
ATasm v1.25
A mostly Mac/65 compatible 6502 cross-assembler

Copyright (c) 1998-2023 Mark Schmelzenbach
email: mschmelzenbach@acm.org or cerebusrc@gmail.com

Introduction
Version History
Chapter 1: ATasm

1.1 Installation
1.2 Usage

Chapter 2: 6502 Assembly
2.1 The Assembler
2.2 Opcode format
2.3 Operand format
2.4 Operators and expressions

Group 1: Parenthesis
Group 2: Unary operators
Group 3: Logical Not
Group 4: Multiplication, division and modulo
Group 5: Addition and subtraction
Group 6: Binary operators
Group 7: Logical comparisons
Group 8
Group 9

Chapter 3 Compiler directives, Conditional assembly, and Macros
3.1 Overview
3.2 *=<addr>
3.3 .DS <word>
3.4 .DC <word> <byte>
3.5 <label> = <expression> or <label> .= <expression>
3.6 .BYTE [+<byte>],<bytes|string|char>
3.7 .DBYTE <words>
3.8 .FLOAT <float>
3.9 .IF <expression>,.ELSEIF <expression>,.ELSE,.ENDIF
3.10 .INCLUDE <filename>
3.11 .INCBIN <filename>
3.12 .ERROR <string>

1

mailto:mschmelzenbach@acm.org
mailto:cerebusrc@gmail.com

3.13 .WARN <string>
3.14 .OPT [NO] <string>
3.15 .LOCAL
3.16 .MACRO <macro name>, .ENDM
3.17 .REPT <word>, .ENDR
3.18 .SET 6, <expression>
3.19 .BANK [<word>,<word>]
3.20 .ALIGN boundary
3.21 .NAME <string>
3.22 JEQ, JNE, JPL, JMI, JCC, JCS, JVC, JVS (long branches)
3.23 Trigonometry value generators
3.24 RUN and INIT address specifiers

Chapter 4: Incompatibilities with Mac/65
Chapter 5: A brief digression on writing ATasm
Chapter 6: Bug reports, Feature Requests and Credits
Appendix A: Summary of 6502 Opcodes
Appendix B: 6502 Addressing modes
Appendix C: Atari "Sally" 6502 Undocumented Opcodes
Appendix D: Licensing

Introduction
ATasm was born out of the desire for a fast, Atari specific cross-assembler. With the
recent advent of some quite complete Atari emulators, I decided to brush the dust off of
some (very) old projects and code a few quick programs. Back in the good old days,
when I was programming on 'real iron,' my favorite assembler was OSS's amazing
Mac/65 cartridge. Sadly, the cartridge was 900 miles away, along with my trusty 130XE.
So, I looked around on the Internet a bit, and found FTe's disk release of Mac/65 (v4.2).
This was usable, but not nearly as nice as the cartridge version. I also found that over the
past few years, I had become used to writing code on a 132x60 character display, with
instant compile times. I decided to use a cross-assembler, since that seemed to fulfill my
requirements. I tried out as6502 from UMich, and Fachat's XA. Although both produced
solid code, neither one had all the Atari specific directives and features I had become
accustomed to using Mac/65.

And so, a few days later, ATasm v0.1 was created. For a long period of time, I continued
using ATasm, adding features to the assembler as I needed them. Since version 0.9,
ATasm has been close enough to the original Mac/65 such that the Mac/65 manual
provides a good overview for ATasm. In fact, this manual is very heavily based on the
original manual. Reading the Mac/65 manual in addition to this document is
recommended, since they develop many more examples in greater detail.

2

If you are familiar with the original product, then you should only need to read chapter 4,
which outlines the known differences between ATasm and Mac/65.

Version History
version 0.90 - initial public release

version 0.91 - added '-x' command-line option, providing initial .XFD support

version 0.92 - added '-u' command-line option, providing undocumented opcodes; also
added Appendix C in the manual

version 0.93 - updated email address, removed some spurious warnings when the .DC
directive was used, fixed a problem with indirect jmp; Thanks to Carsten Strotman
for finding this bug!

version 0.94 - fixed embedded ';' in strings, jmp to zero page locations, mapped
'LDA/STA zero,y => LDA/STA a,y to emulate Mac/65 behavior, a few minor
updates to this document

version 0.95 - fixed an error with .incbin that would result in an extra byte being
stored

version 0.96 - fixed an error with missing lines at end of files, added .OPT ERR/NO
ERR, .OPT OBJ/NO OBJ

version 0.97 - fixed a bug with .incbin introduced in the 0.96

version 1.00 - added several zp, y -> absolute address operators
(sbc/adc/and/eor/ora/cmp); Allowed compilation to addresses >$fd00; Thanks to
Manual Polik for finding these! Fixed problem with immediate value of a comma:
#', Fixed some serious problems with macro definitions; Explicitly released the
package under the GPL.

version 1.01 - added raw binary output, fixed a problem with zp,y

version 1.02 - added include path and define command-line options, new .OPT
directive enabling illegal opcodes, fixed a bug with data commands emitting code
without a set origin; Beginning of a test suite, tweaks to makefile; These changes
were all provided by B. Watson.

version 1.03 - added mapping for zero page JSR, enforce label name restrictions,
added interpretation of #$LABEL (with warnings); These changes were suggested
by Maitthias Reichl.

version 1.04 - fixed some serious problems with macro expansion, added fill byte
command-line parameter, limited display of errors and warnings to one pass only,
initial support of multiple passes to prevent the dreaded "PHASE ERROR", fixed
problem with command-line definitions

3

version 1.05 - added new directives .BANK, .SET 6, and .OPT LIST/NO LIST;
Support for enhanced/single density .ATR files; Preliminary support for Atari++
snapshot files

version 1.06 – applied Maitthias Reichl's patch to allow negative offsets with .SET 6
directives; some internal clean-up regarding predefined directives; allow arithmetic
expressions in REPEAT blocks; Better detection of resized labels. fixed a buffer
overflow problem; added -l option to allow label output; Compiling Windows
executable with mingw.

version 1.07 – introduced .BANKNUM operator; Allow .SET 6 to forward reference
labels; Allow leading underscores in label names; Fixed an error with
command-line defines; Allow character quoting of spaces and semicolons; Allow
comments to start without a preceding space. Fixed local label references inside of
macros or macro parameters.

Version 1.08 – Initial support of list files with -g command-line parameter; Allow
.INCBIN to honor include paths; Missing state files no longer segfault;
Double-forward defines now throw an error rather than silently generate bad code.

