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Abstract
This paper describes the new features available in the Sim-

Point 3.0 release. The release provides two techniques for dras-
tically reducing the run-time of SimPoint: faster searching to
find the best clustering, and efficiently clustering large numbers
of intervals. SimPoint 3.0 also provides an option to output only
the simulation points that represent the majority of execution,
which can reduce simulation time without much increase in er-
ror. Finally, this release provides support for correctly clus-
tering variable length intervals, taking into consideration the
weight of each interval during clustering. This paper describes
SimPoint 3.0’s new features, how to use them, and points out
some common pitfalls.

1 Introduction

Modern computer architecture research requires understanding
the cycle level behavior of a processor during the execution of
an application. To gain this understanding, researchers typically
employ detailed simulators that model each and every cycle.
Unfortunately, this level of detail comes at the cost of speed,
and simulating the full execution of an industry standard bench-
mark can take weeks or months to complete, even on the fastest
of simulators. To make matters worse, architecture researchers
often simulate each benchmark over a variety of architecture
configurations and designs to find the set of features that pro-
vides the best trade-off between performance, complexity, area,
and power. For example, the same program binary, with the ex-
act same input, may be run hundreds or thousands of times to
examine how the effectiveness of an architecture changes with
cache size. Researchers need techniques to reduce the num-
ber of machine-months required to estimate the impact of an
architectural modification without introducing an unacceptable
amount of error or excessive simulator complexity.

At run-time, programs exhibit repetitive behaviors that
change over time. These behavior patterns provide an oppor-
tunity to reduce simulation time. By identifying each of the
repetitive behaviors and then taking only a single sample of each
repeating behavior, we can perform very fast and accurate sam-
pling. All of these representative samples together represent the
complete execution of the program. The underlying philosophy
of SimPoint [16, 17, 14, 3, 10, 9] is to use a program’s behav-
ior patterns to guide sample selection. SimPoint intelligently
chooses a very small set of samples called Simulation Points
that, when simulated and weighed appropriately, provide an ac-
curate picture of the complete execution of the program. Sim-

ulating only these carefully chosen simulation points can save
hours to days of simulation time with very low error rates. The
goal is to run SimPoint once for a binary/input combination, and
then use these simulation points over and over again (potentially
for thousands of simulations) when performing a design space
exploration.

This paper describes the new SimPoint 3.0 release. In Sec-
tion 2 we present an overview of the SimPoint approach. Sec-
tion 4 describes the new SimPoint features, and describes how
and when to tune these parameters. Section 4 also provides a
summary of SimPoint’s results and discusses some suggested
configurations. Section 5 describes in detail the command line
options for SimPoint 3.0. Section 6 discusses the common pit-
falls to watch for when using SimPoint, and finally Section 7
summarizes this paper.

The major new features for the SimPoint 3.0 release include:

• Efficient searching to find the best clustering. Instead of
trying every value, or every Nth value, of k when running the
k-means algorithm, we provide a binary search method for
choosing k. This reduces the execution time of SimPoint by
a factor of 10.

• Faster SimPoint analysis when processing many inter-
vals. To speed the execution of SimPoint on very large inputs
(100s of thousands to millions of intervals), we sub-sample
the set of intervals that will be clustered. After clustering, the
intervals not selected for clustering are assigned to phases
based on their nearest cluster.

• Support for Variable Length Intervals. Prior versions of
SimPoint assumed fixed length intervals, where each inter-
val represents the same amount of dynamic execution. For
example, in the past, each interval represented 1, 10, or 100
million dynamic instructions. SimPoint 3.0 provides support
for clustering variable length intervals, where each interval
can represent different amounts of dynamic execution. With
variable length intervals, the weight of each interval must be
considered during clustering.

• Reduce the number of simulation points by representing
only the majority of executed instructions. We provide an
option to output only the simulation points whose clusters
account for the majority of execution. This reduces simula-
tion time, without much increase in error.
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2 Background

To ground our discussion in a common vocabulary, the follow-
ing is a list of definitions we use to describe the analysis per-
formed by SimPoint.

• Interval - A section of continuous execution (a slice in
time) of a program. All intervals are assumed to be non-
overlapping, so to perform our analysis we break a program’s
execution into contiguous non-overlapping intervals. The
prior versions of SimPoint required all intervals to be the
same size, as measured in the number of instructions com-
mitted within an interval (e.g., interval sizes of 1, 10, or 100
million instructions were used in [14]). SimPoint 3.0 still
supports fixed length intervals, but also provides support for
Variable Length Intervals (VLI), which allows the intervals
to account for different amount of executed instructions as
described in [8].

• Phase - A set of intervals within a program’s execution with
similar behavior. A phase can consist of intervals that are not
temporally contiguous, so a phase can re-appear many times
throughout execution.

• Similarity - Similarity defines how close the behavior of two
intervals are to one another as measured across some set of
metrics. Well-formed phases should have intervals with sim-
ilar behavior across various architecture metrics (e.g. IPC,
cache misses, branch misprediction).

