lock_bits_set(lock_bits)

+ #define boot_page_fill_safe(address, data)

+ #define boot_page_erase_safe(address)

+ #define boot_page_write_safe(address)

« #define boot_rww_enable_safe()

« #define boot_lock_bits_set_safe(lock_bits)

2451 Detailed Description
24.5.2 Macro Definition Documentation

24.5.2.1 #define __boot_lock_ bits_set( lock_bits )
Value:

(__extension__ ({
uint8_t wvalue = (uint8_t) (~(lock_bits));
__asm__ _ _volatile_
(
"ldi r30, 1\n\t"
"1di r31, 0\n\t"
"mov r0, %2\n\t"
"sts %0, %l\n\t"
"spm\n\t"

"i" (_SFR_MEM_ADDR(__SPM REG)),
"' ((uint8_t) (__BOOT_LOCK_BITS_SET)),
"r" (value)

:ompQm, "p30M, "p31n

P L

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.5 boot.h File Reference 322

245.2.2 #define __boot_lock_bits_set_alternate( lock_bits )
Value:

(__extension__ ({
uint8_t value = (uint8_t) (~(lock_bits));
__asm__ _ volatile_
(
"1di r30, I\n\t"
"ldi r31, 0\n\t"
"mov r0, %2\n\t"
"sts %0, %1\n\t"
"spm\n\t"
".word Oxffff\n\t"
"nop\n\t"

"i" (_SFR_MEM_ADDR(__SPM_REG)),

"r" ((uint8_t) (__BOOT_LOCK_BITS_SET)),
"r" (value)

npQn, Wp3QM, "p3in

P

245.2.3 #define __boot_page_erase_alternate( address )
Value:

(__extension__ ({
__asm__ _ volatile_
(
"sts %0, %l\n\t"
"spm\n\t"
".word Oxffff\n\t"
"nop\n\t"

"i" (_SFR_MEM_ADDR (__SPM_REG)),
"r" ((uint8_t) (__BOOT_PAGE_ERASE)),
"z" ((uintl6_t) (address))

e

245.2.4 #define __boot_page_erase_extended( address )

Value:
(__extension__ ({ \
__asm__ __volatile_ \
( \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t " \
: \
"i"™ (_SFR_MEM_ADDR(__SPM_REG)), \
"i" (_SFR_MEM_ADDR (RAMPZ)), \
"r" ((uint8_t) (__BOOT_PAGE_ERASE)), \
"r" ((uint32_t) (address)) \
"r30M, "r31v \
)i \
1))
245.2.5 #define __boot_page_erase_normal( address )
Value:
(__extension__ ({ \
__asm__ __volatile_ \
( \

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.5 boot.h File Reference

323

"sts %0, $1\n\t"
"spm\n\t"

"i" (_SFR_MEM_ADDR(__SPM REG)),
"r" ((uint8_t) (__BOOT_PAGE_ERASE)),
((

nz" uintl6_t) (address))

245.2.6 #define __boot_page fill_alternate( address, data )

Value:

(__extension__ ({
__asm__ _ volatile_
(
"movw r0, %3\n\t"
"sts %0, %1\n\t"
"spm\n\t"
".word Oxffff\n\t"
"nop\n\t"
"clr rl\n\t"
"i" (_SFR_MEM_ADDR (__SPM_REG)),
"r" ((uint8_t) (__BOOT_PAGE_FILL)),
"z" ((uintl6é_t) (address)),
"r" ((uintlé_t) (data))
negn

24.5.2.7 #define __boot_page fill_extended( address, data )

Value:

(__extension__ ({
__asm__ __volatile_

(
"movw r0, %4\n\t"
"movw r30, $A3\n\t"
"sts %1, %C3\n\t"
"sts %0, %2\n\t"
"spm\n\t"
"clr rl\n\t"

win
1

wiw
1

(_SFR_MEM_ADDR (__SPM_REG) ),
(
npw
(
(

_SFR_MEM_ADDR (RAMPZ) ) ,
(uint8_t) (__BOOT_PAGE_FILL)),
(uint32_t) (address)),

"r" ((uintlé_t) (data))

npQm, Wy3Qn, "r31m

wpn

24.5.2.8 #define __boot_page fill_normal( address, data )

Value:

(__extension__ ({
__asm__ _ _volatile_
(
"movw r0, %3\n\t"
"sts %0, %1\n\t"
"spm\n\t"
"clr rl\n\t"
"i" (_SFR_MEM_ADDR (__SPM_REG)),
"p" ((uint8_t) (__BOOT_PAGE_FILL)),
"z" ((uintlé_t) (address)),
"r" ((uintl6_t) (data))

e

e —

e —

e

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.5 boot.h File Reference

324

npQn

—

24529 #define __boot_page_write_alternate( address )
Value:

(__extension__ ({
__asm__ __volatile_
(
"sts %0, %1\n\t"
"spm\n\t"
".word Oxffff\n\t"
"nop\n\t"

"i" (_SFR_MEM_ADDR(__SPM_REG)),
"r" ((uint8_t) (__BOOT_PAGE_WRITE)),
((

"z" uintl6_t) (address))

e —

24.5.2.10 #define __boot_page_write_extended( address )

Value:
(__extension__ ({ \
__asm__ __volatile \
( \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
"im (_SFR_MEM_ADDR(__SPM_REG)), \
"i" (_SFR_MEM_ADDR (RAMPZ)), \
"r" ((uint8_t) (__BOOT_PAGE_WRITE)), \
"r" ((uint32_t) (address)) \
np3Qn, mp3w \
\

245211 #define __boot_page_write_normal( address )

Value:
(__extension__ ({ \
__asm__ __volatile_ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
; \
"i"™ (_SFR_MEM_ADDR(__SPM_REG)), \
"y" ((uint8_t) (__BOOT_PAGE_WRITE)), \
"z" ((uintl6_t) (address)) \
)i \
1))
245.2.12 #define __boot_rww_enable( )
Value:
(__extension__ ({ \
__asm__ __volatile_ \
( \
"sts %0, %1\n\t" \

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.6 cpufunc.h File Reference

325

"spm\n\t"
: "i" (_SFR_MEM_ADDR (__SPM_REG)),
"r" ((uint8_t) (__BOOT_RWW_ENABLE))

24.5.2.13 #define __boot_rww_enable_alternate( )

Value:

(__extension__ ({
__asm__ __volatile_
(
"sts %0, %1\n\t"

"spm\n\t "

".word Oxffff\n\t"

"nop\n\t"

. "iv (_SFR_MEM_ADDR(__SPM_REG)),
"r" ((uint8_t) (__BOOT_RWW_ENABLE) )

24.6 cpufunc.h File Reference

Macros

« #define _NOP()
+ #define _MemoryBarrier()

24.6.1 Detailed Description

24.7 crc16.h File Reference

Functions

« static __inline__ uint16_t _crc16_update (uint16_t __crc, uint8_t __ data)

« static __inline__ uint16_t _crc_xmodem_update (uint16_t _ crc, uint8_t __data)
« static __inline__ uint16_t _crc_ccitt_update (uint16_t __crc, uint8_t __data)

« static __inline__ uint8_t _crc_ibutton_update (uint8_t __crc, uint8_t __data)

24.7.1 Detailed Description

24.8 ctype.h File Reference
Functions

Character classification routines

P

e~

These functions perform character classification. They return true or false status depending whether the character
passed to the function falls into the function’s classification (i.e. isdigit() returns true if its argument is any value 0’

though '9’, inclusive). If the input is not an unsigned char value, all of this function return false.

* intisalnum (int __c)
« intisalpha (int __c)
* intisascii (int __c)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.9 delay_basic.h File Reference 326

* intisblank (int __c)
* intiscntrl (int __c)

« intisdigit (int __c)

* intisgraph (int __c)
* intislower (int _ c)
« intisprint (int __c)

* intispunct (int __c)
* intisspace (int__c)
« intisupper (int __c)
* int isxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument. The toascii() function clears all highest bits. The
tolower() and toupper() functions return an input argument as is, if it is not an unsigned char value.

« int toascii (int __c)
* int tolower (int __c)
* int toupper (int __c)

24.8.1 Detailed Description

24.9 delay_basic.h File Reference
Functions

* void _delay_loop_1 (uint8_t __count)
* void _delay_loop_2 (uint16_t __count)

2491 Detailed Description

24.10 errno.h File Reference

Macros

 #define EDOM 33
 #define ERANGE 34

Variables

* interrno

24.10.1 Detailed Description

2411 fdevopen.c File Reference

Functions

» FILE * fdevopen (int(xput)(char, FILE *), int(xget)(FILE x))

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.12 f{fs.S File Reference 327

24111 Detailed Description

24.12 ffs.S File Reference

24121 Detailed Description

24.13 ffsl.S File Reference

24.13.1 Detailed Description

24.14 ffsll.S File Reference

24.14.1 Detailed Description

24.15 fuse.h File Reference

Macros

+ #define FUSEMEM __ attribute__((section (".fuse")))
 #define FUSES __ fuse_t _fuse FUSEMEM

24151 Detailed Description

24.16 interrupt.h File Reference

Macros

Global manipulation of the interrupt flag
The global interrupt flag is maintained in the | bit of the status register (SREG).

Handling interrupts frequently requires attention regarding atomic access to objects that could be altered by code
running within an interrupt context, see < util/atomic.h>.

Frequently, interrupts are being disabled for periods of time in order to perform certain operations without being dis-
turbed; see Problems with reordering code for things to be taken into account with respect to compiler optimizations.

« #define sei()
* #define cli()

Macros for writing interrupt handler functions

« #define ISR(vector, attributes)

+ #define SIGNAL(vector)

+ #define EMPTY_INTERRUPT (vector)

« #define ISR_ALIAS(vector, target_vector)
* #define reti()

« #define BADISR_vect

ISR attributes

« #define ISR_BLOCK

« #define ISR_NOBLOCK

« #define ISR_NAKED

* #define ISR_ALIASOF(target_vector)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.17

inttypes.h File Reference

328

24.16.1

@f

24.17

Macros

macros for printf and scanf format specifiers
For C++, these are only included if __STDC _LIMIT_MACROS is defined before including <inttypes.h>.

Detailed Description

inttypes.h File Reference

#define PRId8 "d"

#define PRIALEASTS "d"
#define PRIdFASTS "d"
#define PRIi8 "i"

#define PRIILEASTS8 "i"
#define PRIIFASTS8 "i"
#define PRId16 "d"
#define PRIALEAST16 "d"
#define PRIdFAST16 "d"
#define PRIi16 "i"

#define PRIILEAST16 "i"
#define PRIIFAST16 "i"
#define PRId32 "Id"
#define PRIALEAST32 "ld"
#define PRIAFAST32 "Id"
#define PRIi32 "li"
#define PRIILEAST32 "li"
#define PRIIFAST32 "li"
#define PRIAPTR PRId16
#define PRIIPTR PRIi16
#define PRIo8 "o"

#define PRIOLEASTS "o"
#define PRIOFAST8 "o"
#define PRIu8 "u"

#define PRIULEASTS "u"
#define PRIUFASTS8 "u"
#define PRIx8 "x"

#define PRIXLEASTS8 "x"
#define PRIXFASTS8 "x"
#define PRIX8 "X"
#define PRIXLEASTS8 "X"
#define PRIXFASTS8 "X"
#define PRIo16 "o"
#define PRIOLEAST16 "o"
#define PRIOFAST16 "0"
#define PRIu16 "u"
#define PRIULEAST16 "u"
#define PRIUFAST16 "u"
#define PRIx16 "x"
#define PRIXLEAST16 "x"
#define PRIXFAST16 "x"
#define PRIX16 "X"
#define PRIXLEAST16 "X"
#define PRIXFAST16 "X"
#define PRIo32 "lo"
#define PRIOLEAST32 "lo"
#define PRIOFAST32 "lo"

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.17

inttypes.h File Reference

329

Typedefs

Far pointers for memory access >64K

#define PRIu32 "lu"
#define PRIULEAST32 "lu"
#define PRIUFAST32 "lu"
#define PRIx32 "Ix"

#define PRIXLEAST32 "Ix"
#define PRIXFAST32 "Ix"
#define PRIX32 "IX"
#define PRIXLEAST32 "IX"
#define PRIXFAST32 "IX"
#tdefine PRIOPTR PRlo16
#define PRIUPTR PRIu16
#define PRIXPTR PRIx16
#define PRIXPTR PRIX16
#define SCNd16 "d"
#define SCNALEAST16 "d"
#define SCNdFAST16 "d"
#define SCNi16 "i"

#define SCNILEAST16 "i"
#define SCNiFAST16 "i"
#define SCNd32 "Ild"
#define SCNALEAST32 "Id"
#define SCNAFAST32 "Id"
#define SCNi32 "li"

#define SCNILEAST32 "li"
#tdefine SCNIFAST32 "li"
#define SCNdPTR SCNd16
#define SCNIPTR SCNi16
#define SCNo16 "o"
#define SCNoLEAST16 "0"
#define SCNoFAST16 "o"
#define SCNu16 "u"
#define SCNULEAST16 "u"
#define SCNUFAST16 "u"
#define SCNx16 "x"
#define SCNxLEAST16 "x"
#define SCNxFAST16 "x"
#define SCNo32 "lo"
#define SCNoLEAST32 "lo"
#define SCNoFAST32 "lo"
#define SCNu32 "lu"
#define SCNuLEAST32 "lu"
#define SCNUFAST32 "lu"
#define SCNx32 "Ix"
#define SCNxLEAST32 "Ix"
#define SCNxFAST32 "Ix"
#define SCNoPTR SCNo16
#define SCNuPTR SCNu16
#define SCNxPTR SCNx16

typedef int32_t int_farptr_t
typedef uint32_t uint_farptr_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.18 io.h File Reference

330

24171 Detailed Description

24.18 io.h File Reference

24.18.1 Detailed Description

24.19 lock.h File Reference

Macros

+ #define LOCKMEM __ attribute__((section (".lock")))
+ #define LOCKBITS unsigned char __lock LOCKMEM
« #define LOCKBITS_DEFAULT (0xFF)

24.19.1 Detailed Description

24.20 math.h File Reference

Macros

* #define M_E 2.7182818284590452354

+ #define M_LOG2E 1.4426950408889634074 /x log_2 e */

+ #define M_LOG10E 0.43429448190325182765 /* log_10 € */
+ #define M_LN2 0.69314718055994530942 /x log_e 2 */

+ #define M_LN10 2.30258509299404568402 /x log_e 10 */

* #define M_PI 3.14159265358979323846 /x pi */

« #define M_PI_2 1.57079632679489661923 /x pi/2 */

« #define M_PI_4 0.78539816339744830962 /x pi/4 */

* #define M_1_P1 0.31830988618379067154 /x 1/pi */
 #define M_2_P10.63661977236758134308 /x 2/pi */

+ #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
« #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */

« #define M_SQRT1_2 0.70710678118654752440 /x 1/sqrt(2) */
« #define NAN __builtin_nan("")

« #define INFINITY __builtin_inf()

« #define cosf cos

« #define sinf sin

* #define tanf tan

« #define fabsf fabs

* #define fmodf fmod

* #define sqrtf sqrt

« #define cbrtf cbrt

« #define hypotf hypot

* #define squaref square

« #define floorf floor

« #define ceilf cell

* #define frexpf frexp

* #define Idexpf Idexp

* #define expf exp

« #define coshf cosh

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.20 math.h File Reference 331

* #define sinhf sinh

« #define tanhf tanh

* #define acosf acos

* #define asinf asin

* #define atanf atan

* #define atan2f atan2
« #define logf log

« #define log10f log10
* #define powf pow

« #define isnanf isnan
* #define isinff isinf

« #define isfinitef isfinite
« #define copysignf copysign
+ #define signbitf signbit
« #define fdimf fdim
 #define fmaf fma
 #define fmaxf fmax

* #define fminf fmin

« #define truncf trunc

« #define roundf round
« #define Iroundf Iround
* #define Irintf Irint

Functions

 double cos (double __ x)

+ double sin (double __ x)

+ double tan (double __ x)

 double fabs (double _ x)

+ double fmod (double __x, double __y)
+ double modf (double __x, double *__iptr)
« float modff (float __x, float x__iptr)

* double sqgrt (double __ x)

 double cbrt (double _ x)