Version 1.09 - Contributions by Peter Hinz; Fixed a problem with filename creation
when saving output to an ATR image; Fixed CVE-2019-19785: Stack-based buffer
overflow in the to_comma() function; Fixed CVE-2019-19786: Stack-based buffer
overflow in the parse_expr() function; Fixed CVE-2019-19787: Stack-based buffer
overflow in the get_signed_expression() function; Compiling windows executable
with Clang.

Version 1.10 - Fixes absolute address calculation in the case of lda abs,x ,if the address
was undefined but used an offset like (here+1) the code would place the address
into page 0. Fixed a buffer overflow in aprintf().

Version 1.11 - Fixes buffer overrun in put_float(). Changes the output format of the list
command slightly to allow source level debugging in the Altirra emulator. The list
file has to start with "mads ". Adds support to pass Altirra specific ;##TRACE and
;##ASSERT commands from the source code to the listing file (to be read and
interpreted by Altirra).

Version 1.12 - When listing an assembly via the -g command line parameter, labels not
defined on the same line as an operand where not output at all. This version
outputs the label in its original name (in all caps).

Version 1.13 - Added CC65 header and assembler include file generation switches.
Switch -hc dumps all equates and labels into a C-style header file. Useful when
interfacing with CC65. Each #define is prefixed with the basename of the
assembler file. atasm -hc test.asm will create "test.asm.h" with #define TEST_…
Switch -ha dumps all equates and labels into an atasm style include file. Both -hc
and -ha switches can have their output filenames specified by the switchor if left
out auto-generated by atasm. -hcmy-project.h -hamy-project.inc will generate
"my-project.h" and "my-project.inc"

4

Version 1.14 - Improved the source file and line # tracking for equate and label
definitions. The -hc and -ha switches now dump detailed info on which file and on
which line the definition occurred. -hc and -ha dumps sort their output by the
address and not alphabetically. Added support for labels with '.' in them. cio.cmd
and cio.len are now valid labels. Fixed some Linux compile warnings.

Version 1.15 - Added -hv switch to dump all equates, labels, macro defs and included
source files to the 'plugin.json' file located at the root folder from where atasm
starts searching for source files. This is to be used by the Atasm-Altirra-Bridge
VSCode plugin to allow you to quickly jump to your code. Added
modulo/remainder operator. %% or .MOD. You can now say '.byte 15%%10' and it
will store the value of 5.

Version 1.16 - Added the << and >> shift operators to the expression parser. Code like
this now assembles: lda #1<<4
Fixed a bug in .LST output generator. Filenames were not tracked correctly which
caused source lines to be allocated to the wrong source file. Thank you to Lars
Langhans for reporting this.

Version 1.17 - Added the -hv[clm] option. This allows you to export the list of defined
(c)onstants, (l)abels and (m)acos, together with all the filenames included into your
project to the ‘asm-symbols.json’ file. This is used by the atasm-altirra-bridge
VSCode plugin (https://bit.ly/3ATTHVR) to quickly navigate to parts of your code.

Version 1.18 - Extended the -hv[clm] option with an L option.
l=dumps global symbols (excludes local symbols, those defined with a ? at the
beginning).
L=dumps ALL symbols (global and local)
You can use .OPT NO SYMDUMP to turn off the dumping for constants.

.OPT NO SYMDUMP

.INCLUDE "ANTIC.asm"

.OPT SYMDUMP

First .opt turns off constant tracking. This means all constants created from
then until the ".opt SYMDUMP" will NOT make it into the "asm-symbols.json"
file.

Version 1.19 - Modified the * program counter command to also name a memory
region.

* = $2000 "BOOT"

Will name the region starting at $2000 as "Boot", which will be

dumped after the compile for the vscode extension. Same can be

done via: .REGION "BOOT" directly after the * command.

Added -eval command line option to only do the compile and NOT

5

https://bit.ly/3ATTHVR

write anything to disc.

Slight warning and error format change to make it external parsable.

Version 1.20 - Added the .ELSEIF directive to build easier .IF .ELSEIF .ELSE
.ENDIF control blocks.

Version 1.21 - Fixed the .REF implementation. It will now detect a forward reference
to a label correctly. This is useful in building libraries and excluding code from
them if the functions or data is not being referenced. i.e. If there is no JSR FUNC1
then the code in the .IF block is not generated.

.IF .DEF func1

func1 ...

.ENDIF

Version 1.22 - Added long jump commands JEQ, JNE, JPL, JMI, JCC, JCS, JVC,
JVS. These macro commands are similar to the 6502 branch instructions BEQ,
BNE, BPL, BMI, BCC, BCS, BVC, BVS, but can target the entire 64KB address
space via a jump. If the distance is short and the target is known during the first
assembler pass then the jump is converted into a branch. The assembler spits out
code change suggestions if it finds jumps that could be optimized.

Version 1.24 - Added basic trigonometry functions as dot commands: .sin, .cos. These
can be used in loops to generate trig tables.

Version 1.25 - Added -a / -mac65 option to autobank the code with every program
counter directive. This option will create a memory bank for every program counter
assignment. The banks are not sorted or combined.

Added the .INIT xyz and .RUN xyz directives to set the INITAT and RUNAT
locations during file load.

Chapter 1: ATasm

1.1 Installation
The normal binary distribution will include the following files:

ATasm.txt: this file

atasm.exe: The Windows executable.

src/*.*: The source code for ATasm, including Makefile.

examples/*.m65: example assembly source code

The program should compile cleanly on all UNIX platforms. Simply move into the
source directory and type 'make'. Notice that if you want to merge the resultant object

6

code with Atari800 or WinAtari800 emulator save states, you will also need to get the
ZLIB library. The zlib home page is <http://www.gzip.org/zlib/>

1.2 Usage
Using ATasm is fairly simple. The program is invoked with the following command line
parameters:

atasm [options] <file.m65>

where available options are:
-v: prints assembly trace
-s: prints symbol table
-u: enables undocumented opcodes
-r: saves object code as a raw binary image
-fvalue: set raw binary fill byte to value. This value should be a number between
0-255. Decimal and hexadecimal numbers are accepted.
-m[fname]: defines template emulator state file fname. If the parameter fname is
not provided, ATasm will attempt to use the default state file “statefile.a8s”
-lfname: exports a symbol table (usable by the Atari800 monitor and Altirra
debugger) to fname.
-gfname: exports a list file suitable for source file debugging in Altirra to fname
-xfname: saves object file to .XFD/.ATR disk image fname
-ofname: saves object file to fname
-Dsymbol=value: pre-defines [symbol] to [value]
-Idirectory: search directory for .INCLUDE files
-mae: treats local labels like MAE assembler
-hc[fname]: exports constants/equates and labels to CC65 header file.
-ha[fname]: exports constants/equates and labels to ATasm .include file.
-hv[clmL]: export constants/equates, labels and macro definition info for VSCode
plugin, c=constants, l=global labels, m=macros, L=all labels
-eval: only compile the code (no binary output) but dumps the memory map

The assembly trace and symbol table dump will be sent to stdout. This can be piped to a
file if desired.