+ double hypot (double __x, double __y)
+ double square (double _ x)

 double floor (double __x)

* double ceil (double _ x)

» double frexp (double __x, int x__pexp)
+ double Idexp (double __x, int __exp)

» double exp (double __ x)

» double cosh (double _ x)

 double sinh (double __ x)

» double tanh (double __ x)

» double acos (double __ x)

» double asin (double __ x)

» double atan (double __x)

» double atan2 (double __y, double __ x)
 double log (double __x)

 double log10 (double __x)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.21 memccpy.S File Reference 332

 double pow (double __x, double __y)

* intisnan (double _ x)

* intisinf (double __ x)

« static int isfinite (double __x)

+ static double copysign (double __x, double __y)
* int signbit (double __x)

» double fdim (double __ x, double __y)

+ double fma (double __x, double __y, double __z)
* double fmax (double __x, double __y)

» double fmin (double _ x, double __y)

* double trunc (double __ x)

 double round (double __ x)

* long Iround (double __ x)

* long Irint (double __x)

24.20.1 Detailed Description

24.21 memccpy.S File Reference

24.21.1 Detailed Description

24.22 memchr.S File Reference

24.22.1 Detailed Description

24.23 memchr_P.S File Reference

24.23.1 Detailed Description

24.24 memcmp.S File Reference

24.24.1 Detailed Description

24.25 memcmp_P.S File Reference

24.25.1 Detailed Description

24.26 memcmp_PF.S File Reference

24.26.1 Detailed Description

24.27 memcpy.S File Reference

24.27.1 Detailed Description

24.28 memcpy_P.S File Reference

24.28.1 Detailed Description

24.29 memmem.S File Reference

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.30 memmove.S File Reference 333

24.29.1 Detailed Description

24.30 memmove.S File Reference

24.30.1 Detailed Description

24.31 memrchr.S File Reference

24.31.1 Detailed Description

24.32 memrchr_P.S File Reference

24.32.1 Detailed Description

24.33 memset.S File Reference

24.33.1 Detailed Description

24.34 parity.h File Reference
Macros

* #define parity_even_bit(val)

24.34.1 Detailed Description

24.35 pgmspace.h File Reference

Macros

» #define __need_size_t

« #define __ ATTR_PROGMEM__ __attribute_ ((__progmem__))
 #define _ ATTR_PURE__ __ attribute_ ((__pure_))
* #define PROGMEM __ ATTR_PROGMEM__

« #define PGM_P const char *

« #define PGM_VOID_P const void *

« #define PSTR(s) ((const PROGMEM char x)(s))

* #define __LPM_classic__(addr)

* #define __LPM_tiny__(addr)

* #define __LPM_enhanced__(addr)

* #define __LPM_word_classic__(addr)

* #define __LPM_word_tiny__(addr)

 #define __LPM_word_enhanced__(addr)

 #define __LPM_dword_classic__(addr)

 #define __LPM_dword_tiny__(addr)

 #define __LPM_dword_enhanced__(addr)

+ #define __LPM_float_classic__(addr)

+ #define __LPM_float_tiny__(addr)

« #define __LPM_float_enhanced__(addr)

« #define __LPM(addr) _ LPM_classic__(addr)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference 334

* #define __ LPM_word(addr) _ LPM_word_classic__(addr)

* #define __ LPM_dword(addr) _ LPM_dword_classic__(addr)

« #define __LPM_float(addr) _ LPM_float_classic__(addr)

+ #define pgm_read_byte_near(address_short) __ LPM((uint16_t)(address_short))

+ #define pgm_read_word_near(address_short) _ LPM_word((uint16_t)(address_short))
« #define pgm_read_dword_near(address_short) _ LPM_dword((uint16_t)(address_short))
* #define pgm_read_float_near(address_short) _ LPM_float((uint16_t)(address_short))
* #define __ELPM_classic__(addr)

 #define __ ELPM_enhanced__(addr)

 #define _ ELPM_xmega__(addr)

+ #define _ ELPM_word_classic__(addr)

 #define __ ELPM_word_enhanced__(addr)

+ #define _ ELPM_word_xmega__(addr)

« #define __ELPM_dword_classic__(addr)

« #define _ ELPM_dword_enhanced__ (addr)

« #define _ ELPM_dword_xmega__(addr)

+ #define _ ELPM_float_classic__(addr)

+ #define _ ELPM_float_enhanced__(addr)

« #define _ ELPM_float_xmega__(addr)

 #define _ ELPM(addr) _ ELPM_classic__(addr)

« #define _ ELPM_word(addr) _ ELPM_word_classic__(addr)

« #define _ ELPM_dword(addr) _ ELPM_dword_classic__(addr)

« #define _ ELPM_float(addr) _ ELPM_float_classic__(addr)

« #define pgm_read_byte far(address_long) _ ELPM((uint32_t)(address_long))

« #define pgm_read_word_far(address_long) __ ELPM_word((uint32_t)(address_long))
« #define pgm_read_dword_far(address_long) _ ELPM_dword((uint32_t)(address_long))
+ #define pgm_read_float_far(address_long) _ ELPM_float((uint32_t)(address_long))

« #define pgm_read_byte(address_short) pgm_read_byte near(address_short)

« #define pgm_read_word(address_short) pgm_read_word_near(address_short)

« #define pgm_read_dword(address_short) pgm_read_dword_near(address_short)

« #define pgm_read_float(address_short) pgm_read_float_near(address_short)

« #define pgm_get_far_address(var)

Typedefs

+ typedef void PROGMEM prog_void

+ typedef char PROGMEM prog_char

* typedef unsigned char PROGMEM prog_uchar
* typedef int8_t PROGMEM prog_int8_t

« typedef uint8_t PROGMEM prog_uint8_t

* typedef int16_t PROGMEM prog_int16_t

« typedef uint16_t PROGMEM prog_uint16_t
* typedef int32_t PROGMEM prog_int32_t

* typedef uint32_t PROGMEM prog_uint32_t
* typedef int64_t PROGMEM prog_int64_t

* typedef uint64_t PROGMEM prog_uint64 _t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference 335

Functions

+ const void * memchr_P (const void %, int __val, size_t __len)

+ int mememp_P (const void *, const void *, size_t) _ ATTR_PURE__

+ void * memccpy_P (void *, const void *, int __val, size_t)

+ void * memcpy_P (void *, const void *, size_t)

+ void x memmem_P (const void x, size_t, const void *, size t) _ ATTR_PURE__
 const void * memrchr_P (const void %, int __val, size_t __len)

» char x strcat_P (char *, const char x)

» const char x strchr_P (const char x, int __val)

+ const char * strchrnul_P (const char x, int __val)

* int stremp_P (const char *, const char x) _ ATTR_PURE__

» char x strepy_P (char x, const char x)

« int strcasecmp_P (const char %, const char x) _ ATTR_PURE__

» char x strcasestr_P (const char %, const char x) _ ATTR_PURE__

* size_t strespn_P (const char x__s, const char x__reject) _ ATTR_PURE__
* size_t stricat_P (char x, const char x, size_t)

* size_t stricpy_P (char *, const char *, size_t)

 size_t __strlen_P (const char %)

* size_t strnlen_P (const char *, size_t)

« int strncmp_P (const char x, const char x, size_t) _ ATTR_PURE___

« int strncasecmp_P (const char *, const char x, size_t) _ ATTR_PURE___

« char x strncat_P (char %, const char x, size_t)

« char * strncpy_P (char %, const char x, size_t)

« char x strpbrk_P (const char *__s, const char x__accept) _ ATTR_PURE__
« const char * strrchr_P (const char *, int __val)

« char * strsep_P (char xx__sp, const char «__delim)

* size_t strspn_P (const char *__s, const char x__accept) _ ATTR_PURE___
« char x strstr_P (const char %, const char x) _ ATTR_PURE___

« char * strtok_P (char x__s, const char x__delim)

» char x strtok_rP (char x__s, const char «__delim, char xx__last)

* size_t strlen_PF (uint_farptr_t src)

* size_t strnlen_PF (uint_farptr_t src, size_t len)

 void x memcpy_PF (void xdest, uint_farptr_t src, size_t len)

 char x strcpy_PF (char xdest, uint_farptr_t src)

» char x strncpy_PF (char xdest, uint_farptr_t src, size_t len)

» char x strcat_PF (char xdest, uint_farptr_t src)

* size_t stricat_PF (char xdst, uint_farptr_t src, size_t siz)

» char x strncat_PF (char xdest, uint_farptr_t src, size_t len)

* int strcmp_PF (const char xs1, uint_farptr_t s2) _ ATTR_PURE__

* int strncmp_PF (const char xs1, uint_farptr_t s2, size_tn) _ ATTR_PURE__
« int strcasecmp_PF (const char xs1, uint_farptr_ts2) _ ATTR_PURE__

« int strncasecmp_PF (const char xs1, uint_farptr_t s2, size_tn) _ ATTR_PURE__
» char x strstr_PF (const char xs1, uint_farptr_t s2)

« size_t stricpy_PF (char xdst, uint_farptr_t src, size_t siz)

 int memcmp_PF (const void *, uint_farptr_t, size_t) _ ATTR_PURE__

« _ attribute__ ((__always_inline__)) static inline size_t strlen_P(const char xs)
« static size_t strlen_P (const char xs)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference 336

24.35.1 Detailed Description
24.35.2 Macro Definition Documentation

24.35.2.1 #define __ELPM _classic_( addr )

Value:

(__extension__ ({ \
uint32_t __addr32 = (uint32_t) (addr); \
uint8_t __ result; \
__asm__ \
( \

"out %2, %C1" "\n\t" \
"mov r3l, %B1" "\n\t" \
"mov r30, %A1"™ "\n\t" \
"elpm" "\n\t" \
"mov %0, r0" "\n\t" \

: "=r" (__result) \
"r" (__addr32), \

"I" (_SFR_IO_ADDR (RAMPZ)) \

"ro", "r30", "r3iv \

) \
__result; \

1)

24.35.2.2 #define __ELPM_dword_enhanced__( addr )

Value:

(__extension__ ({ \
uint32_t __addr32 = (uint32_t) (addr); \
uint32_t __ result; \
__asm__ \
( \

"out %2, $CI"  M\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" ™\n\t" \
"elpm %BO, Z+" ™\n\t" \
"elpm %CO, z+" ™\n\t" \
"elpm $DO0, 2z" "\n\t" \

: "=r" (__result) \
"r" (__addr32), \

"I" (_SFR_IO_ADDR (RAMPZ)) \
np3Qn, mp3w \

) ; \
__result; \

)

24.35.2.3 #define __ELPM_dword xmega__( addr )

Value:

"out %2, __tmp_reg__ "

: "=r" (__result)
"r" (__addr32),
"I" (_SFR_IO_ADDR (RAMPZ))
"r30M, "r31n

(__extension__ ({ \
uint32_t __addr32 = (uint32_t) (addr); \
uint32_t _ result; \
__asm__ \
( \

"in __tmp_reg__, %2" "\n\t" \
"out %2, %C1"  "\n\t" \
"movw r30, $1" "\n\t" \
"elpm %A0, Zz+" "\n\t" \
"elpm %B0, Z+" "\n\t" \
"elpm %CO, Zz+" ™\n\t" \
"elpm %DO, 2Z" "\n\t" \
\
\
\
\
\

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference 337

|

H

0]

%)

o

=

s
—

24.35.2.4 #define _ELPM_enhanced_( addr )
Value:

(__extension__ ({
uint32_t __addr32 = (uint32_t) (addr); \

uint8_t _ result; \
__asm__ \
( \
"out %2, $C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %0, Z+" "\n\t" \

: "=r" (__result) \

"r" (__addr32), \

"I" (_SFR_IO_ADDR (RAMPZ)) \
"r30", "r3in \

)i \
_ _result; \

)

24.35.2.5 #define __ELPM_float_enhanced_( addr )

Value:

(__extension__ ({ \
uint32_t _ _addr32 = (uint32_t) (addr); \
float __result; \
__asm__ \
( \

"out %2, C1"  "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" "\n\t" \
"elpm %BO, Zz+" "\n\t" \
"elpm %CO, Z+" ™\n\t" \
"elpm %DO, ZzZ" "\n\t" \

: "=r" (__result) \
"r" (__addr32), \

"I" (_SFR_IO_ADDR (RAMPZ)) \
"r30", "r31i" \

)i \
__result; \

1)

24.35.2.6 #define __ELPM_float_xmega_( addr )

Value:

(__extension__ ({ \
uint32_t __addr32 = (uint32_t) (addr); \
float __result; \
__asm__ \
( \

"in __tmp_reg__, %2" "\n\t" \
"out %2, %C1"  "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Zz+" "\n\t" \
"elpm %BO, Z+" ™\n\t" \
"elpm %CO, Z+" ™\n\t" \
"elpm %D0, 2Z" "\n\t" \
"out %2, tmp_reg__" \

: "=r" (__result) \
"r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
np3Qn, mp3w \

)i \
__result; \

)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference

338

24.35.2.7 #define __ELPM_word_classic_( addr )

Value:

(__extension__ ({
uint32_t __addr32 =
uintl6_t __ result;

(uint32_t) (addr) ;

__asm__

(
"out %2, $C1"  "\n\t"
"mov r31, $B1" "\n\t"
"mov r30, $AL" "\n\t"
"elpm" "\n\t"
"mov %A0, rO" "\n\t"
"in ro, %20 "\n\t"
"adiw r30, 1" "\n\t"
"adc r0, __zero_reg__" "\n\t"
"out %2, r0" "\n\t"
"elpm" "\n\t"
"mov %BO, r0" "\n\t"

"=r" (__result)

"r" (__addr32),

"I" (_SFR_IO_ADDR (RAMPZ))
npQn, Wp30M, "p3in

)i
__result;

)

24.35.2.8 #define __ELPM_word_enhanced_( addr )

Value:

(__extension__ ({
uint32_t _ addr32 =
uintl6_t __ result;
__asm__

(

"out %2, %C1"
"movw r30, %1"
"elpm %A0, Z+"
"elpm %BO, Z"

(uint32_t) (addr)

"\n\t"
"\n\t "
"\n\t "

"\n\t n

"=r" (__result)

"r" (__addr32)

’

"I" (_SFR_IO_ADDR (RAMPZ))

"r30n, "p31n
)i
__result;

1))

-

P e N

_—

P g

\

_—

24.35.2.9 #define __ELPM_word_xmega_( addr )

Value:

(__extension__ ({
uint32_t __addr32 =
uintl6_t __result;
__asm__

(

"in __tmp_reg_ ,
"out %2, %C1"
"movw r30, %1"
"elpm %A0, Z+"
"elpm %BO, Z"

(uint32_t) (addr)

52" "\n\t"
"\n\t i
"\H\t i
"\n\t "
"\n\t "

"out %2, __tmp_reg__ "
: "=r" (__result)

"r" (__addr32)

’

"I" (_SFR_IO_ADDR (RAMPZ))

"r30m, "p31n
)i
__result;

1)

-

P N

_—

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference

339

24.35.2.10 #define __ELPM_xmega_( addr )

Value:

(__extension__ ({ \
uint32_t __addr32 = (uint32_t) (addr); \
uint8_t __ result; \
__asm__ \
( \

"in __tmp_reg__, %2" "\n\t" \
"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %0, Z+" "\n\t" \
"out %2, tmp_reg__" \
"=r" (__result) \

"rv (__addr32), \

"I" (_SFR_IO_ADDR (RAMPZ)) \
np3Qn, mp3w \

)i \
__result; \

)

24.35.2.11 #define __LPM_classic__( addr )

Value:

(__extension__ ({ \
uintl6_t __addrl6e = (uintlé_t) (addr); \
uint8_t __ result; \
__asm__ \

\

"lpm" "\n\t" \
"mov %0, r0" "\n\t" \
"=r" (__result) \

"z (__addrlé) \

"ro" \

)i \
__result; \

)

24.35.2.12 #define __LPM_dword_classic_( addr )

Value:

(__extension__ ({ \
uintl6_t __addrlé = (uintlé_t) (addr); \
uint32_t _ result; \
__asm__ \
( \

"lpm" m\n\t" \
"mov %A0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %BO, rO" "\n\t" \
"adiw r30, 1"  "\n\t" \
"lpm" "\n\t" \
"mov %CO0, r0" "\n\t" \
"adiw r30, 1"  "\n\t" \
"lpm" "\n\t" \
"mov %D0, rO" "\n\t" \
"=r" (__result), "=z" (__addrlé6) \