Typically, ATasm will generate a single object file 'fname.65o' This file is in Atari's
binary file format, suitable for loading into machine memory via Atari DOS 2.5
command 'L' (or other similar methods).

However, it is also possible to assemble directly into an emulator's memory snapshot.
Versions of the Atari800 emulator (originally by David Firth) greater than 0.9.8g, and
Atari800Win versions greater than 2.5c allow the saving and loading of the machine
state. ATasm can read in a state file, compile the source code and produce a new state file
which can then be loaded directly into the emulator with the 'Load Snapshot' option. This
version of ATasm is compatible with versions 2 and 3 of the state file specification

7

http://www.gzip.org/zlib/

format. As of version 1.05, ATasm can also assemble into the snapshots generated by
Atari++ written by Thomas Richter.

Object code can also be assembled to Atari disk images used by many Atari and SIO
emulators. Disk images can either be in the raw .XFD format or the the more formalized
.ATR format. The disk image must be either a single density or enhanced density disk
formatted with Atari DOS 2.0s, Atari DOS 2.5, or compatible formats.

Ex.:
atasm sample.m65
This will assemble the file sample.m65, and generate an Atari object file 'sample.65o'.

atasm -v -s sample.m65 | more
This will also generate 'sample.65o', but will also dump the symbol table and verbose
assembly output to the paging program 'more'.

atasm -DBASIC -DOSB= -DFOO=128 sample.m65

This too will generate 'sample.65o', but when assembling the following defines will be
observed:
• The label 'BASIC' will have a value of 1
• The label 'OSB' will have a value of 0
• The label 'FOO' will have a value of 128
Values specified on the command-line must be numbers. If you are giving the value in
hexadecimal, use the form $xxxx. Notice that the dollar sign may need to be escaped with
a '\' depending on your command interpreter.

atasm -u iopcode.m65
This will generate the binary file 'iopcode.65o'. However the source file can include the
undocumented 6502 instructions listed in Appendix C. Without this flag, the
undocumented opcodes will generate assembly errors. Notice that due to their
undocumented status, use of these opcodes is not recommended. However, many demo
coders use them effectively -- just be aware that many emulators may not support their
use.

atasm -xdos25.xfd sample.m65
This will generate 'sample.65o' and create the file 'SAMPLE.65O' on the .XFD image
'dos25.xfd'. There is no space between the -x and the filename. If the file 'sample.65o'
already exists on the disk image, it WILL be overwritten.

atasm -matari800.a8s sample.m65
This will generate 'sample.65o' and create 'sample.a8s' an Atari800 emulator state file.
The state file is created by reading in the previously saved statefile 'atari800.a8s' and
overlaying the binary generated by the assembler. There is no space between the -m and
the filename. If the filename is omitted, ATasm will attempt to load the default statefile
'atari800.a8s'.

8

To generate a statefile in Atari800Win, start the emulator, then select one of the options
under the File=>Save State pull down menu. In the Atari800 emulator, press F1 to access
the emulation menu and select the 'Save State' option. Once you have a valid statefile,
ATasm can use it as a template.

atasm -r sample.m65
This will generate a raw binary image of the object file called sample.bin. This is useful if
you are developing a VCS game to be loaded in an emulator like stella. The image will
start at the lowest memory location that has been assembled to, and save a complete
block to the highest memory location assembled to. Any intervening space will be filled
with the value of the fill byte. By default, this is hex value 0xff. To change the fill byte,
specify the desired value with the -f parameter. If you are specifying the byte in
hexadecimal, you may need to escape the '$' depending on your command interpreter.

atasm -hv sample.m65
This will generate an ‘asm-symbols.json’ file with JSON information describing the
location of constants/equates, labels and macros in the source code. Used by the VSCode
atasm-altirra-bridge plugin to populate the a symbol explorer. This allows you to jump to
specific code points quickly.

Chapter 2: 6502 Assembly

2.1 The Assembler
ATasm aims to be as closely backwards compatible as possible to the original Mac/65
cartridge. However, some limitations imposed by the relatively small memory size of the
8-bit world have been lifted. See Chapter 4 for a list of differences between the two
assemblers.

ATasm is primarily a two-pass assembler, although it will attempt to correct phase errors
with additional passes, if necessary. It will read in the assembly source one line at a time
and, if no errors are encountered, output a binary file. All input is case-insensitive.

Source lines have the following format:

[line number] [label] [<6502 opcode> <operand>] [comment]

A few items to note:
• Line numbers are optional, and are completely ignored if they exist.
• Labels can start with the symbols '@','?', or any letter. They may then consist of any

alphanumeric character or the symbol '_' or '.' .
• Labels may not have the same name as a 6502 opcode.
• Labels may be terminated with a ':'.
• Comments must be preceded by a ';'.

9

2.2 Opcode format
Refer to Appendix A for a list of valid instruction mnemonics

2.3 Operand format
Operands consist of an arithmetic or logical expression which can consist of a mixture of
labels, constants and equates.

Constants can be expressed either in hexadecimal, decimal, binary, character or string
form.

Hex constants begin with '$'
Ex: $1, $04, $ff, $1A
As used: lda #>$601

.BYTE $02,$04,$08,$10

Binary constants begin with '~'
Ex: ~101, ~11
As used: lda #~11110000

.BYTE ~00011000,~00111100,~01111110

Character constants begin with a single quote (')
Ex: 'a, 'A
As used: lda #'a+$10

.BYTE 'a,'B

Strings are enclosed in double quotes (")
Ex: "Test"
As used: .BYTE "This is a tes",'t+$80

Decimal constants have no special prefix
Ex: 10,12,128
As used: lda #12+8*[3+4]

Often, the format of the operand will determine the addressing mode of the operator.
Refer to Appendix B for a complete breakdown of valid addressing modes, and
examples of their format.

Briefly:
• Immediate operands are prefaced with '#'.
• (operand,X) and (operand),Y designate indirect addressing modes.
• operand,X and operand,Y designate indexed addressing modes.

The symbol '*' designates the current location counter, and can be used in expression
calculations.

Notice that 'A' is a reserved symbol, used for accumulator addressing.

10

2.4 Operators and expressions
The following operators are grouped in order of precedence. Operators in the same
precedence group will be evaluated in a left to right manner.