"1v (__addrl6) \

"ro" \

)i \
__result; \

1)

24.35.2.13 #define __LPM_dword_enhanced_( addr )

Value:

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference

340

(__extension__ ({ \
uintl6_t __addrlé = (uintlé6_t) (addr); \
uint32_t _ result; \
__asm__ \
( \

"lpm %A0, Z+" "\n\t" \
"lpm %BO0, Z+" "\n\t" \
"lpm %CO, zZ+" "\n\t" \
"lpm %DO0, 2" "\n\t" \
"=r" (__result), "=z" (__addrle6) \

"1" (__addrle) \

)i \
__result; \

1))

24.35.2.14 #define __LPM_dword_tiny_( addr )

Value:

(__extension__ ({ \
uintl6_t _ addrl6 = (uintl6_t) (addr) +

__AVR_TINY_PM_BASE_ADDRESS_ ; \
uint32_t _ result; \
__asm__ \
( \

"1d $A0, z+" "\t \

"ld $BO, z+" "\t \

"ld $C0, z+" "\t \

"1d %DO, z" "\n\t" \
"=r" (__result), "=z" (__addrl6) \

"1" (__addrle) \

)i \
__result; \

1)

24.35.2.15 #define __LPM_enhanced_( addr )
Value:

(__extension__ ({
uintl6_t __addrl6 = (uintl6_t) (addr); \
uint8_t _ result;
__asm__
(

"lpm %0, z" "\n\t"
"=r" (__result)
"z" (__addrle)
)i
__result;

e

)

24.35.2.16 #define __LPM float_classic_( addr )

Value:

(__extension__ ({ \
uintl6_t __addrlé = (uintlé6_t) (addr); \
float __result; \
__asm__ \
( \

"1pm" "\n\tn \
"mov %A0, rO" "\n\t" \
"adiw r30, 1" "\n\t" \
"Ipn” "a\er \
"mov %B0, rO" "\n\t" \
"adiw r30, 1"  "\n\t" \
"lpm" "\n\tn \
"mov %CO, rO" "\n\t" \
"adiw r30, 1"  "\n\t" \
"Tpn” e \

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference

341

"mov %DO, rO" "\n\t"
"=r" (__result), "=z" (__addrle6)
"1" (__addrle)
npeQn
)i
__result;

)

e

24.35.2.17 #define __LPM _float_enhanced__( addr )

Value:

(__extension__ ({
uintl6_t __addrl6 = (uintl6_t) (addr);
float __ _result;
__asm__
(
"lpm %A0, Z+" "\n\t"
"lpm %BO, Z+" "\n\t"
"lpm %CO, zZ+" "\n\t"
"lpm %DO, Z" "\n\t"
"=r" (__result), "=z" (__addrlé6)
"1" (__addrle)
)i
__result;

)

24.35.2.18 #define __LPM float_tiny__( addr )
Value:

(__extension__ ({
uintl6_t _ addrl6 = (uintlé6_t) (addr) +
__AVR_TINY_PM_BASE_ADDRESS_ ; \

float __result;
__asm__
(
"ld $A0, z+" "\n\t"
"ld $BO, z+" "\n\t"
"ld %C0, z+" "\n\t"
"ld sDO, z" "\n\t"
"=r" (__result), "=z" (__addrle)
"1" (__addrle)
)i
__result;

1)

24.35.2.19 #define __LPM_tiny_( addr )
Value:

(__extension__ ({
uintl6_t _ addrl6 = (uintlé6_t) (addr) +

__AVR_TINY_PM BASE_ADDRESS__ ; \
uint8_t __result;
asm

(
"ld %0, z" "\n\t"
"=r" (__result)
"z" (__addrle)
)i
__result;

e

1)

24.35.2.20 #define __LPM_word _classic_( addr )

Value:

e

e~

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.35 pgmspace.h File Reference

342

(__extension__ ({ \
uintl6_t __addrlé = (uintlé6_t) (addr); \
uintlé6_t __ result; \
__asm___ \
( \

"1pm" m\n\t" \
"mov %A0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %B0, r0" "\n\t" \
"=r" (__result), "=z" (__addrlé) \

"l" (__addrlé) \

"ro" \

)i \
__result; \

)

24.35.2.21 #define __LPM_word_enhanced_( addr )

Value:

(__extension__ ({ \
uintl6_t _ _addrl6e = (uintlé6_t) (addr); \
uintl6_t __ result; \
__asm__ \
( \

"lpm $A0, Z+" "\n\t" \
"lpm %BO, Al "\n\t" \
"=r" (__result), "=z" (__addrlé) \

"1" (__addrlé) \

)i \
__result; \

1)

24.35.2.22 #define __LPM_word_tiny_( addr )

Value:

(__extension__ ({ \
uintl6_t _ addrlé = (uintlé6_t) (addr) +

__AVR_TINY_PM BASE_ADDRESS__; \
uintl6_t __ result; \
__asm__ \
( \

"ld %R0, z+" "\n\t" \

"1d $BO, z" "M\n\t" \
"=r" (__result), "=z" (__addrlé) \

"1" (__addrlé) \

)i \
__result; \

1))

24.35.2.23 #define pgm_get far_address( var )

Value:

(1

uint_farptr_t tmp;

__asm__ __volatile_ (
"1di %$A0, lo8(%s1)"
"1di $BO, hig(s1)"
"1ldi %C0, hh8(s1)"
"clr sDO"
"=d" (tmp)

"p" (& (var))

tmp;

\
\

eler
Meler
Meler
Meler
\
\

—

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.36 power.h File Reference 343

24.36 power.h File Reference

Macros

- #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_t)((1<<CLKPSO0)|(1<<CLKPS1)|(1<<CLKP-
S2)|(1<<CLKPS3)))

Enumerations
» enum clock_div_t {
clock_div_1 =0, clock_div_2 = 1, clock_div_4 = 2, clock_div_8 = 3,
clock_div_16 =4, clock_div_32 =5, clock_div_64 = 6, clock_div_128 = 7,
clock_div_256 = 8}

Functions

« static __inline__ void clock_prescale_set (clock_div_t) __ attribute_ ((__always_inline__))

24.36.1 Detailed Description

24.37 setbaud.h File Reference

Macros

« #define BAUD_TOL 2

« #define UBRR_VALUE
« #define UBRRL_VALUE
« #define UBRRH_VALUE
« #define USE_2X 0

24.37.1 Detailed Description

24.38 setjmp.h File Reference

Macros

* #define __ATTR_NORETURN__ __ attribute_ ((__noreturn__))

Functions

* int setjmp (jmp_buf __jmpb)
+ void longjmp (jmp_buf __jmpb, int __ret) _ ATTR_NORETURN__

24.38.1 Detailed Description

24.39 signature.h File Reference

24.39.1 Detailed Description

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.40 sleep.h File Reference

344

24.40 sleep.h File Reference

Macros

+ #define _SLEEP_CONTROL_REG MCUCR
+ #define _SLEEP_ENABLE_MASK _BV(SE)

Functions

+ void sleep_enable (void)

* void sleep_disable (void)

+ void sleep_cpu (void)

+ void sleep_mode (void)

+ void sleep_bod_disable (void)

24.40.1

24.41

Macros

Detailed Description

stdint.h File Reference

+ #define __USING_MINTS8 0
« #define __ CONCATenate(left, right) left ## right
« #define _ CONCAT(left, right) _ CONCATenate(left, right)

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACRQOS is defined before < stdint.-
h> is included

#define INT8_MAX 0x7f

#define INT8_MIN (-INT8_MAX - 1)

#define UINT8_MAX (__CONCAT(INT8_MAX, U) * 2U + 1U)
#define INT16_MAX Ox7fff

#define INT16_MIN (-INT16_MAX - 1)

#define UINT16_MAX (__CONCAT(INT16_MAX, U) x 2U + 1U)
#define INT32_MAX Ox7fffffffL

#define INT32_MIN (-INT32_MAX - 1L)

#define UINT32_MAX (__CONCAT(INT32_MAX, U) * 2UL + 1UL)
#define INT64_MAX Ox7fffffffffffffffLL

#define INT64_MIN (-INT64_MAX - 1LL)

#define UINT64_MAX (__CONCAT(INT64_MAX, U) * 2ULL + 1ULL)

Limits of minimum-width integer types

#define INT_LEAST8_MAX INT8_MAX
#define INT_LEAST8_MIN INT8_MIN
#define UINT_LEAST8_MAX UINT8_MAX
#define INT_LEAST16_MAX INT16_MAX
#define INT_LEAST16_MIN INT16_MIN
#define UINT_LEAST16_MAX UINT16_MAX
#define INT_LEAST32_MAX INT32_MAX
#define INT_LEAST32_MIN INT32_MIN
#define UINT_LEAST32_MAX UINT32_MAX
#define INT_LEAST64_MAX INT64_MAX

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.41 stdint.h File Reference 345

+ #define INT_LEAST64_MIN INT64_MIN
+ #define UINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

- #define INT_FAST8_MAX INT8_MAX
#define INT_FAST8_MIN INT8_MIN
#define UINT_FAST8_MAX UINT8_MAX
#define INT_FAST16_MAX INT16_MAX
#define INT_FAST16_MIN INT16_MIN
#define UINT_FAST16_MAX UINT16_MAX
#define INT_FAST32_MAX INT32_MAX
#define INT_FAST32_MIN INT32_MIN
#define UINT_FAST32_MAX UINT32_MAX
#define INT_FAST64 MAX INT64_MAX
#define INT_FAST64_MIN INT64_MIN
#define UINT_FAST64_MAX UINT64_MAX

Limits of integer types capable of holding object pointers

+ #define INTPTR_MAX INT16_MAX
+ #define INTPTR_MIN INT16_MIN
+ #define UINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

+ #define INTMAX_MAX INT64_MAX
+ #define INTMAX_MIN INT64_MIN
+ #define UINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACRQOS is defined before < stdint.-
h> is included

+ #define PTRDIFF_MAX INT16_MAX

+ #define PTRDIFF_MIN INT16_MIN

+ #define SIG_ATOMIC_MAX INT8_MAX

+ #define SIG_ATOMIC_MIN INT8_MIN

+ #define SIZE_MAX (__CONCAT(INT16_MAX, U))

Macros for integer constants

C++ implementations should define these macros only when __STDC_CONSTANT_MACROS is defined before
<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined as integer constant without
suffix

« #define INT8_C(value) ((int8_t) value)

#define UINT8_C(value) ((uint8_t) _ CONCAT (value, U))
#define INT16_C(value) value

#define UINT16_C(value) _ CONCAT(value, U)

#define INT32_C(value) _ CONCAT (value, L)

#define UINT32_C(value) _ CONCAT(value, UL)
#define INT64_C(value) _ CONCAT(value, LL)

#define UINT64_C(value) _ CONCAT (value, ULL)
#define INTMAX_C(value) _ CONCAT(value, LL)
#define UINTMAX_C(value) __ CONCAT (value, ULL)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.41 stdint.h File Reference 346

Typedefs

Exact-width integer types
Integer types having exactly the specified width

« typedef signed char int8_t

* typedef unsigned char uint8_t

typedef signed int int16_t

typedef unsigned int uint16_t

typedef signed long int int32_t

typedef unsigned long int uint32_t
typedef signed long long int int64_t
typedef unsigned long long int uint64_t

Integer types capable of holding object pointers

These allow you to declare variables of the same size as a pointer.

* typedef int16_t intptr_t
* typedef uint16_t uintptr_t

Minimum-width integer types

Integer types having at least the specified width

« typedef int8_tint_least8 t

* typedef uint8_t uint_least8_t
typedef int16_t int_least16_t
typedef uint16_t uint_least16_t
typedef int32_t int_least32_t
typedef uint32_t uint_least32_t
typedef int64_t int_least64_t
typedef uint64_t uint_least64_t

Fastest minimum-width integer types

Integer types being usually fastest having at least the specified width

* typedef int8_t int_fast8 t

* typedef uint8_t uint_fast8_t
typedef int16_t int_fast16_t
typedef uint16_t uint_fast16_t
typedef int32_t int_fast32_t
typedef uint32_t uint_fast32_t
typedef int64_t int_fast64_t
typedef uint64_t uint_fast64_t

Greatest-width integer types
Types designating integer data capable of representing any value of any integer type in the corresponding signed or
unsigned category

* typedef int64_t intmax_t
* typedef uint64_t uintmax_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.42 stdio.h File Reference

347

24.41.1

Detailed Description

24.42 stdio.h File Reference

Macros

#define __need_NULL
#define __need_size_t
#define FILE struct __file
#define stdin (__iob[0])
#define stdout (__iob[1])
#define stderr (__iob[2])
#define EOF (-1)

#define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)

#define fdev_get_udata(stream) ((stream)->udata)
#define fdev_setup_stream(stream, put, get, rwflag)
#define _FDEV_SETUP_READ __SRD

#define _FDEV_SETUP_WRITE __ SWR

#define _FDEV_SETUP_RW (__SRD|__SWR)
#define _FDEV_ERR (-1)

#define _FDEV_EOF (-2)

#define FDEV_SETUP_STREAM(put, get, rwflag)
#define fdev_close()

#define putc(__c, __stream) fputc(__c, __stream)
#define putchar(__c) fputc(__c, stdout)

#define getc(__stream) fgetc(__stream)

#define getchar() fgetc(stdin)

#define SEEK_SET 0

#define SEEK_CUR 1

#define SEEK_END 2

Functions

int fclose (FILE *__stream)

int vfprintf (FILE *__stream, const char x__fmt, va_list __ap)
int vfprintf_P (FILE x__stream, const char x__fmt, va_list __ap)
int fputc (int __c, FILE x__stream)

int printf (const char *__fmt,...)

int printf_P (const char x__fmt,...)

int vprintf (const char x__fmt, va_list __ap)

int sprintf (char x__s, const char x__fmt,...)

int sprintf_P (char *__s, const char x__fmt,...)

int snprintf (char *__s, size_t __n, const char x__fmt,...)

int snprintf_P (char x__s, size_t __n, const char *__fmt,...)

int vsprintf (char x__s, const char x__fmt, va_list ap)

int vsprintf_P (char *__s, const char x__fmt, va_list ap)

int vsnprintf (char *__s, size_t __n, const char x__fmt, va_list ap)

int vsnprintf_P (char x__s, size_t __n, const char x__fmt, va_list ap)

int fprintf (FILE *__stream, const char x__fmt,...)
int fprintf_P (FILE x__stream, const char *__fmt,...)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.43 stdlib.h File Reference 348

« int fputs (const char x__str, FILE x__stream)

« int fputs_P (const char x__str, FILE x__stream)

* int puts (const char *__str)

* int puts_P (const char x__str)

* size_t fwrite (const void x__ptr, size_t __size, size_t __nmemb, FILE *x__stream)
« int fgetc (FILE x__stream)

* int ungetc (int __c, FILE x__stream)

 char x fgets (char x__str, int __size, FILE x__stream)

* char x gets (char x__str)

* size_t fread (void x__ptr, size_t __size, size_t __nmemb, FILE x__stream)
« void clearerr (FILE x__stream)

« int feof (FILE *__stream)

« int ferror (FILE *__stream)

« int viscanf (FILE x__stream, const char x__fmt, va_list __ap)

« int vfscanf_P (FILE x__stream, const char x__fmt, va_list __ap)
+ int fscanf (FILE *__stream, const char *__fmt,...)

« int fscanf_P (FILE x__stream, const char x__fmt,...)

« int scanf (const char *__fmt,...)

« int scanf_P (const char *__fmt,...)

« int vscanf (const char «__fmt, va_list __ap)

« int sscanf (const char «__buf, const char *__fmt,...)

« int sscanf_P (const char x__buf, const char «__fmt,...)

« int fflush (FILE xstream)

24.42.1 Detailed Description

24.43 stdlib.h File Reference

Data Structures
* struct div_t
* struct Idiv_t
Macros

* #define __need_ NULL
 #define __need_size_t

« #define __need_wchar_t

* #define __ ptr_t void

« #define RAND_MAX 0x7FFF

Typedefs

* typedef int(x _ compar_fn_t )(const void *, const void )

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.43 stdlib.h File Reference

349

Functions

void abort (void) _ ATTR_NORETURN__
int abs (int __i)
long labs (long __i)

void * bsearch (const void *__key, const void x__base, size_t _ nmemb, size_t __size, int(x__compar)(const

void *, const void x))

div_tdiv (int __num, int__denom) __asm__("__divmodhi4")

Idiv_t Idiv (long __num, long __denom) __asm__("__divmodsi4")

void gsort (void *__base, size_t __nmemb, size_t __size, _ compar_fn_t __compar)
long strtol (const char x__nptr, char x*__endptr, int __base)

unsigned long strtoul (const char x__nptr, char **__endptr, int __base)
long atol (const char x__s) _ ATTR_PURE__

int atoi (constchar x__s) _ ATTR_PURE__

void exit (int __status) _ ATTR_NORETURN__

void * malloc (size_t __size) _ ATTR_MALLOC__

void free (void *__ptr)

void * calloc (size_t __nele, size_t __size) _ ATTR_MALLOC__

void * realloc (void *__ptr, size_t __size) _ ATTR_MALLOC__

double strtod (const char «__nptr, char x*__endptr)

double atof (const char *__nptr)

int rand (void)

void srand (unsigned int __seed)

int rand_r (unsigned long *__ctx)

Variables

size_t __malloc_margin
char * __malloc_heap_start
char * __malloc_heap_end

Non-standard (i.e. non-ISO C) functions.

#define RANDOM_MAX 0x7FFFFFFF

char x itoa (int __val, char x__s, int __radix)

char x ltoa (long int __val, char x__s, int __radix)

char x utoa (unsigned int __val, char x__s, int __radix)
char x ultoa (unsigned long int __val, char x__s, int __radix)
long random (void)

void srandom (unsigned long __seed)

long random_r (unsigned long *__ctx)

Conversion functions for double arguments.

Note that these functions are not located in the default library, 1ibc. a, but in the mathematical library, 1ibm.a. So
when linking the application, the —1m option needs to be specified.

#define DTOSTR_ALWAYS_SIGN 0x01 /x put '+ or’’ for positives */

#define DTOSTR_PLUS_SIGN 0x02 /x put '+ rather than *’ x/

#define DTOSTR_UPPERCASE 0x04 /* put 'E’ rather e’ */

char x dtostre (double __val, char x__s, unsigned char __prec, unsigned char __flags)
char x dtostrf (double __val, signed char __width, unsigned char __prec, char x__s)

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.44 strcasecmp.S File Reference 350

24.43.1 Detailed Description

24.44 strcasecmp.S File Reference
24.44.1 Detailed Description

24.45 strcasecmp_P.S File Reference
24.45.1 Detailed Description

24.46 strcasestr.S File Reference
24.46.1 Detailed Description

24.47 strcat.S File Reference
24.47.1 Detailed Description

24.48 strcat_P.S File Reference
24.48.1 Detailed Description

24.49 strchr.S File Reference
24.49.1 Detailed Description

24.50 strchr_P.S File Reference
24.50.1 Detailed Description

24,51 strchrnul.S File Reference
24.51.1 Detailed Description

24.52 strchrnul_P.S File Reference
24.52.1 Detailed Description

24.53 stremp.S File Reference
24.53.1 Detailed Description

24.54 stremp_P.S File Reference
24.54.1 Detailed Description

24.55 strcpy.S File Reference

24.55.1 Detailed Description

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.56 strcpy_P.S File Reference 351

24.56 strcpy_P.S File Reference

24.56.1 Detailed Description

24,57 strespn.S File Reference

24.57.1 Detailed Description

24.58 strcspn_P.S File Reference

24.58.1 Detailed Description

24,59 strdup.c File Reference
Functions

« char * strdup (const char xs1)

24.59.1 Detailed Description

24.60 string.h File Reference

Macros

« #define __need NULL

» #define __need_size _t

» #define _ ATTR_PURE__ __ attribute_ ((__pure_))
* #define _FFS(x)

Functions

* int ffs (int __val)

« int ffsl (long __val)

« int ffsll (long long __val)

+ void * memccpy (void *, const void , int, size_t)

* void * memchr (const void *, int, size t) _ ATTR_PURE__

* int memcmp (const void *, const void x, size_t) _ ATTR_PURE___

+ void * memcpy (void *, const void *, size_t)

+ void x* memmem (const void x, size_t, const void x, size_ t) _ ATTR_PURE__
+ void x memmove (void *, const void *, size_t)

« void * memrchr (const void *, int, size_t) _ ATTR_PURE__

» void * memset (void x, int, size_t)

» char x strcat (char %, const char x)

* char * strchr (const char *, int) _ ATTR_PURE__

 char x strchrnul (const char %, int) _ ATTR_PURE__

« int strcmp (const char *, const char x) _ ATTR_PURE__

» char x strcpy (char %, const char x)

* int strcasecmp (const char %, const char x) _ ATTR_PURE___

» char x strcasestr (const char x, const char x) _ ATTR_PURE___

* size_t strcspn (const char x__s, const char x__reject) _ ATTR_PURE___

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.61

stricat.S File Reference

352

24.60.1

24.61

24.61.1

24.62

24.62.1

24.63

24.63.1

24.64

24.64.1

24.65

24.65.1

24.66

24.66.1

24.67

24.67.1

char * strdup (const char xs1)

size_t stricat (char %, const char %, size_t)

size_t stricpy (char %, const char *, size_t)

size_t strlen (const char ) _ ATTR_PURE___

char x striwr (char x)

char * strncat (char *, const char x, size_t)

int strncmp (const char *, const char x, size_t) _ ATTR_PURE___
char * strncpy (char *, const char x, size_t)

int strncasecmp (const char *, const char %, size_t) _ ATTR_PURE__
size_t strnlen (const char x*, size_t) _ ATTR_PURE_

char x strpbrk (const char *__s, const char x__accept) _ ATTR_PURE___

char x strrchr (const char x, int) _ ATTR_PURE_

char * strrev (char )

char x strsep (char *x, const char x)

size_t strspn (const char x__s, const char x__accept) _ ATTR_PURE__
char x strstr (const char x, const char x) _ ATTR_PURE__

char x strtok (char *, const char )

char x strtok_r (char *, const char *, char *x)

char x strupr (char *)

Detailed Description
stricat.S File Reference
Detailed Description
strlcat_P.S File Reference
Detailed Description
strlcpy.S File Reference
Detailed Description
stricpy_P.S File Reference
Detailed Description
strlen.S File Reference
Detailed Description
strlen_P.S File Reference
Detailed Description

strlwr.S File Reference

Detailed Description

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.68

strncasecmp.S File Reference

353

24.68

24.68.1

24.69

24.69.1

24.70

24.70.1

24.71

24.71141

24.72

24.72.1

24.73

24.73.1

24.74

24.74.1

24.75

24.75.1

24.76

24.76.1

24.77

24.77.1

24.78

24.78.1

24.79

24.79.1

24.80

strncasecmp.S File Reference
Detailed Description
strncasecmp_P.S File Reference
Detailed Description

strncat.S File Reference
Detailed Description
strncat_P.S File Reference
Detailed Description
strncmp.S File Reference
Detailed Description
strncmp_P.S File Reference
Detailed Description

strncpy.S File Reference
Detailed Description
strncpy_P.S File Reference
Detailed Description

strnlen.S File Reference
Detailed Description
strnlen_P.S File Reference
Detailed Description

strpbrk.S File Reference
Detailed Description
strpbrk_P.S File Reference
Detailed Description

strrchr.S File Reference

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.81 strrchr_P.S File Reference

354

24.80.1 Detailed Description

24.81 strrchr_P.S File Reference
24.81.1 Detailed Description

24.82 strrev.S File Reference
24.82.1 Detailed Description

24.83 strsep.S File Reference
24.83.1 Detailed Description

24.84 strsep_P.S File Reference
24.84.1 Detailed Description

24.85 strspn.S File Reference
24.85.1 Detailed Description

24.86 strspn_P.S File Reference
24.86.1 Detailed Description

24.87 strstr.S File Reference
24.87.1 Detailed Description

24.88 strstr_P.S File Reference
24.88.1 Detailed Description

24.89 strtok.c File Reference
Functions

« char * strtok (char *s, const char xdelim)

Variables

« static char * p

24.89.1 Detailed Description

24.90 strtok_P.c File Reference

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.91 strtok_r.S File Reference

355

Functions

 char x strtok_P (char xs, PGM_P delim)

24.90.1

24.91

24.91.1

24,92

24.92.1

24.93

24.93.1

24.94

Macros

Detailed Description
strtok_r.S File Reference
Detailed Description
strtok_rP.S File Reference
Detailed Description

strupr.S File Reference
Detailed Description

twi.h File Reference

TWSR values

Mnemonics:

TW_MT_xxx - master transmitter

TW_MR_xxx - master receiver

TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

#define TW_START 0x08

#define TW_REP_START 0x10

#define TW_MT SLA ACK 0x18

#define TW_MT_SLA_NACK 0x20

#define TW_MT_DATA ACK 0x28

#define TW_MT_DATA_NACK 0x30

#define TW_MT_ARB_LOST 0x38

#define TW_MR_ARB_LOST 0x38

#define TW_MR_SLA_ACK 0x40

#define TW_MR_SLA_NACK 0x48

#define TW_MR_DATA_ACK 0x50

#define TW_MR_DATA_NACK 0x58

#define TW_ST_SLA_ACK 0xA8

#define TW_ST_ARB_LOST SLA_ACK 0xB0
#define TW_ST_DATA_ACK 0xB8

#define TW_ST_DATA_NACK 0xCO

#define TW_ST_LAST DATA 0xC8

#define TW_SR_SLA_ACK 0x60

#define TW_SR_ARB_LOST SLA_ACK 0x68
#define TW_SR_GCALL_ACK 0x70

#define TW_SR_ARB_LOST GCALL_ACK 0x78
#define TW_SR_DATA_ACK 0x80

#define TW_SR_DATA_NACK 0x88

#define TW_SR_GCALL_DATA ACK 0x90

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



24.95 wdt.h File Reference 356

+ #define TW_SR_GCALL_DATA_NACK 0x98

« #define TW_SR_STOP 0xA0

« #define TW_NO_INFO 0xF8

+ #define TW_BUS_ERROR 0x00

* #define TW_STATUS_MASK

« #define TW_STATUS (TWSR & TW_STATUS_MASK)

R/~W bit in SLA+R/W address field.

+ #define TW_READ 1
* #define TW_WRITE 0

24.94.1 Detailed Description

24.95 wdt.h File Reference

Macros

 #define wdt_reset() __asm__ __ volatile__ ("wdr")
« #define _WD_PS3_MASK 0x00

« #define _WD_CONTROL_REG WDT
« #define _WD_CHANGE_BIT WDCE
« #define wdt_enable(value)

« #define wdt_disable()

» #define WDTO_15MS 0

* #define WDTO_30MS 1

* #define WDTO_60MS 2

« #tdefine WDTO_120MS 3

« #tdefine WDTO_250MS 4

* #define WDTO_500MS 5

« #define WDTO_1S 6

* #define WDTO_2S 7

« #define WDTO_4S 8

* #define WDTO_8S 9

24.95.1 Detailed Description

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



Index

<alloca.h>: Allocate space in the stack, 90
alloca, 90

<assert.h>: Diagnostics, 91
assert, 91

<avr/boot.h>: Bootloader Support Utilities, 159
boot_is_spm_interrupt, 160
boot_lock_bits_set, 160
boot_lock_bits_set_safe, 161
boot_lock_fuse_bits_get, 161
boot_page_erase, 161
boot_page_erase_safe, 161
boot_page_fill, 161
boot_page_fill_safe, 162
boot_page_write, 162
boot_page_write_safe, 162
boot_rww_busy, 162
boot_rww_enable, 162
boot_rww_enable_safe, 162
boot_signature_byte get, 162
boot_spm_busy, 163
boot_spm_busy_wait, 163
boot_spm_interrupt_disable, 163
boot_spm_interrupt_enable, 163
GET_LOCK_BITS, 163

<avr/cpufunc.h>: Special AVR CPU functions, 165
_MemoryBarrier, 165
_NOP, 165

<avr/eeprom.h>: EEPROM handling, 166
_EEGET, 167
_EEPUT, 167
_ EEGET, 167
_ EEPUT, 167
EEMEM, 167
eeprom_busy_wait, 167
eeprom_is_ready, 167
eeprom_read_block, 167
eeprom_read_byte, 167
eeprom_read_dword, 168
eeprom_read_float, 168
eeprom_read_word, 168
eeprom_update_block, 168
eeprom_update_byte, 168
eeprom_update_dword, 168
eeprom_update_float, 168
eeprom_update_word, 168
eeprom_write_block, 168
eeprom_write_byte, 168
eeprom_write_dword, 168
eeprom_write_float, 168
eeprom_write_word, 169

<avr/fuse.h>: Fuse Support, 170

<avr/interrupt.h>: Interrupts, 173

BADISR vect, 188
cli, 188
EMPTY_INTERRUPT, 188
ISR, 188
ISR_ALIAS, 188
ISR_ALIASOF, 189
ISR_BLOCK, 189
ISR_NAKED, 189
ISR_NOBLOCK, 189
reti, 189

SIGNAL, 189

sei, 189

<avr/io.h>: AVR device-specific 10 definitions, 191
<avr/lock.h>: Lockbit Support, 192
<avr/pgmspace.h>: Program Space Utilities, 195

memcmp_PF, 201
memcpy_PF, 201

PGM_P, 196
PGM_VOID_P, 198
PROGMEM, 198

PSTR, 198
pgm_read_byte, 196
pgm_read_byte_far, 196
pgm_read_byte_near, 196
pgm_read_dword, 196
pgm_read_dword_far, 197
pgm_read_dword_near, 197
pgm_read_float, 197
pgm_read_float_far, 197
pgm_read_float_near, 197
pgm_read_word, 197
pgm_read_word_far, 197
pgm_read_word_near, 198
prog_char, 198
prog_int16_t, 198
prog_int32_t, 198
prog_int64_t, 199
prog_int8_t, 199
prog_uchar, 199
prog_uint16_t, 199
prog_uint32_t, 200
prog_uinté4_t, 200
prog_uint8_t, 200
prog_void, 200
strcasecmp_PF, 201
strcat_PF, 202
stremp_PF, 202
strcpy_PF, 202
stricat_PF, 202
stricpy_PF, 203



INDEX

358

strlen_PF, 203

strncasecmp_PF, 203

strncat_PF, 204

strncmp_PF, 204

strncpy_PF, 204

strnlen_PF, 205

strstr_PF, 205

strtok_P, 205
<avr/power.h>: Power Reduction Management, 207
<avr/sfr_defs.h>: Special function registers, 258

_BV, 259

bit_is_clear, 259

bit_is_set, 259

loop_until_bit_is_clear, 259

loop_until_bit_is_set, 259
<avr/signature.h>: Signature Support, 260

<avr/sleep.h>: Power Management and Sleep Modes,

261

sleep_cpu, 262

sleep_disable, 262

sleep_enable, 262
<avr/version.h>: avr-libc version macros, 263
<avr/wdt.h>: Watchdog timer handling, 265

WDTO_120MS, 266

WDTO_15MS, 266

WDTO_1S, 267

WDTO_250MS, 267

WDTOQO_2S, 267

WDTO_30MS, 267

WDTOQO_4S, 267

WDTO_500MS, 267

WDTO_60MS, 267

WDTQO_8S, 267

wdt_disable, 266

wdt_enable, 266

wdt_reset, 266
<compat/deprecated.h>: Deprecated items, 282

cbi, 283

enable_external_int, 283

INTERRUPT, 283

inb, 283

inp, 283

outb, 283

outp, 283

sbi, 283

timer_enable_int, 284

<compat/ina90.h>: Compatibility with IAR EWB 3.x, 285

<ctype.h>: Character Operations, 92
isalnum, 92
isalpha, 92
isascii, 92
isblank, 92
iscntrl, 93
isdigit, 93

isgraph, 93
islower, 93
isprint, 93

ispunct, 93
isspace, 93
isupper, 93
isxdigit, 93
toascii, 93

tolower, 93
toupper, 93

<errno.h>: System Errors, 94

EDOM, 94
ERANGE, 94

<inttypes.h>: Integer Type conversions, 95

int_farptr_t, 104
PRIX16, 100
PRIX32, 100
PRIX8, 100
PRIXFAST16, 100
PRIXFAST32, 100
PRIXFASTS, 101
PRIXLEAST16, 101
PRIXLEAST32, 101
PRIXLEASTS, 101
PRIXPTR, 101
PRId16, 97
PRId32, 97
PRId8, 97
PRIAFAST16, 97
PRIJFAST32, 97
PRIAFASTS, 97
PRIALEAST16, 97
PRIALEAST32, 97
PRIALEASTS, 98
PRIAPTR, 98
PRIi16, 98
PRIi32, 98