Group 1: Parenthesis
[] Notice that these parentheses are really braces! This allows the assembler
to disambiguate parenthetical expressions from indexing methods

Group 2: Unary operators
> Returns the high byte of the expression.
< Returns the low byte of the expression.
- unary minus, negates an expression.
.DEF <label> Returns true if label is defined.
.REF <label> Returns true if label has been referenced.
.BANKNUM <label> Returns the current bank number of the label.

Group 3: Logical Not
.NOT Returns true if an expression is zero

Group 4: Multiplication, division and modulo
/ division
* multiplication
%% modulo

Group 5: Addition and subtraction
+ addition
- subtraction

Group 6: Binary operators
<< binary shift left
>> binary shift right
& binary AND
! binary OR
| binary OR (alternative representation)
^ binary EOR

Group 7: Logical comparisons
= equality, logical
> greater than, logical
< less than, logical
<> inequality, logical
>= greater or equal, logical

11

<= less or equal, logical

Group 8
.OR performs a logical OR

Group 9
.AND performs a logical AND

Chapter 3 Compiler directives, Conditional assembly,
and Macros

3.1 Overview
ATasm implements many Mac/65 directives. However, there are several modifiers that
are simply ignored (.END,.PAGE,.TAB,.TITLE), or are only partially implemented
(.SET). For the most part, the important directives that affect code generation are intact.
Some new directives have been added such as .DS, .INCBIN, .WARN, .BANK,
and .REPT/.ENDR. In addition, non-standard .OPT directives have been added (see
section 3.14)

In the following sections the following notation is used:
<addr> denotes an unsigned word used as a valid Atari address
<float> denotes a floating point number
<word> denotes a word value
<byte> denotes a byte value
<string> denotes a string enclosed in double quotes
<char> denotes a character preceded by a single quote
<label> denotes a legal ATasm label
<macro name> denotes a legal ATasm label used as a macro name
<expression> denotes a legal ATasm expression
<filename> denotes a system legal filename, optionally enclosed in double quotes

Also, symbols enclosed in brackets '[' ']' are optional.

3.2 *=<addr>
This sets the origin address for assembly.

3.3 .DS <word>
(Define Storage) This reserves an area of memory at the current address equal to size
<word>. This is equivalent to the expression *=*+<word>

12

3.4 .DC <word> <byte>
(Define Constant storage) This fills an area of memory at the current address equal to
size <word> with the byte value <byte>

3.5 <label> = <expression> or <label> .= <expression>
Assigns the specified label to a given value. The .= directive allows a label to be assigned
different values during the assembly process. See Section 3.17 for an example of using
this.

3.6 .BYTE [+<byte>],<bytes|string|char>
Store byte values at the current address. If the first value is prefaced by a '+', then that
value will be used as a constant that will be added to all the remaining bytes on that line.

Ex:
.BYTE +$80,$10,20,"Testing",'a

will generate the following byte sequence:
90 94 D4 E5 F3 F4 E9 EE E7 E1

.SBYTE [+<byte>],<bytes|string|char>
This is the same as the .BYTE directive, but all the byte values will be converted to Atari
screen codes instead of ATASCII values. This conversion is applied prior to the constant
addition.

Ex:
.SBYTE +$80,$10,20,"Testing",'a

will generate the follow byte sequence:
90 94 D4 B4 F3 F4 E9 EE E7 E1

.CBYTE [+<byte>],<bytes|string|char>
This is the same as the .BYTE directive, except that the final byte value on the line will
be EOR'd with $80. This format is often used by print routines that use the high-bit of a
character to indicate the end of a string.

Ex:
.CBYTE +$80,$10,20,"Testing",'a

will generate the following byte sequence:
90 94 D4 E5 F3 F4 E9 EE E7 61

3.7 .DBYTE <words>
Stores words in memory at the current memory address in MSB/LSB format.
Ex:
.DBYTE $1234,-1,1

will generate:
12 34 FF FF 00 01

13

.WORD <words>
Stores words in memory at the current memory address in native format

(LSB/MSB).

Ex:
.WORD $1234,-1,1

will generate:
34 12 FF FF 01 00

3.8 .FLOAT <float>
Stores a 6 byte BCD floating point number in the format used in the Atari OS ROM.

Ex:
.FLOAT 3.14156295,-2.718281828

will generate:
40 03 14 15 62 95 C0 27 18 28 18 28

3.9 .IF <expression>,.ELSEIF <expression>,.ELSE,.ENDIF
These statements form the basis for ATasm's conditional assembly routines. They allow
for code blocks to be assembled or skipped based on the value of an expression. The
expression following the .IF directive will be evaluated and if true (or non-zero) the
statements following the .IF up to the matching .ELSEIF, .ELSE or .ENDIF will be
assembled. Otherwise, the code block will be skipped. The .ELSE block is optional and
only needed if you want one block of code to be assembled when the expression is true
and another to be assembled if the expression is false. The end of the conditional
assembly block must be denoted with the .ENDIF directive.

3.10 .INCLUDE <filename>
Include additional files into the assembly. Using Mac/65, .INCLUDEs could only be
nested one level deep. However, ATasm allows arbitrary nesting of .INCLUDE files.
Quotes around the filename are optional. Notice that the '#Dn:' filespec is not applicable
since ATasm is not accessing Atari disks (or disk images). Instead, the current working
directory on the host machine will be searched for the file. The filename can include a
full path if desired.

3.11 .INCBIN <filename>
This includes the contents of a binary file at the current memory position. This is useful
for including character sets, maps and other large data sets without having to generate
.BYTE entries.

3.12 .ERROR <string>
This will generate an assembler error, printing the message specified in the string
parameter. The error will halt assembly.

14

3.13 .WARN <string>
This will generate an assembler warning, printing the message specified in the string
parameter. The warning will be included in the warning count at the end of the assembly
process.

3.14 .OPT [NO] <string>
This will set or clear specific compiler options. Currently, ATasm only implements the
following options: ERR, OBJ, LIST and ILL. By default, both ERR and OBJ options are
set, while the ILL and LIST options are off. If ERR is turned off then all warnings that
would normally be sent to the screen will be suppressed. Notice that this behavior is
subtly different then the original Mac/65 program which suppressed both warnings and
errors. OBJ is used to control whether or not object code is stored in the binary image.
Again, behavior is changed from the original environment. Setting .OPT NO OBJ could
be useful if you wish to use label values in your source code as reference only, without
actually generating code. The ILL opt toggles illegal opcodes availability. Illegal opcodes
can be used inside areas of code surrounded by .OPT ILL, overriding the command-line
parameter. The LIST opt can be used to override the command line -v argument and/or
turn off the generation of screen output for certain sections of source files (for instance,
long sections of data).
There is an option that can be used in combination with the -hv
command line parameter. If the -hv command line argument is used then
ATasm will dump constants, labels, macros and included file info to
a file ("asm-symbols.json"). This data is used by a Visual Studio Code
plugin (https://bit.ly/3ATTHVR) ("Atasm-Altirra-Bridge") to allow you to
quickly find info and navigate to the definition. When .including hardware
definition data lots of constants are defined, most of them are not used
by your program and would just clutter the symbol dump. You can use a
.opt directive to turn the tracing of constant definitions on and off.
By default constant tracing is ON.
I.e.