PRIi8, 98
PRIIFAST16, 98
PRIiIFAST32, 98
PRIIFASTS, 98
PRIILEAST16, 98
PRIILEAST32, 98
PRIILEASTS, 98
PRIiPTR, 98
PRIlo16, 98
PRIlo32, 98
PRIo8, 99
PRIoFAST16, 99
PRIOFAST32, 99
PRIOFASTS, 99
PRIOLEAST16, 99
PRIOLEAST32, 99
PRIOLEASTS, 99

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

359

PRIoPTR, 99
PRIlu16, 99

PRIu32, 99

PRIu8, 99
PRIUFAST16, 99
PRIUFAST32, 99
PRIUFASTS, 99
PRIULEAST16, 100
PRIULEAST32, 100
PRIULEASTS, 100
PRIUPTR, 100
PRIx16, 100
PRIx32, 100

PRIx8, 100
PRIXFAST16, 100
PRIXFAST32, 100
PRIXFASTS, 101
PRIXLEAST16, 101
PRIXLEAST32, 101
PRIXLEASTS, 101
PRIXPTR, 101
SCNd16, 101
SCNd32, 101
SCNdFAST16, 101
SCNdFAST32, 101
SCNdLEAST16, 102
SCNdLEAST32, 102
SCNdPTR, 102
SCNi16, 102
SCNi32, 102
SCNiFAST16, 102
SCNIFAST32, 102
SCNILEAST16, 102
SCNILEAST32, 102
SCNIPTR, 102
SCNo16, 102
SCNo32, 102
SCNoFAST16, 102
SCNoFAST32, 102
SCNoLEAST16, 103
SCNoLEAST32, 103
SCNoPTR, 103
SCNu16, 103
SCNu32, 103
SCNuFAST16, 103
SCNuFAST32, 103
SCNuLEAST16, 103
SCNuLEAST32, 103
SCNuPTR, 103
SCNx16, 103
SCNx32, 103
SCNxFAST16, 103
SCNxFAST32, 103
SCNxLEAST16, 104

SCNxLEAST32, 104
SCNxPTR, 104
uint_farptr_t, 104

<math.h>: Mathematics, 105

acos, 111
acosf, 107
asin, 111
asinf, 107
atan, 111
atan2, 111
atan2f, 107
atanf, 107
cbrt, 111
cbrtf, 107
ceil, 111
ceilf, 107
copysign, 111
copysignf, 107
cos, 111
cosf, 107
cosh, 111
coshf, 107
exp, 111
expf, 107
fabs, 111
fabsf, 107
fdim, 111
fdimf, 108
floor, 111
floorf, 108
fma, 112
fmaf, 108
fmax, 112
fmaxf, 108
fmin, 112
fminf, 108
fmod, 112
fmodf, 108
frexp, 112
frexpf, 108
hypot, 112
hypotf, 108
INFINITY, 108
isfinite, 112
isfinitef, 108
isinf, 112
isinff, 108
isnan, 112
isnanf, 108
Idexp, 112
Idexpf, 108
log, 113
log10, 113
log10f, 108

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

360

logf, 109

Irint, 113

Irintf, 109
Iround, 113
Iroundf, 109
M_1_PI, 109
M_2 PI, 109
M_2_SQRTPI, 109
M_E, 109
M_LN10, 109
M_LN2, 109
M_LOG10E, 109
M_LOG2E, 109
M_PI, 109
M_PI 2,109
M_PIl 4,109
M_SQRT1_2, 110
M_SQRT2, 110
modf, 113
modff, 113
NAN, 110

pow, 113

powf, 110
round, 113
roundf, 110
signbit, 114
signbitf, 110
sin, 114

sinf, 110

sinh, 114

sinhf, 110

sqrt, 114

sqrtf, 110
square, 114
squaref, 110
tan, 114

tanf, 110

tanh, 114
tanhf, 110
trunc, 114
truncf, 110

<setjmp.h>: Non-local goto, 115

longjmp, 115
setjmp, 116

<stdint.h>: Standard Integer Types, 117

INT16_C, 120
INT16_MAX, 120
INT16_MIN, 120
INT32_C, 120
INT32_MAX, 120
INT32_MIN, 120
INT64_C, 120
INT64_MAX, 120
INT64_MIN, 120

INT8_C, 120

INT8_MAX, 120
INT8_MIN, 120
INT_FAST16_MAX, 120
INT_FAST16_MIN, 121
INT_FAST32_MAX, 121
INT_FAST32_MIN, 121
INT_FAST64_MAX, 121
INT_FAST64_MIN, 121
INT_FAST8_MAX, 121
INT_FAST8_MIN, 121
INT_LEAST16_MAX, 121
INT_LEAST16_MIN, 121
INT_LEAST32_MAX, 121
INT_LEAST32_MIN, 121
INT_LEAST64_MAX, 121
INT_LEAST64_MIN, 121
INT_LEAST8 _MAX, 121
INT_LEAST8_MIN, 122
INTMAX_C, 122
INTMAX_MAX, 122
INTMAX_MIN, 122
INTPTR_MAX, 122
INTPTR_MIN, 122
int16_t, 124

int32_t, 124

int64_t, 124

int8_t, 124

int_fast16_t, 124
int_fast32 t, 124
int_fast64 t, 124
int_fast8 t, 124
int_least16_t, 124
int_least32_t, 124
int_least64 _t, 125
int_least8_t, 125
intmax_t, 125

intptr_t, 125
PTRDIFF_MAX, 122
PTRDIFF_MIN, 122
SIG_ATOMIC_MAX, 122
SIG_ATOMIC_MIN, 122
SIZE _MAX, 122
UINT16_C, 122
UINT16_MAX, 122
UINT32_C, 122
UINT32_MAX, 123
UINT64_C, 123
UINT64_MAX, 123
UINT8_C, 123
UINT8_MAX, 123
UINT_FAST16_MAX, 123
UINT_FAST32_MAX, 123
UINT_FAST64_MAX, 123

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

361

UINT_FAST8_MAX, 123
UINT_LEAST16_MAX, 123
UINT_LEAST32_MAX, 123
UINT_LEAST64_MAX, 123
UINT_LEAST8_MAX, 123
UINTMAX_C, 123
UINTMAX_MAX, 124
UINTPTR_MAX, 124
uint16_t, 125

uint32_t, 125

uinté4_t, 125

uint8_t, 125

uint_fast16_t, 125
uint_fast32_t, 125
uint_fast64_t, 125
uint_fast8 t, 126
uint_least16_t, 126
uint_least32_t, 126
uint_least64_t, 126
uint_least8 t, 126
uintmax_t, 126

uintptr_t, 126

<stdio.h>: Standard 10 facilities, 127

_FDEV_EOF, 130
_FDEV_ERR, 130
_FDEV_SETUP_RW, 130
clearerr, 132

EOF, 130

FILE, 131

fclose, 132
fdev_close, 131
fdev_get_udata, 131
fdev_set_udata, 131
fdev_setup_stream, 131
fdevopen, 132

feof, 133

ferror, 133

fflush, 133

fgetc, 133

fgets, 133

fprintf, 133
fprintf_P, 133

fputc, 133

fputs, 133

fputs_P, 134

fread, 134

fscanf, 134
fscanf P, 134
fwrite, 134

getc, 131

getchar, 131

gets, 134

printf, 134

printf_P, 134

putc, 131
putchar, 132
puts, 134
puts_P, 134
scanf, 134
scanf P, 134
snprintf, 135
snprintf_P, 135
sprintf, 135
sprintf_P, 135
sscanf, 135
sscanf P, 135
stderr, 132
stdin, 132
stdout, 132
ungetc, 135
vfprintf, 135
viprintf_P, 137
vfscanf, 137
viscanf P, 139
vprintf, 139
vscanf, 139
vsnprintf, 139
vsnprintf_P, 139
vsprintf, 139
vsprintf_P, 139

<stdlib.h>: General utilities, 140

__compar_fn_t, 142
__malloc_heap_end, 148
__malloc_heap_start, 148
__malloc_margin, 148
abort, 142

abs, 142

atof, 142

atoi, 142

atol, 142

bsearch, 142

calloc, 143
DTOSTR_PLUS_SIGN, 141

DTOSTR_UPPERCASE, 141

div, 143

dtostre, 143
dtostrf, 143

exit, 143

free, 143

itoa, 143

labs, 144

Idiv, 144

ltoa, 144

malloc, 144
gsort, 145
RAND_MAX, 141
RANDOM_MAX, 141
rand, 145

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



memmem, 151
memmove, 151
memrchr, 152
memset, 152
strcasecmp, 152
strcasestr, 152
strcat, 152
strchr, 153
strchrnul, 153
stremp, 153
strcpy, 153
strcspn, 153
strdup, 154
strlcat, 154
strlcpy, 154
strlen, 155
striwr, 155
strncasecmp, 155
strncat, 155
strncmp, 155
strncpy, 156
strnlen, 156
strpbrk, 156
strrchr, 156
strrev, 156
strsep, 157
strspn, 157
strstr, 157
strtok, 157
strtok_r, 158
strupr, 158

<util/atomic.h> Atomically and Non-Atomically Executed

Code Blocks, 268
ATOMIC_BLOCK, 269

TW_BUS_ERROR, 279
TW_MR_ARB_LOST, 279
TW_MR_DATA _ACK, 279
TW_MR_SLA_ACK, 279
TW_MR_SLA_NACK, 279
TW_MT_ARB_LOST, 279
TW_MT_DATA ACK, 279
TW_MT_SLA ACK, 279
TW_MT_SLA NACK, 279
TW_NO_INFO, 279
TW_READ, 279
TW_REP_START, 280
TW_SR_DATA ACK, 280
TW_SR_SLA ACK, 280
TW_SR_STOP, 280
TW_ST _DATA ACK, 280
TW_ST _SLA ACK, 281
TW_START, 281
TW_STATUS, 281
TW_STATUS_MASK, 281
TW_WRITE, 281
$PATH, 48
$PREFIX, 48
--prefix, 48
_BvV
<avr/sfr_defs.h>: Special function registers, 259
_EEGET
<avr/eeprom.h>: EEPROM handling, 167
_EEPUT
<avr/eeprom.h>: EEPROM handling, 167
_FDEV_EOF
<stdio.h>: Standard 1O facilities, 130
_FDEV_ERR
<stdio.h>: Standard IO facilities, 130

INDEX 362
rand_r, 145 ATOMIC_FORCEON, 269
random, 145 NONATOMIC_BLOCK, 269
random_r, 145 <util/crc16.h>: CRC Computations, 271
realloc, 145 _crc16_update, 271
srand, 146 _crc_ccitt_update, 272
srandom, 146 _crc_ibutton_update, 272
strtod, 146 _crc_xmodem_update, 273
strtol, 146 <util/delay_basic.h>: Basic busy-wait delay loops, 274
strtoul, 146 _delay_loop_1, 274
ultoa, 147 _delay_loop_2, 274
utoa, 147 <util/parity.h>: Parity bit generation, 275

<string.h>: Strings, 149 parity_even_bit, 275
_FFS, 150 <util/setbaud.h>: Helper macros for baud rate calcula-
ffs, 150 tions, 276
ffsl, 150 BAUD_TOL, 277
ffsll, 150 UBRR_VALUE, 277
memccpy, 150 UBRRH_VALUE, 277
memchr, 151 UBRRL_VALUE, 277
memcmp, 151 USE_2X, 277
memcpy, 151 <util/twi.h>: TWI bit mask definitions, 278

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

363

_FDEV_SETUP_RW
<stdio.h>: Standard 10 facilities, 130

_FFS
<string.h>: Strings, 150

_MemoryBarrier
<avr/cpufunc.h>: Special AVR CPU functions, 165

_NOP
<avr/cpufunc.h>: Special AVR CPU functions, 165

_ EEGET
<avr/eeprom.h>: EEPROM handling, 167

__EEPUT
<avr/eeprom.h>: EEPROM handling, 167

__ELPM classic___
pgmspace.h, 336

_ ELPM_dword_enhanced___
pgmspace.h, 336

__ ELPM_dword_xmega___
pgmspace.h, 336

_ ELPM_enhanced__
pgmspace.h, 337

__ELPM_float_enhanced_
pgmspace.h, 337

__ELPM_float_xmega___
pgmspace.h, 337

_ ELPM_word_classic___
pgmspace.h, 337

__ELPM_word_enhanced___
pgmspace.h, 338

_ ELPM_word_xmega_
pgmspace.h, 338

_ ELPM_xmega__
pgmspace.h, 338

__ LPM_classic___
pgmspace.h, 339

_ LPM_dword_classic___
pgmspace.h, 339

__LPM_dword_enhanced___
pgmspace.h, 339

__LPM_dword_tiny_
pgmspace.h, 340

_ LPM_enhanced___
pgmspace.h, 340

__LPM_float_classic__
pgmspace.h, 340

__LPM float_enhanced
pgmspace.h, 341

__ LPM_float_tiny___
pgmspace.h, 341

__ LPM_tiny__
pgmspace.h, 341

__LPM_word_classic___
pgmspace.h, 341

_ LPM_word_enhanced___
pgmspace.h, 342

_ LPM_word_tiny

pgmspace.h, 342
__boot_lock bits_set

boot.h, 321
__boot _lock bits_set_alternate

boot.h, 321
__boot_page_erase_alternate

boot.h, 322
__boot_page_erase_extended

boot.h, 322
__boot_page_erase_normal

boot.h, 322
__boot_page_fill_alternate

boot.h, 323
__boot_page_fill_extended

boot.h, 323
__boot_page_fill_normal

boot.h, 323
__boot_page_write_alternate

boot.h, 324
__boot_page_write_extended

boot.h, 324
__boot_page_write_normal

boot.h, 324
__boot_rww_enable

boot.h, 324
__boot_rww_enable_alternate

boot.h, 325
__compar_fn_t

<stdlib.h>: General utilities, 142
__malloc_heap_end

<stdlib.h>: General utilities, 148
__malloc_heap_start

<stdlib.h>: General utilities, 148
__malloc_margin

<stdlib.n>: General utilities, 148
_crc16_update

<util’crc16.h>: CRC Computations, 271
_crc_ccitt_update

<util/crc16.h>: CRC Computations, 272
_crc_ibutton_update

<util/crc16.h>: CRC Computations, 272
_crc_xmodem_update

<util’crc16.h>: CRC Computations, 273
_delay_loop_1

<util/delay_basic.h>: Basic busy-wait delay loops,

274

_delay_loop_2

<util/delay_basic.h>: Basic busy-wait delay loops,

274

A more sophisticated project, 303
A simple project, 290
ATOMIC_BLOCK

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

364

<util/atomic.h> Atomically and Non-Atomically Exe-

cuted Code Blocks, 269
ATOMIC_FORCEON

<util/atomic.h> Atomically and Non-Atomically Exe-

cuted Code Blocks, 269

abort

<stdlib.h>: General utilities, 142
abs

<stdlib.h>: General utilities, 142
acos

<math.h>: Mathematics, 111
acosf

<math.h>: Mathematics, 107
Additional notes from <avr/sfr_defs.h>, 257
alloca

<alloca.h>: Allocate space in the stack, 90
asin

<math.h>: Mathematics, 111
asinf

<math.h>: Mathematics, 107
assert

<assert.h>: Diagnostics, 91
assert.h, 320
atan

<math.h>: Mathematics, 111
atan2

<math.h>: Mathematics, 111
atan2f

<math.h>: Mathematics, 107
atanf

<math.h>: Mathematics, 107
atof

<stdlib.h>: General utilities, 142
atoi

<stdlib.h>: General utilities, 142
atoi.S, 320
atol

<stdlib.h>: General utilities, 142
atol.S, 320
atomic.h, 320
avrdude, usage, 78
avrprog, usage, 78