.OPT NO SYMDUMP

.INCLUDE "ANTIC.asm"

.OPT SYMDUMP
FIND_ME = $2000

In the above example all constants defined in the ANTIC.asm file
will not be dumped to the "asm-symbols.json" file. But "FIND_ME" will
be dumped.

3.15 .LOCAL
This creates a new local label region. Within each local region, all labels beginning with
'?' are assumed to be unique within that region. This allows libraries to be built without

15

fear of label collision. Notice that although Mac/65 was limited to 62 local regions,
ATasm has virtually unlimited regions (65536 regions). Local labels may be forward
referenced like other labels, but they will not appear in the symbol table dump at the end
of the assembly processes.

3.16 .MACRO <macro name>, .ENDM
The .MACRO directive must be paired with an .ENDM directive. All macros must be
defined before use. Once defined, a macro can be called with optional parameters, and
are then functionally equivalent to a user-defined opcode. However, while opcodes are by
their very nature fairly simple, macros can be quite complex. Notice that unlike Mac/65,
macros may NOT have the same name as an existing label. Macro definitions cannot
contain other macro definitions (although they can use existing macros). All labels within
a macro are assumed to be local to that macro, but can be accessed from outside.

There are two types of macro parameters, expressions and strings. They can be
referenced by using '%' for expression parameters and '%$' for string parameters followed
by a number indicating what parameter to use. The parameter number can be a decimal
number, or a label enclosed with parentheses. So, %1 accesses the first parameter as an
expression, and %$1 accesses the first parameter as a string.

Parameter %0 returns the total number of parameters passed to the macro, and %$0
returns the macro name.

When calling a macro, parameters can be separated either by commas or by spaces.

Ex:
.MACRO VDLI
.IF %0<>1
.ERROR "VDLI: Wrong number of parameters"

.ELSE
ldy # <%1
ldx # >%1
lda #$C0
sty $0200
stx $0201
sta $D40E

.ENDIF
.ENDM

This macro sets the display list interrupt to the address passed as its first parameter.

.MACRO ADD_WORD
.IF %0<2 OR %0>3
.ERROR "ADD_WORD: Wrong number of parameters"

.ELSE
lda %1
clc
adc %2

16

.IF %0=3
sta %3

.ELSE
sta %2

.ENDIF
lda %1+1
adc %2+1

.IF %0=3
sta %3+1

.ELSE
sta %2+1

.ENDIF
.ENDIF

.ENDM

This macro has different results depending on its invocation. If called with two
parameters:

ADD_WORD addr1,addr2
then the word value at addr1 is added to the word value at addr2. However, if called with
three parameters:

ADD_WORD addr1,addr2,addr3
then the result of adding the word values in addr1 and addr2 is stored in addr3.

For more complicated macro examples, see the Mac/65 instruction manual or examine
the included file 'iomac.m65' from the original Mac/65 install.

3.17 .REPT <word>, .ENDR
The .REPT directive must be paired with an .ENDR directive. All statements between the
directive pair will be repeated <word> number of times.

Ex:
.rept 4

asl a
.endr

generates:
asl a
asl a
asl a
asl a

and a more complicated example:

table .rept 192
.word [*-table]/2*40
.endr

generates a lookup table starting:
00 00 28 00 50 00 78 00 A0 00 C8 00 F0 00 18 01 ...

which might be useful in a hi-res graphics mode plotting routine.

17

Another interesting example is inspired by a question from Tom Hunt:
shapes

r .= 0
.rept 8
.dbyte shape1+r*16

r .= r+1
.endr

shape1
r .= 1
.rept 8
.dbyte ~1111000000000000/r
.dbyte ~1100000000000000/r
.dbyte ~1010000000000000/r
.dbyte ~1001000000000000/r
.dbyte ~0000100000000000/r
.dbyte ~0000010000000000/r
.dbyte ~0000001000000000/r
.dbyte ~0000000100000000/r
r .= r * 2
.endr

This will generate 8 instances of an arrow, with each instance shifted one bit to the right.
It also creates a lookup table indexing into the top of each arrow.

3.18 .SET 6, <expression>
This directive will cause code to assemble to the current location plus the value of the
given expression. This is useful for writing routines which can be copied from a cartridge
area or bank-switched memory address into RAM.

Note that this is the only .SET directive from the original Mac/65 that is implemented.
However, ATasm's implementation is slightly different. ATasm allows a full expression to
be used as a parameter rather than simply an address. It also allows negative values as
well as positive. Be aware that using forward defined variables inside of the .SET region
to define the expression will cause a phase error.

3.19 .BANK [<word>,<word>]
This directive was suggested by Chris Hutt to assist in building cartridge images that are
greater than 64K in length. Basically, this directive will in essence start a new assembly
in memory. However, addresses and labels available in one .BANK can still be referenced
in the next .BANK. When saving the obj file, the banks are appended. This allows files
larger than 64K to be assembled.

So the following produces a 32K file:
*=8000
.include "bank0code.asm"
*=bfff
.byte $ff ; ensure bank takes up exactly 16K

18

.bank
*=8000
.include "bank1code.asm"
*=bfff
.byte $ff

This directive is also handy for coding loaders that use the INITAD vector:
.bank
*=$4000
init

.include "initcode.asm"

.bank
*=$2e2 ; when DOS loads an address into 2e2 (INITAD, it will
.word init ; jsr immediately to that location, upon RTS

; it will continue to load...)
.bank
*=$6000
.include "restofthecode.asm"

The .BANK directive can take two optional parameters indicating what bank should be
used, and what bank should be reported by the .BANKNUM operator. If you wish to
return to a previously used bank 0 (and append the code in the .obj file), use the
following:

.bank 0,0
If you wish to split the .obj file, but have the .BANKNUM operator report as bank 0, use
the following:

.bank ,0

3.20 .ALIGN boundary
This directive aligns the current location to a specified boundary.
The boundary value has to be a power of 2. In effect this is a shortcut
for something like page alignment:

=(+$FF)&$FF00 ; Make sure that the next byte is placed
; on the next page boundary

.ALIGN $100

3.21 .NAME <string>
This directive can be used to give a memory region a name. This is very useful in the
VSCode extension that interfaces with ATasm.

*=$2000 “Booting”
OR
.NAME “Booting”

After the assembly stage the output will like something like this:
Memory Map
—---------
$2000-$20AB Booting
$2100-$21FF Sprite data

19

3.22 JEQ, JNE, JPL, JMI, JCC, JCS, JVC, JVS (long branches)
These macro commands are similar to the 6502 branch instructions BEQ, BNE, BPL,
BMI, BCC, BCS, BVC, BVS, but can target the entire 64KB address space via a jump..

Jne dest -> beq #3
jmp dest

If the distance is short and the target is known during the first assembler pass then the
jump is converted into a branch.

The assembler spits out code change suggestions if it finds jumps that could be optimized
to branches. i.e.

Possible long jump optimizations
================================
tests/long.asm @ 19 jeq known --> BEQ known ; distance is -13
tests/long.asm @ 20 jne known --> BNE known ; distance is -15
tests/long.asm @ 21 jpl known --> BPL known ; distance is -17
tests/long.asm @ 30 jeq forward --> BEQ forward

Now: BNE $03 ; distance is 83
JMP forward

3.23 Trigonometry value generators
The basic sin, cos functions are very useful when generating tables for fast 3D graphics
or other trigonometry based operations. Atasm has the ability to generate SIN and COS
values.

The value generation is implemented as dot functions. I.e. .SIN, .COS where the
parameters determine the angle, by how many steps there are in a circle and by how
much the sin/cos value should be scaled.

A circle has 360 degrees (2x PI radians) but we normally don’t want to work in 360
degrees. The Steps parameter sets the number of degrees a circle has. The Angle
parameter indicates how far around the circle the value is, relative to the steps.
SIN and COS output a value range of [-1 ... 1], the Scale parameter is used to change that
to your required range.

By default .SIN and .COS generate 16-signed values. On optional parameter and the
beginning of the command lets you select the high or low byte of the 16-bit value.

The general format of a trigonometric function is:
.SIN [Optional high/low byte/word], Angle, Steps, Scale

Where the first parameter selects what size output will be generated:

20

< Low byte of 16-bit value
> High byte of 16-bit value

Some examples:
1. Create 4 sin values showing the full range. 256 steps, scale by 4096 ($1000)

.SIN 0, 256, $1000 ; Should give 0 = $0000

.SIN 64, 256, $1000 ; Should give 4096 = $1000

.SIN 128, 256, $1000 ; Should give 0 = $0000

.SIN 192, 256, $1000 ; Should give -4096 = $F000
This will produce the following bytes (note 16-bit LSB MSB)
00 00 00 10 00 00 00 F0

2. Create a 16-bit SIN table. 256 steps, scale by 4096 ($1000)
*=$2000 ; Locate data @ $2000
SCALE=4096
angle .= 0
.rept 256

.sin angle, 256, SCALE
angle .= angle + 1

.endr

This will produce the following bytes (note 16-bit LSB MSB)
Source: tests/sin.asm
18 2000 00 00 .sin angle,256,SCALE ;(0,256,4096)= 0 0x0000
18 2002 64 00 .sin angle,256,SCALE ;(1,256,4096)= 100 0x0064
18 2004 C8 00 .sin angle,256,SCALE ;(2,256,4096)= 200 0x00C8
18 2006 2D 01 .sin angle,256,SCALE ;(3,256,4096)= 301 0x012D
18 2008 91 01 .sin angle,256,SCALE ;(4,256,4096)= 401 0x0191
18 200A F5 01 .sin angle,256,SCALE ;(5,256,4096)= 501 0x01F5
18 200C 59 02 .sin angle,256,SCALE ;(6,256,4096)= 601 0x0259
. . .
18 21F8 6F FE .sin angle,256,SCALE ;(252,256,4096)= -401 0xFE6F
18 21FA D3 FE .sin angle,256,SCALE ;(253,256,4096)= -301 0xFED3
18 21FC 38 FF .sin angle,256,SCALE ;(254,256,4096)= -200 0xFF38
18 21FE 9C FF .sin angle,256,SCALE ;(255,256,4096)= -100 0xFF9C

3. Create a 16-bit SIN and COS table. 256 steps, scale by 4096 ($1000)
COS is offset from SIN by 90 degrees, so starts at 90/360 * 256 = 64.
*=$2000 ; Locate data @ $2000
SCALE=4096
angle .= 0
.rept 256+64

.sin angle,256,SCALE
angle .= angle + 1

.endr

This will produce the following bytes (note 16-bit LSB MSB)
18 2000 00 00 .sin angle,256,SCALE ;(0,256,4096)= 0 0x0000
18 2002 64 00 .sin angle,256,SCALE ;(1,256,4096)= 100 0x0064
18 2004 C8 00 .sin angle,256,SCALE ;(2,256,4096)= 200 0x00C8
18 2006 2D 01 .sin angle,256,SCALE ;(3,256,4096)= 301 0x012D
18 2008 91 01 .sin angle,256,SCALE ;(4,256,4096)= 401 0x0191

21

. . .
18 2276 E1 0F .sin angle,256,SCALE ;(315,256,4096)= 4065 0x0FE1
18 2278 EC 0F .sin angle,256,SCALE ;(316,256,4096)= 4076 0x0FEC
18 227A F4 0F .sin angle,256,SCALE ;(317,256,4096)= 4084 0x0FF4
18 227C FB 0F .sin angle,256,SCALE ;(318,256,4096)= 4091 0x0FFB
18 227E FE 0F .sin angle,256,SCALE ;(319,256,4096)= 4094 0x0FFE

4. Here is a sample for a combined SIN/COS table with Low (LSB) and High
(MSB) split into their own tables.
*=$2000 ; Locate data @ $2000
SCALE=4096
angle .= 0
.rept 256+64

.sin <,angle,256,SCALE
angle .= angle + 1

.endr
angle .= 0
.rept 256+64

.sin >,angle,256,SCALE
angle .= angle + 1

.endr

3.24 RUN and INIT address specifiers
There are two ways to get your code to INIT and BOOT in Atasm.
Below is the same code showing the two different methods:

Option 1: Using banks

.BANK ; Put the following code into a memory bank
* = $8000

INIT:
LDA #0
STA 710
RTS

.BANK ; Start a new bank for INITAT. During load this will be
executed first

* = $2e2
.WORD INIT

*= $8000 ; Put the rest of the code in another bank
CYCLE:

LDA 20
STA 709
JMP CYCLE

22

.BANK ; Tell Atari to run this code once the file is loaded
* = $2e0
.WORD CYCLE

Option 2: Using .RUN and .INIT

.BANK
* = $8000

INIT:
LDA #0
STA 710
RTS

.INIT INIT

.BANK
*= $8000

CYCLE:
LDA 20
STA 709
JMP CYCLE

.RUN CYCLE

Chapter 4: Incompatibilities with Mac/65
Perhaps most importantly, ATasm works with ASCII files, not ATASCII or Mac/65
tokenized save files. If you must use a tokenized file there are programs available to
convert tokenized files to ATASCII (or load the file in Mac/65 and LIST it to disk). Then
use a filter program such as 'a2u' to convert the ATASCII to ASCII.