BADISR_vect
<avr/interrupt.h>: Interrupts, 188
BAUD_TOL

<util/setbaud.h>: Helper macros for baud rate calcu-

lations, 277
BOOTLOADER_SECTION
<avr/boot.h>: Bootloader Support Utilities, 163
bit_is_clear
<avr/sfr_defs.h>: Special function registers, 259
bit_is_set
<avr/sfr_defs.h>: Special function registers, 259

boot.h, 320

__boot_lock_bits_set, 321

__boot_lock bits_set_alternate, 321

__boot_page_erase_alternate, 322

__boot_page_erase_extended, 322

__boot_page_erase_normal, 322

__boot_page_fill_alternate, 323

__boot_page _fill_extended, 323

__boot_page_fill_normal, 323

__boot_page_write_alternate, 324

__boot_page_write_extended, 324

__boot_page_write_normal, 324

__boot_rww_enable, 324

__boot_rww_enable_alternate, 325
boot_is_spm_interrupt

<avr/boot.h>: Bootloader Support Utilities, 160
boot_lock_bits_set

<avr/boot.h>: Bootloader Support Utilities, 160
boot_lock bits_set_safe

<avr/boot.h>: Bootloader Support Utilities, 161
boot_lock_fuse_bits_get

<avr/boot.h>: Bootloader Support Utilities, 161
boot_page_erase

<avr/boot.h>: Bootloader Support Utilities, 161
boot_page_erase_safe

<avr/boot.h>: Bootloader Support Utilities, 161
boot_page_fill

<avr/boot.h>: Bootloader Support Utilities, 161
boot_page_fill_safe

<avr/boot.h>: Bootloader Support Utilities, 162
boot_page_write

<avr/boot.h>: Bootloader Support Utilities, 162
boot_page_write_safe

<avr/boot.h>: Bootloader Support Utilities, 162
boot_rww_busy

<avr/boot.h>: Bootloader Support Utilities, 162
boot_rww_enable

<avr/boot.h>: Bootloader Support Utilities, 162
boot_rww_enable_safe

<avr/boot.h>: Bootloader Support Utilities, 162
boot_signature_byte get

<avr/boot.h>: Bootloader Support Utilities, 162
boot_spm_busy

<avr/boot.h>: Bootloader Support Utilities, 163
boot_spm_busy_wait

<avr/boot.h>: Bootloader Support Utilities, 163
boot_spm_interrupt_disable

<avr/boot.h>: Bootloader Support Utilities, 163
boot_spm_interrupt_enable

<avr/boot.h>: Bootloader Support Utilities, 163
bsearch

<stdlib.h>: General utilities, 142

calloc

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

365

<stdlib.n>: General utilities, 143
cbi

<compat/deprecated.h>: Deprecated items, 283

cbrt

<math.h>: Mathematics, 111
cbrtf

<math.h>: Mathematics, 107
ceil

<math.h>: Mathematics, 111
ceilf

<math.h>: Mathematics, 107
clearerr

<stdio.h>: Standard IO facilities, 132
cli

<avr/interrupt.h>: Interrupts, 188
Combining C and assembly source files, 287
copysign

<math.h>: Mathematics, 111
copysignf

<math.h>: Mathematics, 107
cos

<math.h>: Mathematics, 111
cosf

<math.h>: Mathematics, 107
cosh

<math.h>: Mathematics, 111
coshf

<math.h>: Mathematics, 107
cpufunc.h, 325
crc16.h, 325
ctype.h, 325

DTOSTR_ALWAYS_SIGN

<stdlib.h>: General utilities, 141
DTOSTR_PLUS_SIGN

<stdlib.h>: General utilities, 141
DTOSTR_UPPERCASE

<stdlib.n>: General utilities, 141
delay_basic.h, 326
Demo projects, 286
disassembling, 293
div

<stdlib.n>: General utilities, 143
div_t, 319

quot, 319

rem, 319
dtostre

<stdlib.n>: General utilities, 143
dtostrf

<stdlib.h>: General utilities, 143

EDOM
<errno.h>: System Errors, 94
EEMEM

<avr/eeprom.h>: EEPROM handling, 167

EMPTY_INTERRUPT

<avr/interrupt.h>:

EOF

Interrupts, 188

<stdio.h>: Standard IO facilities, 130

ERANGE

<errno.h>: System Errors, 94

eeprom_busy_wait
<avr/eeprom.h>:
eeprom_is_ready
<avr/eeprom.h>:
eeprom_read_block
<avr/eeprom.h>:
eeprom_read_byte
<avr/eeprom.h>:
eeprom_read_dword
<avr/eeprom.h>:
eeprom_read_float
<avr/eeprom.h>:
eeprom_read_word
<avr/eeprom.h>:
eeprom_update_block
<avr/eeprom.h>:
eeprom_update_byte
<avr/eeprom.h>:

eeprom_update_dword

<avr/eeprom.h>:
eeprom_update_float
<avr/egprom.h>:
eeprom_update_word
<avr/eeprom.h>:
eeprom_write_block
<avr/eeprom.h>:
eeprom_write_byte
<avr/eeprom.h>:
eeprom_write_dword
<avr/eeprom.h>:
eeprom_write_float
<avr/eeprom.h>:
eeprom_write_word
<avr/eeprom.h>:
enable_external_int

<compat/deprecated.h>: Deprecated items, 283

errno.h, 326

Example using the two-wire interface (TWI), 315

exit

EEPROM handling, 167
EEPROM handling, 167
EEPROM handling, 167
EEPROM handling, 167
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168
EEPROM handling, 168

EEPROM handling, 169

<stdlib.n>: General utilities, 143

exp

<math.h>: Mathematics, 111

expf

<math.h>: Mathematics, 107

FDEV_SETUP_STREAM
<stdio.h>: Standard 10 facilities, 131

FILE

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

366

<stdio.h>
fabs
<math.h>
fabsf
<math.h>
fclose
<stdio.h>
fdev_close
<stdio.h>
fdev_get_udata
<stdio.h>
fdev_set udata
<stdio.h>

: Standard 10 facilities, 131

: Mathematics, 111

. Mathematics, 107

: Standard 1O facilities, 132

: Standard 10 facilities, 131

: Standard 10 facilities, 131

: Standard 10 facilities, 131

fdev_setup_stream

<stdio.h>
fdevopen
<stdio.h>

: Standard IO facilities, 131

: Standard 10 facilities, 132

fdevopen.c, 326

fdim

<math.h>
fdimf

<math.h>
feof

<stdio.h>
ferror

<stdio.h>
fflush

<stdio.h>
ffs

: Mathematics, 111
: Mathematics, 108
: Standard 10 facilities, 133
: Standard 10 facilities, 133

: Standard IO facilities, 133

<string.h>: Strings, 150

ffs.S, 327
ffsl

<string.h>: Strings, 150

ffsl.S, 327
ffsll

<string.h>: Strings, 150

ffsll.S, 327
fgetc

<stdio.h>:

fgets

<stdio.h>:

floor

<math.h>:

floorf

<math.h>:

fma

<math.h>:

fmaf

<math.h>:

fmax

<math.h>:

fmaxf

<math.h>:

fmin

Standard IO facilities, 133

Standard 10 facilities, 133

Mathematics, 111

Mathematics, 108

Mathematics, 112

Mathematics, 108

Mathematics, 112

Mathematics, 108

<math.h>: Mathematics, 112
fminf

<math.h>: Mathematics, 108
fmod

<math.h>: Mathematics, 112
fmodf

<math.h>: Mathematics, 108
fprintf

<stdio.h>: Standard 10 facilities, 133
fprintf_P

<stdio.h>: Standard IO facilities, 133
fputc

<stdio.h>: Standard IO facilities, 133
fputs

<stdio.h>: Standard IO facilities, 133
fputs_P

<stdio.h>: Standard IO facilities, 134
fread

<stdio.h>: Standard 1O facilities, 134
free

<stdlib.h>: General utilities, 143
frexp

<math.h>: Mathematics, 112
frexpf

<math.h>: Mathematics, 108
fscanf

<stdio.h>: Standard IO facilities, 134
fscanf P

<stdio.h>: Standard IO facilities, 134
fuse.h, 327
fwrite

<stdio.h>: Standard IO facilities, 134

GET_LOCK_BITS
<avr/boot.h>: Bootloader Support Utilities, 163
getc
<stdio.h>: Standard IO facilities, 131
getchar
<stdio.h>: Standard |10 facilities, 131
gets
<stdio.h>: Standard IO facilities, 134

hypot

<math.h>: Mathematics, 112
hypotf

<math.h>: Mathematics, 108

INFINITY

<math.h>: Mathematics, 108
INT16_C

<stdint.h>: Standard Integer Types, 120
INT16_MAX

<stdint.h>: Standard Integer Types, 120
INT16_MIN

<stdint.h>: Standard Integer Types, 120

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

367

INT32_C

<stdint.h>: Standard Integer Types, 120
INT32_MAX

<stdint.h>: Standard Integer Types, 120
INT32_MIN

<stdint.h>: Standard Integer Types, 120
INT64_C

<stdint.h>: Standard Integer Types, 120
INT64_MAX

<stdint.h>: Standard Integer Types, 120
INT64_MIN

<stdint.h>: Standard Integer Types, 120
INT8_C

<stdint.h>: Standard Integer Types, 120
INT8_MAX

<stdint.h>: Standard Integer Types, 120
INT8_MIN

<stdint.h>: Standard Integer Types, 120
INT_FAST16_MAX

<stdint.h>: Standard Integer Types, 120
INT_FAST16_MIN

<stdint.h>: Standard Integer Types, 121
INT_FAST32_MAX

<stdint.h>: Standard Integer Types, 121
INT_FAST32_MIN

<stdint.h>: Standard Integer Types, 121
INT_FAST64_MAX

<stdint.h>: Standard Integer Types, 121
INT_FAST64_MIN

<stdint.h>: Standard Integer Types, 121
INT_FAST8_MAX

<stdint.h>: Standard Integer Types, 121
INT_FAST8_MIN

<stdint.h>: Standard Integer Types, 121
INT_LEAST16_MAX

<stdint.h>: Standard Integer Types, 121
INT_LEAST16_MIN

<stdint.h>: Standard Integer Types, 121
INT_LEAST32_MAX

<stdint.h>: Standard Integer Types, 121
INT_LEAST32_MIN

<stdint.h>: Standard Integer Types, 121
INT_LEAST64_MAX

<stdint.h>: Standard Integer Types, 121
INT_LEAST64_MIN

<stdint.h>: Standard Integer Types, 121
INT_LEAST8_MAX

<stdint.h>: Standard Integer Types, 121
INT_LEAST8_MIN

<stdint.h>: Standard Integer Types, 122
INTERRUPT

<compat/deprecated.h>: Deprecated items, 283

INTMAX_C
<stdint.h>: Standard Integer Types, 122

INTMAX_MAX

<stdint.h>: Standard Integer Types, 122
INTMAX_MIN

<stdint.h>: Standard Integer Types, 122
INTPTR_MAX

<stdint.h>: Standard Integer Types, 122
INTPTR_MIN

<stdint.h>: Standard Integer Types, 122
ISR

<avr/interrupt.h>: Interrupts, 188
ISR_ALIAS

<avr/interrupt.h>: Interrupts, 188
ISR_ALIASOF

<avr/interrupt.h>: Interrupts, 189
ISR_BLOCK

<avr/interrupt.n>: Interrupts, 189
ISR_NAKED

<avr/interrupt.h>: Interrupts, 189
ISR_NOBLOCK

<avr/interrupt.h>: Interrupts, 189
inb

<compat/deprecated.h>: Deprecated items, 283

inp

<compat/deprecated.h>: Deprecated items, 283

installation, 47
installation, avarice, 52
installation, avr-libc, 50
installation, avrdude, 51
installation, avrprog, 51
installation, binutils, 49
installation, gcc, 50
Installation, gdb, 51
installation, simulavr, 52
int16_t
<stdint.h>: Standard Integer Types, 124
int32_t
<stdint.h>: Standard Integer Types, 124
inté4_t
<stdint.h>: Standard Integer Types, 124
int8_t
<stdint.h>: Standard Integer Types, 124
int_farptr_t

<inttypes.h>: Integer Type conversions, 104

int_fast16_t

<stdint.h>: Standard Integer Types, 124
int_fast32_t

<stdint.h>: Standard Integer Types, 124
int_fast64 t

<stdint.h>: Standard Integer Types, 124
int_fast8_t

<stdint.h>: Standard Integer Types, 124
int_least16_t

<stdint.h>: Standard Integer Types, 124
int_least32_t

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

368

<stdint.h>:

int_least64_t

<stdint.h>:

int_least8_t

<stdint.h>:

interrupt.h, 327
intmax_t

<stdint.h>:

intptr_t

<stdint.h>:

inttypes.h, 328
io.h, 330
isalnum

<ctype.h>:

isalpha

<ctype.h>:

isascii

<ctype.h>:

isblank

<ctype.h>:

iscntrl

<ctype.h>:

isdigit

<ctype.h>:

isfinite

<math.h>:

isfinitef

<math.h>:

isgraph

<ctype.h>:

isinf

<math.h>:

isinff

<math.h>:

islower

<ctype.h>:

isnan

<math.h>:

isnanf

<math.h>:

isprint

<ctype.h>:

ispunct

<ctype.h>:

isspace

<ctype.h>:

isupper

<ctype.h>:

isxdigit

<ctype.h>:

itoa

<stdlib.h>:

labs

Standard Integer Types, 124
Standard Integer Types, 125

Standard Integer Types, 125

Standard Integer Types, 125

Standard Integer Types, 125

Character Operations, 92
Character Operations, 92
Character Operations, 92
Character Operations, 92
Character Operations, 93
Character Operations, 93
Mathematics, 112
Mathematics, 108
Character Operations, 93
Mathematics, 112
Mathematics, 108
Character Operations, 93
Mathematics, 112
Mathematics, 108
Character Operations, 93
Character Operations, 93
Character Operations, 93
Character Operations, 93
Character Operations, 93

General utilities, 143

<stdlib.h>:
Idexp

<math.h>:
Idexpf

<math.h>:
Idiv

<stdlib.h>:
Idiv_t, 319

quot, 319

rem, 319
lock.h, 330
log

<math.h>:
log10

<math.h>:
log10f

<math.h>:
logf

<math.h>:
longjmp

General utilities, 144

Mathematics, 112

Mathematics, 108

General utilities, 144

Mathematics, 113

Mathematics, 113

Mathematics, 108

Mathematics, 109

<setjmp.h>: Non-local goto, 115
loop_until_bit_is_clear

<avr/sfr_defs.h>: Special function registers, 259

loop_until_bit_is_set

<avr/sfr_defs.h>: Special function registers, 259

Irint

<math.h>:
Irintf

<math.h>:
Iround

<math.h>:
Iroundf

<math.h>:
ltoa

<stdlib.h>:

M_1_PI
<math.h>:
M 2 PI
<math.h>:
M_2_SQRTPI
<math.h>:
M_E
<math.h>:
M_LN10
<math.h>:
M_LN2
<math.h>:
M_LOG10E
<math.h>:
M_LOG2E
<math.h>:
M_PI
<math.h>:

Mathematics, 113

Mathematics, 109

Mathematics, 113

Mathematics, 109

General utilities, 144

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Mathematics, 109

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

M_PI_2

<math.h>: Mathematics, 109
M_PI_4

<math.h>: Mathematics, 109
M_SQRT1_2

<math.h>: Mathematics, 110
M_SQRT2

<math.h>: Mathematics, 110
malloc

<stdlib.h>: General utilities, 144
math.h, 330
memccpy

<string.h>: Strings, 150
memccpy.S, 332
memchr

<string.h>: Strings, 151
memchr.S, 332
memchr_P.S, 332
memcmp

<string.h>: Strings, 151
memcmp.S, 332
memcmp_P.S, 332
memcmp_PF

<avr/pgmspace.h>: Program Space Ultilities, 201
memcmp_PF.S, 332
memcpy

<string.h>: Strings, 151
memcpy.S, 332
memcpy_P.S, 332
memcpy_PF

<avr/pgmspace.h>: Program Space Utilities, 201
memmem

<string.h>: Strings, 151
memmem.S, 332
memmove

<string.h>: Strings, 151
memmove.S, 333
memrchr

<string.h>: Strings, 152
memrchr.S, 333
memrchr_P.S, 333
memset

<string.h>: Strings, 152
memset.S, 333
modf

<math.h>: Mathematics, 113
modff

<math.h>: Mathematics, 113

NAN
<math.h>: Mathematics, 110
NONATOMIC_BLOCK

<util/atomic.h> Atomically and Non-Atomically Exe-

cuted Code Blocks, 269

outb

<compat/deprecated.h>: Deprecated items, 283

outp

<compat/deprecated.h>: Deprecated items, 283

PGM_P

<avr/pgmspace.h>: Program Space Utilities, 196

PGM_VOID_P

<avr/pgmspace.h>: Program Space Utilities, 198

PRIX16
<inttypes.h>:
PRIX32
<inttypes.h>:
PRIX8
<inttypes.h>:
PRIXFAST16
<inttypes.h>:
PRIXFAST32
<inttypes.h>:
PRIXFAST8
<inttypes.h>:
PRIXLEAST16
<inttypes.h>:
PRIXLEAST32
<inttypes.h>:
PRIXLEAST8
<inttypes.h>:
PRIXPTR
<inttypes.h>:
PRId16
<inttypes.h>:
PRId32
<inttypes.h>:
PRId8
<inttypes.h>:
PRIJFAST16
<inttypes.h>:
PRIJFAST32
<inttypes.h>:
PRIJFAST8
<inttypes.h>:
PRIALEAST16
<inttypes.h>:
PRIALEAST32
<inttypes.h>:
PRIALEASTS8
<inttypes.h>:
PRIAPTR
<inttypes.h>:
PRIi16
<inttypes.h>:
PRIi32
<inttypes.h>:
PRIi8

Integer Type conversions, 100
Integer Type conversions, 100
Integer Type conversions, 100
Integer Type conversions, 100
Integer Type conversions, 100
Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 97
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98

Integer Type conversions, 98

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

370

<inttypes.h>:

PRIiIFAST16

<inttypes.h>:

PRIIFAST32

<inttypes.h>:

PRIIFAST8

<inttypes.h>:

PRIILEAST16

<inttypes.h>:

PRIILEAST32

<inttypes.h>:

PRIILEAST8

<inttypes.h>:

PRIIPTR

<inttypes.h>:

PRIlo16

<inttypes.h>:

PRIlo32

<inttypes.h>:

PRIo8

<inttypes.h>:

PRIOFAST16

<inttypes.h>:

PRIOFAST32

<inttypes.h>:

PRIOFASTS8

<inttypes.h>:

PRIOLEAST16

<inttypes.h>:

PRIOLEAST32

<inttypes.h>:

PRIOLEASTS8

<inttypes.h>:

PRIoPTR

<inttypes.h>:

PRIu16

<inttypes.h>:

PRIu32

<inttypes.h>:

PRIu8

<inttypes.h>:

PRIUFAST16

<inttypes.h>:

PRIUFAST32

<inttypes.h>:

PRIUFAST8

<inttypes.h>:

PRIULEAST16

<inttypes.h>:

PRIULEAST32

<inttypes.h>:

PRIULEASTS8

<inttypes.h>:

PRIUPTR

Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 98
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 99
Integer Type conversions, 100
Integer Type conversions, 100

Integer Type conversions, 100

<inttypes.h>: Integer Type conversions, 100

PRIx16

<inttypes.h>: Integer Type conversions, 100

PRIx32

<inttypes.h>: Integer Type conversions, 100

PRIx8

<inttypes.h>: Integer Type conversions, 100

PRIXFAST16

<inttypes.h>: Integer Type conversions, 100

PRIXFAST32

<inttypes.h>: Integer Type conversions, 100

PRIXFAST8

<inttypes.h>: Integer Type conversions, 101

PRIXLEAST16

<inttypes.h>: Integer Type conversions, 101

PRIXLEAST32

<inttypes.h>: Integer Type conversions, 101

PRIXLEAST8

<inttypes.h>: Integer Type conversions, 101

PRIXPTR

<inttypes.h>: Integer Type conversions, 101

PROGMEM

<avr/pgmspace.h>:

PSTR

<avr/pgmspace.h>:

PTRDIFF_MAX

Program Space Utilities, 198

Program Space Utilities, 198

<stdint.h>: Standard Integer Types, 122

PTRDIFF_MIN

<stdint.h>: Standard Integer Types, 122

parity.h, 333
parity_even_bit

<util/parity.h>: Parity bit generation, 275

pgm_get_far_address
pgmspace.h, 342
pgm_read_byte

<avr/pgmspace.h>:

pgm_read_byte far

<avr/pgmspace.h>:

pgm_read_byte_near

<avr/pgmspace.h>:

pgm_read_dword

<avr/pgmspace.h>:

pgm_read_dword_far

<avr/pgmspace.h>:

pgm_read_dword_near

<avr/pgmspace.h>:

pgm_read_float

<avr/pgmspace.h>:

pgm_read_float_far

<avr/pgmspace.h>:

pgm_read_float_near

<avr/pgmspace.h>:

pgm_read_word

<avr/pgmspace.h>:

Program Space Utilities, 196
Program Space Utilities, 196
Program Space Utilities, 196
Program Space Utilities, 196
Program Space Utilities, 197
Program Space Utilities, 197
Program Space Utilities, 197
Program Space Utilities, 197
Program Space Utilities, 197

Program Space Utilities, 197

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX 371

pgm_read_word_far
<avr/pgmspace.h>: Program Space Utilities, 197 prog_uint8_t

pgm_read_word_near <avr/pgmspace.h>: Program Space Utilities, 200
<avr/pgmspace.h>: Program Space Utilities, 198 prog_void

pgmspace.h, 333 <avr/pgmspace.h>: Program Space Utilities, 200

<avr/pgmspace.h>: Program Space Utilities, 200

___ELPM classic__, 336
__ELPM_dword_enhanced__, 336
_ ELPM_dword_xmega__, 336
_ ELPM_enhanced__, 337
__ELPM_float_enhanced__, 337
__ELPM_float_xmega__, 337
__ELPM_word_classic__, 337
__ELPM_word_enhanced__, 338
_ ELPM_word_xmega__, 338
_ ELPM_xmega__, 338
_ LPM_classic__, 339
__LPM_dword_classic__, 339
__LPM_dword_enhanced__, 339
__LPM_dword_tiny__, 340
_ LPM_enhanced__, 340
__LPM_float_classic__, 340
__LPM_float_enhanced__, 341
__LPM_float_tiny__, 341
_ LPM tiny_, 341
__ LPM_word_classic__, 341
_ LPM_word_enhanced__, 342
_ LPM_word_tiny__, 342
pgm_get_far_address, 342
pow
<math.h>: Mathematics, 113
power.h, 343
powf
<math.h>: Mathematics, 110
printf
<stdio.h>: Standard IO facilities, 134
printf_P
<stdio.h>: Standard IO facilities, 134
prog_char

<avr/pgmspace.h>: Program Space Utilities, 198

prog_int16_t

<avr/pgmspace.h>: Program Space Utilities, 198

prog_int32_t

<avr/pgmspace.h>: Program Space Utilities, 198

prog_int64_t

putc

<stdio.h>: Standard IO facilities, 131
putchar

<stdio.h>: Standard |O facilities, 132
puts

<stdio.h>: Standard 10 facilities, 134
puts_P

<stdio.h>: Standard IO facilities, 134

gsort

<stdlib.h>: General utilities, 145
quot

div_t, 319

Idiv_t, 319

RAND_MAX

<stdlib.h>: General utilities, 141
RANDOM_MAX

<stdlib.h>: General utilities, 141
rand

<stdlib.h>: General utilities, 145
rand_r

<stdlib.h>: General utilities, 145
random

<stdlib.h>: General utilities, 145
random_r

<stdlib.n>: General utilities, 145
realloc

<stdlib.h>: General utilities, 145
rem

div_t, 319

Idiv_t, 319
reti

<avr/interrupt.h>: Interrupts, 189
round

<math.h>: Mathematics, 113
roundf

<math.h>: Mathematics, 110

SCNd16

<avr/pgmspace.h>:

prog_int8_t

<avr/pgmspace.h>:

prog_uchar

<avr/pgmspace.h>:

prog_uint16_t

<avr/pgmspace.h>:

prog_uint32_t

<avr/pgmspace.h>:

prog_uint64_t

Program Space Utilities, 199
Program Space Utilities, 199
Program Space Utilities, 199
Program Space Utilities, 199

Program Space Utilities, 200

<inttypes.h>:

SCNd32

<inttypes.h>:

SCNdFAST16

<inttypes.h>:

SCNdFAST32

<inttypes.h>:

SCNdLEAST16

<inttypes.h>:

SCNdLEAST32

Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 101
Integer Type conversions, 101

Integer Type conversions, 102

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

372

<inttypes.h>:

SCNdPTR

<inttypes.h>:

SCNi16

<inttypes.h>:

SCNi32

<inttypes.h>:

SCNIFAST16

<inttypes.h>:

SCNIFAST32

<inttypes.h>:

SCNILEAST16

<inttypes.h>:

SCNILEAST32

<inttypes.h>:

SCNiPTR

<inttypes.h>:

SCNo16

<inttypes.h>:

SCNo32

<inttypes.h>:

SCNoFAST16

<inttypes.h>:

SCNoFAST32

<inttypes.h>:

SCNoLEAST16

<inttypes.h>:

SCNOLEAST32

<inttypes.h>:

SCNoPTR

<inttypes.h>:

SCNu16

<inttypes.h>:

SCNu32

<inttypes.h>:

SCNuFAST16

<inttypes.h>:

SCNuFAST32

<inttypes.h>:

SCNuLEAST16

<inttypes.h>:

SCNuLEAST32

<inttypes.h>:

SCNuPTR

<inttypes.h>:

SCNx16

<inttypes.h>:

SCNx32

<inttypes.h>:

SCNxFAST16

<inttypes.h>:

SCNxFAST32

<inttypes.h>:

SCNxLEAST16

Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 102
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103
Integer Type conversions, 103

Integer Type conversions, 103

<inttypes.h>: Integer Type conversions, 104
SCNxLEAST32
<inttypes.h>: Integer Type conversions, 104
SCNxPTR
<inttypes.h>: Integer Type conversions, 104
SIG_ATOMIC_MAX
<stdint.h>: Standard Integer Types, 122
SIG_ATOMIC_MIN
<stdint.h>: Standard Integer Types, 122
SIGNAL
<avr/interrupt.h>: Interrupts, 189
SIZE_MAX
<stdint.h>: Standard Integer Types, 122
sbi
<compat/deprecated.h>: Deprecated items, 283
scanf
<stdio.h>: Standard |0 facilities, 134
scanf_P
<stdio.h>: Standard 10 facilities, 134
sei
<avr/interrupt.h>: Interrupts, 189
setbaud.h, 343
setjmp
<setjmp.h>: Non-local goto, 116
setjmp.h, 343
signature.h, 343
signbit
<math.h>: Mathematics, 114
signbitf
<math.h>: Mathematics, 110
sin
<math.h>: Mathematics, 114
sinf
<math.h>: Mathematics, 110
sinh
<math.h>: Mathematics, 114
sinhf
<math.h>: Mathematics, 110
sleep.h, 344
sleep_cpu
<avr/sleep.h>:
Modes, 262
sleep_disable
<avr/sleep.h>:
Modes, 262
sleep_enable
<avr/sleep.h>:
Modes, 262

Power Management and Sleep

Power Management and Sleep

Power Management and Sleep

snprintf

<stdio.h>: Standard IO facilities, 135
snprintf_P

<stdio.h>: Standard 10 facilities, 135
sprintf

<stdio.h>: Standard IO facilities, 135

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX 373
sprintf_P strcmp_PF

<stdio.h>: Standard |0 facilities, 135 <avr/pgmspace.h>: Program Space Ultilities, 202
sqrt strcpy

<math.h>: Mathematics, 114 <string.h>: Strings, 153
sqrtf strcpy.S, 350

<math.h>: Mathematics, 110 strcpy_P.S, 351
square strcpy_PF

<math.h>: Mathematics, 114 <avr/pgmspace.h>: Program Space Ultilities, 202
squaref strcspn

<math.h>: Mathematics, 110 <string.h>: Strings, 153
srand strcspn.S, 351

<stdlib.h>: General utilities, 146 strcspn_P.S, 351
srandom strdup

<stdlib.h>: General utilities, 146 <string.h>: Strings, 154
sscanf strdup.c, 351

<stdio.h>: Standard IO facilities, 135
sscanf P

<stdio.h>: Standard IO facilities, 135
stderr

<stdio.h>: Standard IO facilities, 132
stdin

<stdio.h>: Standard IO facilities, 132
stdint.h, 344
stdio.h, 347
stdlib.h, 348
stdout

<stdio.h>: Standard IO facilities, 132
strcasecmp

<string.h>: Strings, 152
strcasecmp.S, 350
strcasecmp_P.S, 350
strcasecmp_PF

<avr/pgmspace.h>: Program Space Utilities, 201
strcasestr

<string.h>: Strings, 152
strcasestr.S, 350
strcat

<string.h>: Strings, 152
strcat.S, 350
strcat_P.S, 350
strcat_ PF

<avr/pgmspace.h>: Program Space Utilities, 202
strchr

<string.h>: Strings, 153
strchr.S, 350
strchr_P.S, 350
strchrnul

<string.h>: Strings, 153
strchrnul.S, 350
strchrnul_P.S, 350
strcmp

<string.h>: Strings, 153
strcmp.S, 350
strcmp_P.S, 350

string.h, 351
stricat

<string.h>: Strings, 154

stricat.S, 352
stricat_P.S, 352
stricat_PF

<avr/pgmspace.h>: Program Space Utilities, 202

strlcpy

<string.h>: Strings, 154

strlcpy.S, 352
strlcpy_P.S, 352
stricpy_PF

<avr/pgmspace.h>: Program Space Utilities, 203

strlen

<string.h>: Strings, 155

strlen.S, 352
strlen_P.S, 352
strlen_PF

<avr/pgmspace.h>: Program Space Utilities, 203

striwr

<string.h>: Strings, 155

strlwr.S, 352
strncasecmp

<string.h>: Strings, 155

strncasecmp.S, 353
strncasecmp_P.S, 353
strncasecmp_PF

<avr/pgmspace.h>: Program Space Ultilities, 203

strncat

<string.h>: Strings, 155

strncat.S, 353
strncat_P.S, 353
strncat_PF

<avr/pgmspace.h>: Program Space Utilities, 204

strncmp

<string.h>: Strings, 155

strncmp.S, 353
strncmp_P.S, 353
strncmp_PF

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

374

<avr/pgmspace.h>: Program Space Utilities, 204
strncpy

<string.h>: Strings, 156
strncpy.S, 353
strncpy_P.S, 353
strncpy_PF

<avr/pgmspace.h>: Program Space Utilities, 204
strnlen

<string.h>: Strings, 156
strnlen.S, 353
strnlen_P.S, 353
strnlen_PF

<avr/pgmspace.h>: Program Space Ultilities, 205
strpbrk

<string.h>: Strings, 156
strpbrk.S, 353
strpbrk_P.S, 353
strrchr

<string.h>: Strings, 156
strrchr.S, 353
strrchr_P.S, 354
strrev

<string.h>: Strings, 156
strrev.S, 354
strsep

<string.h>: Strings, 157
strsep.S, 354
strsep_P.S, 354
strspn

<string.h>: Strings, 157
strspn.S, 354
strspn_P.S, 354
strstr

<string.h>: Strings, 157
strstr.S, 354
strstr_ P.S, 354
strstr_PF

<avr/pgmspace.h>: Program Space Utilities, 205
strtod

<stdlib.h>: General utilities, 146
striok

<string.h>: Strings, 157
strtok.c, 354
strtok_P

<avr/pgmspace.h>: Program Space Ultilities, 205
strtok_P.c, 354
strtok_r

<string.h>: Strings, 158
strtok_r.S, 355
strtok_rP.S, 355
strtol

<stdlib.h>: General utilities, 146
strtoul

<stdlib.h>: General utilities, 146

strupr

<string.h>: Strings, 158
strupr.S, 355
supported devices, 1

TW_BUS_ERROR

<util/twi.h>: TWI bit mask definitions, 279

TW_MR_ARB_LOST

<util/twi.h>: TWI bit mask definitions, 279

TW_MR_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MR_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MR_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MR_SLA_NACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MT_ARB_LOST