● Comment lines only begin with ';' not with '*' -- sorry
● The character '|' can be used in place of '!' as a binary OR
● Macros can have an arbitrary number of parameters and can be nested arbitrarily

deep during invocation.
● .INCLUDEs can be arbitrarily nested.
● There are an unlimited number of .LOCAL regions (well, 65536 of them)
● Macro names must be unique and cannot be the same as an existing label
● Macro parameters can be separated by commas or by spaces
● .END,.PAGE,.TAB,.TITLE, and most .SET directives are ignored
● Extra directives .DC, .DS, .INCBIN, .WARN, .REPT/.ENDR have been added

23

● .OPT ERR, .OPT NO ERR, .OPT OBJ, .OPT NO OBJ have different behavior
than the original (see section 3.14), all other .OPT directives are ignored.

● Operands are reserved words and cannot be used as labels or equates.
● Operator precedence of unary > and < are given proper precedence. For instance,

Mac/65 will treat #>1000+2000 as #>(1000+2000), not #(>1000)+2000 as ATasm
does. This appears to be a bug in Mac/65.

If you run across other incompatibilities or have a burning desire for a new feature, send
them to me, and I will update this section (and possibly even update ATasm's behavior)

Chapter 5: A brief digression on writing ATasm
ATasm has been in development on and off for over two decades, evolving as needs
dictated. Unfortunately, this evolution has resulted in rather patchy code in places. For
instance, originally, the tokenizer was written as a free-form compiler(!). At the time, I
felt that it would be more useful to allow the programmer full freedom when entering
code. However, this decision means that it is then impossible to distinguish between
labels, embedded compiler directives, and macros. This results in a few of ATasm's
amusing quirks (no embedded '.'s in labels, unique label and macro names, and probably
other darker characteristics). Well at least the '.'s in labels has been fixed.

When programming in 6502 assembly language, I actually tend not to heavily use
macros, conditional assembly or many of the other features developed to make
programming less burdensome. I think this is because I originally learned assembly on
the old Atari Assembler cartridge, and never unlearned old habits. The upshot is, the
macro facilities are not heavily tested. I have successfully compiled the sample files that
come with the Mac/65 disk based assembler, but really crazy macros may not give the
anticipated result. If you stumble across code that ATasm incorrectly handles, isolate the
shortest example that you can and send it to me.

Blatant plug Also be sure to check out EnvisionPC, available at
http://atari.miribilist.com/envision/index.html. This is a very useful cross-platform
graphics utility that runs native on the PC (Linux/Windows) or on MacOSX. It allows
you to easily design all those nifty Atari character sets and maps. The original Atari based
Envision always begged for a mouse interface... and now it exists. EnvisionPC is a
full-featured character editor and map-maker based on the original APX Envision
graphics utility. It supports ANTIC modes 2-7, 10 font banks loaded concurrently, and
map sizes of up to 512x512 characters. Download it and start designing new games today.

Chapter 6: Bug reports, Feature Requests and Credits
This program would not be what it is today without the help of the following people.

Patches and code contributions: Mark Schmelzenbach, B. Watson, Dan Horak, Peter Hinz

24

http://atari.miribilist.com/envision/index.html

Bug Reports and Feature requests: Cow Claygil, Peter Dell, Peter Fredrick, Peter Hinz,
Doug Hodson, Dan Horak, Tom Hunt, Chris Hutt, Manuel Polik, Carsten Stroten,
Thompsen, Greg Troutman, B. Watson... and many others.

Appendix A: Summary of 6502 Opcodes
ADC ADd to accumulator with Carry.
AND binary AND with accumulator.
ASL Arithmetic Shift Left. Bit0=0 C=Bit7.
BCC Branch on Carry Clear.
BCS Branch on Carry Set.
BEQ Branch on result EQual (zero).
BGE Branch Greater than or Equal (alternate form of BCS)
BIT test BITs in memory with accumulator.
BLT Branch Less Than (alternate form of BCC)
BMI Branch on result MInus.
BNE Branch on result Not Equal (not zero).
BPL Branch on result PLus.
BRK forced BReaK.
BVC Branch on oVerflow Clear.
BVS Branch on oVerflow Set.
CLC CLear Carry flag.
CLD CLear Decimal mode.
CLI CLear Interrupt disable bit.
CLV CLear oVerflow flag.
CMP CoMPare with accumulator.
CPX ComPare with X register.
CPY ComPare with Y register.
DEC DECrement memory by one.
DEX DEcrement X register by one.
DEY DEcrement Y register by one.
EOR binary Exclusive-OR with accumulator.
INC INCrement memory by one.
INX INcrement X register by one.
INY INcrement Y register by one.
JMP unconditional JuMP to new address.
JSR unconditional Jump, Saving Return address.
LDA LoaD Accumulator.
LDX LoaD X register.
LDY LoaD Y register.
LSR Logical Shift Right. (Bit7=0 C=Bit0).
NOP No OPeration.
ORA binary OR with accumulator.
PHA PusH Accumulator on stack.
PHP PusH Processor status register on stack.
PLA PulL Accumulator from stack.
PLP PulL Processor status register from stack.
ROL Rotate one bit Left (mem. or acc., C=Bit7 Bit0=C).
ROR Rotate one bit Right (mem. or acc., C=Bit0 Bit7=C).
RTI ReTurn from Interrupt.
RTS ReTurn from Subroutine.
SBC SuBtraCt from accumulator with borrow.
SEC SDt Carry flag.

25

SED SEt Decimal mode.
SEI SEt Interrupt disable status.
STA STore Accumulator in memory.
STX STore X register in memory.
STY STore Y register in memory.
TAX Transfer Accumulator to X register.
TAY Transfer Accumulator to Y register.
TSX Transfer Stack pointer to X register.
TXA Transfer X register to Accumulator.
TXS Transfer X register to Stack pointer.
TYA Transfer Y register to Accumulator.

Appendix B: 6502 Addressing modes
Absolute: The word following the opcode is the address of the operand.

Ex. LDA $0800

Absolute, indexed X: The word following the opcode is added to register X (as an
unsigned word) to give the address of the operand.

Ex. LDA $FE90,X

Absolute, indexed Y: The word following the opcode is added to register Y (as an
unsigned word) to give the address of the operand.

Ex. LDA $FE90,Y

Accumulator: The operand is the accumulator.
Ex. LSR A

or, an alternate form:
LSR

Immediate mode: The operand is the byte following the opcode.
Ex. LDA #$07

Implied: The operands are indicated in the mnemonic.
Ex. CLC

Indirect, absolute: The word following the opcode is the address of a word which is the
address of the operand.

Ex. JMP ($0036)

Relative: The byte following the opcode is added (as a signed word) to the Program
Counter to give the address of the operand.

Ex. BCC $03
Ex. BCC $0803 (alternate form)

Zero page absolute: The byte following the opcode is the address on page 0 of the
operand.

Ex. LDA $1F

26

Zero page, indexed X: The byte following the opcode is added to register X to give the
address on page 0 of the operand.

Ex. LDA $2A,X

Zero page, indexed Y: The byte following the opcode is added to register Y to give the
address on page 0 of the operand.

Ex. LDX $2A,Y

Note: Although technically the opcodes LDA $20,Y and STA $20,Y are illegal, ATasm
(and many other 8-bit assemblers) will convert this to an absolute indexed addressing
mode.

Zero page, indexed, indirect: The byte following the opcode is added to register X to give
the address on page 0 which contains the address of the operand.

Ex. LDA ($2A,X)

Zero page, indirect indexed: The byte following the opcode is an address on page 0. This
word at this address is added to register Y (as an unsigned word) to give the address of
the operand.

Ex. LDA ($2A),Y

Appendix C: Atari "Sally" 6502 Undocumented Opcodes
Original list (version 3.0, 5/17/1997) was created by Freddy Offenga
(offen300@hio.tem.nhl.nl). Additional credits: Joakim Atterhal, Adam Vardy, Craig
Taylor;

References and list sources:
1) “Illegal opcodes”, WosFilm and Frankenstein, Mega Magazine #2, December 1991.
2) “Illegal opcodes v2”, WosFilm and Fran-ken-stein, Mega Maga-zine #6, October

1993.
3) “Illegal Opcodes der 65xx-CPU”, Frank Leiprecht, ABBUC Sondermagazin 10,
Top-Maga-zin, October 1991.

4) “Ergnzung zu den Illegalen OP-Codes”, Peter Wtzel, Top-M-ag-azin, January 1992.
5) “6502 Opcodes and Quasi-Opcodes”, Craig Taylor, 1992.
6) “Extra Instructions Of The 65XX Series CPU”, Adam Vardy, 27 Sept. 1996

This appendix was taken verbatim from a list I was sent some time back. The formatting
has changed, as well as a few opcode names. Errors are probably due to carelessness on
my part, and should not reflect upon the original compilers of this document. That being
said, notice that these are undocumented opcodes. They may or may not work any given
emulator, and their behavior may not work as advertised even on real hardware. Use
these instructions at your own risk!

ANC
AND byte with accumulator. If result is negative then carry is set.

27

mailto:offen300@hio.tem.nhl.nl

Status flags: N,Z,C
Addressing: Immediate

ARR
AND byte with accumulator then rotate one bit right in accumulator and finally check
bits 5 and 6:
• If both bits are 1: set C, clear V.
• If both bits are 0: clear C and V.
• If only bit 5 is 1: set V, clear C.
• If only bit 6 is 1: set C and V.
Status flags: N,V,Z,C
Addressing: Immediate

ATX
AND byte with accumulator, then transfer accumulator to X register.
Status flags: N,Z
Addressing: Immediate

AXS
AND X register with accumulator and store result in X register, then subtract byte from X
register (without borrow).
Status flags: N,Z,C
Addressing: Immediate

AX7
AND X register with accumulator then AND result with 7 and store in
memory.
Status flags: -
Addressing: Absolute,Y ;(Indirect),Y

AXE
Exact operation unknown.
Addressing: Immediate

DCP
Subtract 1 from memory (without borrow).
Status flags: C
Addressing: Zero Page; Zero Page,X; Absolute; Absolute,X;
Absolute,Y;(Indirect,X); (Indirect),Y

ISB
Increase memory by one, then subtract memory from accumulator (with borrow).
Status flags: N,V,Z,C
Addressing: Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y;
(Indirect,X); (Indirect),Y

28

JAM
Stop program counter (lock up processor).
Status flags: -
Addressing: implied

LAS
AND memory with stack pointer, transfer result to accumulator, X register and stack
pointer.
Status flags: N,Z
Addressing: Absolute,Y

LAX
Load accumulator and X register with memory.
Status flags: N,Z
Addressing: Zero Page; Zero Page,Y; Absolute;
Absolute,Y;(Indirect,X);(Indirect),Y

RLA
Rotate one bit left in memory, then AND accumulator with memory.
Status flags: N,Z,C
Addressing : Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y;
(Indirect,X); (Indirect),Y

RRA
Rotate one bit right in memory, then add memory to accumulator (with carry).
Status flags: N,V,Z,C
Addressing : Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y;
(Indirect,X); (Indirect),Y

SAX
AND X register with accumulator and store result in memory.
Status flags: N,Z
Addressing: Zero Page;Zero Page,Y;(Indirect,X);Absolute

SLO
Shift left one bit in memory, then OR accumulator with memory.
Status flags: N,Z,C
Addressing: Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y
(Indirect,X); (Indirect),Y;

SRE
Shift right one bit in memory, then EOR accumulator with memory.
Status flags: N,Z,C
Addressing Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y;
(Indirect,X);(Indirect),Y;

29

SXA
AND X register with the high byte of the target address of the argument +1. Store the
result in memory.
Status flags: -
Addressing: Absolute,Y

SYA
AND Y register with the high byte of the target address of the argument +1. Store the
result in memory.
Status flags: -
Addressing: Absolute,X

XAS
AND X register with accumulator and store result in stack pointer, then AND stack
pointer with the high byte of the target address of the argument +1. Store result in
memory.
Status flags: -
Addressing: Absolute,Y

Appendix D: Licensing
ATasm is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

ATasm is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details, which can be found in the file LICENSE in this archive.

If you have a burning desire to use this program under a different license, please contact
me.

30