<util/twi.h>: TWI bit mask definitions, 279

TW_MT_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MT_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MT_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 279

TW_MT_SLA_NACK

<util/twi.h>: TWI bit mask definitions, 279

TW_NO_INFO

<util/twi.h>: TWI bit mask definitions, 279

TW_READ

<util/twi.h>: TWI bit mask definitions, 279

TW_REP_START

<util/twi.h>: TWI bit mask definitions, 280

TW_SR_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 280

TW_SR_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 280

TW_SR_GCALL_ACK

<util/twi.h>: TWI bit mask definitions, 280

TW_SR_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 280

TW_SR_STOP

<util/twi.h>: TWI bit mask definitions, 280

TW_ST_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 280

TW_ST _DATA_NACK

<util/twi.h>: TWI bit mask definitions, 280

TW_ST_LAST_DATA

<util/twi.h>: TWI bit mask definitions, 280

TW_ST_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 281

TW_START

<util/twi.h>: TWI bit mask definitions, 281

TW_STATUS

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX

375

<util/twi.n>: TWI bit mask definitions, 281
TW_STATUS MASK

<util/twi.n>: TWI bit mask definitions, 281
TW_WRITE

<util/twi.h>: TWI bit mask definitions, 281
tan

<math.h>: Mathematics, 114
tanf

<math.h>: Mathematics, 110
tanh

<math.h>: Mathematics, 114
tanhf

<math.h>: Mathematics, 110
timer_enable_int

<compat/deprecated.h>: Deprecated items, 284
toascii

<ctype.h>: Character Operations, 93
tolower

<ctype.h>: Character Operations, 93
tools, optional, 48
tools, required, 48
toupper

<ctype.h>: Character Operations, 93
trunc

<math.h>: Mathematics, 114
truncf

<math.h>: Mathematics, 110
twi.h, 355

UBRR_VALUE
<util/setbaud.h>: Helper macros for baud rate calcu-
lations, 277
UBRRH_VALUE
<util/setbaud.h>: Helper macros for baud rate calcu-
lations, 277
UBRRL_VALUE
<util/setbaud.h>: Helper macros for baud rate calcu-
lations, 277
UINT16_C
<stdint.h>: Standard Integer Types, 122
UINT16_MAX
<stdint.h>:
UINT32_C
<stdint.h>:
UINT32_MAX
<stdint.h>:
UINT64_C
<stdint.h>:
UINT64_MAX
<stdint.h>:
UINT8_C
<stdint.h>:
UINT8_MAX
<stdint.h>:

Standard Integer Types, 122
Standard Integer Types, 122
Standard Integer Types, 123
Standard Integer Types, 123
Standard Integer Types, 123
Standard Integer Types, 123

Standard Integer Types, 123

UINT_FAST16_MAX

<stdint.h>: Standard Integer Types, 123
UINT_FAST32_MAX

<stdint.h>: Standard Integer Types, 123
UINT_FAST64_MAX

<stdint.h>: Standard Integer Types, 123
UINT_FAST8_MAX

<stdint.h>: Standard Integer Types, 123
UINT_LEAST16_MAX

<stdint.h>: Standard Integer Types, 123
UINT_LEAST32_MAX

<stdint.h>: Standard Integer Types, 123
UINT_LEAST64_MAX

<stdint.h>: Standard Integer Types, 123
UINT_LEAST8_MAX

<stdint.h>: Standard Integer Types, 123
UINTMAX_C

<stdint.h>: Standard Integer Types, 123
UINTMAX_MAX

<stdint.h>: Standard Integer Types, 124
UINTPTR_MAX

<stdint.h>: Standard Integer Types, 124
USE_2X

<util/setbaud.h>: Helper macros for baud rate calcu-

lations, 277

uint16_t

<stdint.h>: Standard Integer Types, 125
uint32_t

<stdint.h>: Standard Integer Types, 125
uint64_t

<stdint.h>: Standard Integer Types, 125
uint8_t

<stdint.h>: Standard Integer Types, 125
uint_farptr_t

<inttypes.h>: Integer Type conversions, 104
uint_fast16_t

<stdint.h>: Standard Integer Types, 125
uint_fast32_t

<stdint.h>: Standard Integer Types, 125
uint_fast64 t

<stdint.h>: Standard Integer Types, 125
uint_fast8 t

<stdint.h>: Standard Integer Types, 126
uint_least16_t

<stdint.h>: Standard Integer Types, 126
uint_least32_t

<stdint.h>: Standard Integer Types, 126
uint_least64 t

<stdint.h>: Standard Integer Types, 126
uint_least8_t

<stdint.h>: Standard Integer Types, 126
uintmax_t

<stdint.h>:
uintptr_t

Standard Integer Types, 126

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



INDEX 376

<stdint.h>: Standard Integer Types, 126 wdt_reset

ultoa <avr/wdt.h>: Watchdog timer handling, 266
<stdlib.n>: General utilities, 147

ungetc

<stdio.h>: Standard IO facilities, 135
Using the standard 1O facilities, 309
utoa

<stdlib.h>: General utilities, 147

vfprintf

<stdio.h>: Standard IO facilities, 135
vfprintf_P

<stdio.h>: Standard IO facilities, 137
viscanf

<stdio.h>: Standard IO facilities, 137
viscanf_P

<stdio.h>: Standard 10 facilities, 139
vprintf

<stdio.h>: Standard 10 facilities, 139
vscanf

<stdio.h>: Standard IO facilities, 139
vsnprintf

<stdio.h>: Standard 10 facilities, 139
vsnprintf_P

<stdio.h>: Standard IO facilities, 139
vsprintf

<stdio.h>: Standard 1O facilities, 139
vsprintf_P

<stdio.h>: Standard 10 facilities, 139

WDTO_120MS

<avr/wdt.h>: Watchdog timer handling, 266
WDTO_15MS

<avr/wdt.h>: Watchdog timer handling, 266
WDTO_1S

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_250MS

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_2S

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_30MS

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_4S

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_500MS

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_60MS

<avr/wdt.h>: Watchdog timer handling, 267
WDTO_8S

<avr/wdt.h>: Watchdog timer handling, 267
wdt.h, 356
wdt_disable

<avr/wdt.h>: Watchdog timer handling, 266
wdt_enable

<avr/wdt.h>: Watchdog timer handling, 266

Generated on Fri Aug 17 2012 14:35:26 for avr-libc by Doxygen



	AVR Libc
	Introduction
	General information about this library
	Supported Devices
	avr-libc License

	Toolchain Overview
	Introduction
	FSF and GNU
	GCC
	GNU Binutils
	avr-libc
	Building Software
	AVRDUDE
	GDB / Insight / DDD
	AVaRICE
	SimulAVR
	Utilities
	Toolchain Distributions (Distros)
	Open Source

	Memory Areas and Using malloc()
	Introduction
	Internal vs. external RAM
	Tunables for malloc()
	Implementation details

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Data in Program Space
	Introduction
	A Note On const
	Storing and Retrieving Data in the Program Space
	Storing and Retrieving Strings in the Program Space
	Caveats

	avr-libc and assembler programs
	Introduction
	Invoking the compiler
	Example program
	Pseudo-ops and operators

	Inline Assembler Cookbook
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	How to Build a Library
	Introduction
	How the Linker Works
	How to Design a Library
	Creating a Library
	Using a Library

	Benchmarks
	A few of libc functions.
	Math functions.

	Porting From IAR to AVR GCC
	Introduction
	Registers
	Interrupt Service Routines (ISRs)
	Intrinsic Routines
	Flash Variables
	Non-Returning main()
	Locking Registers

	Building and Installing the GNU Tool Chain
	Building and Installing under Linux, FreeBSD, and Others
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR LibC
	AVRDUDE
	GDB for the AVR target
	SimulAVR
	AVaRICE
	Building and Installing under Windows
	Tools Required for Building the Toolchain for Windows
	Building the Toolchain for Windows

	Using the GNU tools
	Options for the C compiler avr-gcc
	Machine-specific options for the AVR
	Selected general compiler options

	Options for the assembler avr-as
	Machine-specific assembler options
	Examples for assembler options passed through the C compiler

	Controlling the linker avr-ld
	Selected linker options
	Passing linker options from the C compiler


	Compiler optimization
	Problems with reordering code

	Using the avrdude program
	Release Numbering and Methodology
	Release Version Numbering Scheme
	Releasing AVR Libc
	Creating an SVN branch
	Making a release


	Acknowledgments
	Todo List
	Deprecated List
	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	<alloca.h>: Allocate space in the stack
	Detailed Description
	Function Documentation

	<assert.h>: Diagnostics
	Detailed Description
	Macro Definition Documentation

	<ctype.h>: Character Operations
	Detailed Description
	Function Documentation

	<errno.h>: System Errors
	Detailed Description
	Macro Definition Documentation

	<inttypes.h>: Integer Type conversions
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation

	<math.h>: Mathematics
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	<setjmp.h>: Non-local goto
	Detailed Description
	Function Documentation

	<stdint.h>: Standard Integer Types
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation

	<stdio.h>: Standard IO facilities
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	<stdlib.h>: General utilities
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	<string.h>: Strings
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	<avr/boot.h>: Bootloader Support Utilities
	Detailed Description
	Macro Definition Documentation

	<avr/cpufunc.h>: Special AVR CPU functions
	Detailed Description
	Macro Definition Documentation

	<avr/eeprom.h>: EEPROM handling
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	<avr/fuse.h>: Fuse Support
	<avr/interrupt.h>: Interrupts
	Detailed Description
	Macro Definition Documentation

	<avr/io.h>: AVR device-specific IO definitions
	<avr/lock.h>: Lockbit Support
	<avr/pgmspace.h>: Program Space Utilities
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Function Documentation

	<avr/power.h>: Power Reduction Management
	Additional notes from <avr/sfr_defs.h>
	<avr/sfr_defs.h>: Special function registers
	Detailed Description
	Macro Definition Documentation

	<avr/signature.h>: Signature Support
	<avr/sleep.h>: Power Management and Sleep Modes
	Detailed Description
	Function Documentation

	<avr/version.h>: avr-libc version macros
	Detailed Description
	Macro Definition Documentation

	<avr/wdt.h>: Watchdog timer handling
	Detailed Description
	Macro Definition Documentation

	<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks
	Detailed Description
	Macro Definition Documentation

	<util/crc16.h>: CRC Computations
	Detailed Description
	Function Documentation

	<util/delay_basic.h>: Basic busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/parity.h>: Parity bit generation
	Detailed Description
	Macro Definition Documentation

	<util/setbaud.h>: Helper macros for baud rate calculations
	Detailed Description
	Macro Definition Documentation

	<util/twi.h>: TWI bit mask definitions
	Detailed Description
	Macro Definition Documentation

	<compat/deprecated.h>: Deprecated items
	Detailed Description
	Macro Definition Documentation
	Function Documentation

	<compat/ina90.h>: Compatibility with IAR EWB 3.x
	Demo projects
	Detailed Description

	Combining C and assembly source files
	Hardware setup
	A code walkthrough
	The source code

	A simple project
	The Project
	The Source Code
	Compiling and Linking
	Examining the Object File
	Linker Map Files
	Generating Intel Hex Files
	Letting Make Build the Project
	Reference to the source code

	A more sophisticated project
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Using the standard IO facilities
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Example using the two-wire interface (TWI)
	Introduction into TWI
	The TWI example project
	The Source Code


	Data Structure Documentation
	div_t Struct Reference
	Detailed Description
	Field Documentation

	ldiv_t Struct Reference
	Detailed Description
	Field Documentation


	File Documentation
	assert.h File Reference
	Detailed Description

	atoi.S File Reference
	Detailed Description

	atol.S File Reference
	Detailed Description

	atomic.h File Reference
	Detailed Description

	boot.h File Reference
	Detailed Description
	Macro Definition Documentation

	cpufunc.h File Reference
	Detailed Description

	crc16.h File Reference
	Detailed Description

	ctype.h File Reference
	Detailed Description

	delay_basic.h File Reference
	Detailed Description

	errno.h File Reference
	Detailed Description

	fdevopen.c File Reference
	Detailed Description

	ffs.S File Reference
	Detailed Description

	ffsl.S File Reference
	Detailed Description

	ffsll.S File Reference
	Detailed Description

	fuse.h File Reference
	Detailed Description

	interrupt.h File Reference
	Detailed Description

	inttypes.h File Reference
	Detailed Description

	io.h File Reference
	Detailed Description

	lock.h File Reference
	Detailed Description

	math.h File Reference
	Detailed Description

	memccpy.S File Reference
	Detailed Description

	memchr.S File Reference
	Detailed Description

	memchr_P.S File Reference
	Detailed Description

	memcmp.S File Reference
	Detailed Description

	memcmp_P.S File Reference
	Detailed Description

	memcmp_PF.S File Reference
	Detailed Description

	memcpy.S File Reference
	Detailed Description

	memcpy_P.S File Reference
	Detailed Description

	memmem.S File Reference
	Detailed Description

	memmove.S File Reference
	Detailed Description

	memrchr.S File Reference
	Detailed Description

	memrchr_P.S File Reference
	Detailed Description

	memset.S File Reference
	Detailed Description

	parity.h File Reference
	Detailed Description

	pgmspace.h File Reference
	Detailed Description
	Macro Definition Documentation

	power.h File Reference
	Detailed Description

	setbaud.h File Reference
	Detailed Description

	setjmp.h File Reference
	Detailed Description

	signature.h File Reference
	Detailed Description

	sleep.h File Reference
	Detailed Description

	stdint.h File Reference
	Detailed Description

	stdio.h File Reference
	Detailed Description

	stdlib.h File Reference
	Detailed Description

	strcasecmp.S File Reference
	Detailed Description

	strcasecmp_P.S File Reference
	Detailed Description

	strcasestr.S File Reference
	Detailed Description

	strcat.S File Reference
	Detailed Description

	strcat_P.S File Reference
	Detailed Description

	strchr.S File Reference
	Detailed Description

	strchr_P.S File Reference
	Detailed Description

	strchrnul.S File Reference
	Detailed Description

	strchrnul_P.S File Reference
	Detailed Description

	strcmp.S File Reference
	Detailed Description

	strcmp_P.S File Reference
	Detailed Description

	strcpy.S File Reference
	Detailed Description

	strcpy_P.S File Reference
	Detailed Description

	strcspn.S File Reference
	Detailed Description

	strcspn_P.S File Reference
	Detailed Description

	strdup.c File Reference
	Detailed Description

	string.h File Reference
	Detailed Description

	strlcat.S File Reference
	Detailed Description

	strlcat_P.S File Reference
	Detailed Description

	strlcpy.S File Reference
	Detailed Description

	strlcpy_P.S File Reference
	Detailed Description

	strlen.S File Reference
	Detailed Description

	strlen_P.S File Reference
	Detailed Description

	strlwr.S File Reference
	Detailed Description

	strncasecmp.S File Reference
	Detailed Description

	strncasecmp_P.S File Reference
	Detailed Description

	strncat.S File Reference
	Detailed Description

	strncat_P.S File Reference
	Detailed Description

	strncmp.S File Reference
	Detailed Description

	strncmp_P.S File Reference
	Detailed Description

	strncpy.S File Reference
	Detailed Description

	strncpy_P.S File Reference
	Detailed Description

	strnlen.S File Reference
	Detailed Description

	strnlen_P.S File Reference
	Detailed Description

	strpbrk.S File Reference
	Detailed Description

	strpbrk_P.S File Reference
	Detailed Description

	strrchr.S File Reference
	Detailed Description

	strrchr_P.S File Reference
	Detailed Description

	strrev.S File Reference
	Detailed Description

	strsep.S File Reference
	Detailed Description

	strsep_P.S File Reference
	Detailed Description

	strspn.S File Reference
	Detailed Description

	strspn_P.S File Reference
	Detailed Description

	strstr.S File Reference
	Detailed Description

	strstr_P.S File Reference
	Detailed Description

	strtok.c File Reference
	Detailed Description

	strtok_P.c File Reference
	Detailed Description

	strtok_r.S File Reference
	Detailed Description

	strtok_rP.S File Reference
	Detailed Description

	strupr.S File Reference
	Detailed Description

	twi.h File Reference
	Detailed Description

	wdt.h File Reference
	Detailed Description