• Frequency Vector - Each interval is represented by a fre-
quency vector, which represents the program’s execution
during that interval. The most commonly used frequency
vector is the basic block vector [16], which represents how
many times each basic block is executed in an interval. Fre-
quency vectors can also be used to track other code struc-
tures [10] such as all branch edges, loops, procedures, reg-
isters, or opcodes, as long as tracking usage of the structure
provides a signature of the program’s behavior.

• Similarity Metric - Similarity between two intervals is calcu-
lated by taking the distance between the corresponding fre-
quency vectors from the two intervals. SimPoint determines
similarity by calculating the Euclidean distance between the
two vectors.

• Phase Classification - Phase classification groups intervals
into phases with similar behavior, based on a similarity met-
ric. Phase classifications are specific to a program binary
running a particular input (a binary/input pair).

2.1 Similarity Metric - Distance Between Code Signatures
SimPoint represents intervals with frequency vectors. A fre-
quency vector is a one dimensional array, where each element
in the array tracks usage of some way to represent the program’s
behavior. We focus on code structures, but a frequency vec-
tor can consist of any structure (e.g., data working sets, data
stride access patterns [10]) that may provide a signature of the
program’s behavior. A frequency vector is collected from each
interval. At the beginning of each interval we start with a fre-
quency vector containing all zeros, and as the program executes,

we update the current frequency vector as structures are used.
A frequency vector could be a list of static basic blocks [16]
(called a Basic Block Vector (BBV)), or a list of static loops,
procedures, number of registers in the ISA, or opcodes as de-
scribed in [10].

If we are tracking basic block usage with frequency vectors,
we count the number of times each basic block in the program
has been entered in the current interval, and we record that count
in the frequency vector, weighted by the number of instructions
in the basic block. Each element in the frequency vector is a
count of how many times the corresponding basic block has
been entered in the corresponding interval of execution, mul-
tiplied by the number of instructions in that basic block.

We use basic block vectors (BBV) for the results in this pa-
per. The intuition behind this is that the behavior of the program
at a given time is directly related to the code executed during
that interval [16]. We use the basic block vectors as signatures
for each interval of execution: each vector tells us what por-
tions of code are executed, and how frequently those portions
of code are executed. By comparing the BBVs of two intervals,
we can evaluate the similarity of the two intervals. If two in-
tervals have similar BBVs, then the two intervals spend about
the same amount of time in roughly the same code, and there-
fore we expect the behavior of those two intervals to be similar.
Prior work showed that loop and procedure vectors can also be
used, where each entry represents the number of times a loop or
procedure was executed, performs comparably to basic block
vectors [10], while using fewer dimensions.

To compare two frequency vectors, SimPoint 3.0 uses the
Euclidean distance, which has been shown to be effective for
off-line phase analysis [17, 14]. The Euclidean distance is cal-
culated by viewing each vector as a point in D-dimensional
space, and calculating the straight-line distance between the two
points.

2.2 Using k-Means for Phase Classification
Clustering divides a set of points into groups, or clusters, such
that points within each cluster are similar to one another (by
some metric, usually distance), and points in different clusters
are different from one another. The k-means algorithm [11] is
an efficient and well-known clustering algorithm which we use
to quickly and accurately split program behavior into phases.
The k in k-means refers to the number of clusters (phases) the
algorithm will search for.

The following steps summarize the phase clustering algo-
rithm at a high level. We refer the interested reader to [17] for a
more detailed description of each step.

1. Profile the program by dividing the program’s execution into
contiguous intervals, and record a frequency vector for each
interval. Each frequency vector is normalized so that the sum
of all the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a
smaller number of dimensions using random linear projec-
tion.

3. Run the k-means clustering algorithm on the reduced-
dimension data for a set of k values.
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I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle
latency

D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle
latency

L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cy-
cle latency

Main Memory 150 cycle latency
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k

bimodal predictor
O-O-O Issue out-of-order issue of up to 8 operations per cycle,

128 entry re-order buffer
Mem Disambig load/store queue, loads may execute when all prior

store addresses are known
Registers 32 integer, 32 floating point
Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-

integer MULT/DIV, 2-FP MULT/DIV
Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after

earlier-issued instructions complete

Table 1: Baseline Simulation Model.

4. Choose from among these different clusterings a well-
formed clustering that also has a small number of clusters.
To compare and evaluate the different clusters formed for
different values of k, we use the Bayesian Information Cri-
terion (BIC) [13] as a measure of the “goodness of fit” of
a clustering to a dataset. We choose the clustering with the
smallest k, such that its BIC score is close to the best score
that has been seen. Here “close” means it is above some
percentage of the range of scores that have been seen. The
chosen clustering represents our final grouping of intervals
into phases.

5. The final step is to select the simulation points for the chosen
clustering. For each cluster (phase), we choose one represen-
tative interval that will be simulated in detail to represent the
behavior of the whole cluster. By simulating only one rep-
resentative interval per phase we can extrapolate and capture
the behavior of the entire program. To choose a representa-
tive, SimPoint picks the interval in each cluster that is clos-
est to the centroid (center of each cluster). Each simulation
point also has an associated weight, which is the fraction of
executed instructions in the program its cluster represents.

6. With the weights and the detailed simulation results of each
simulation point, we compute a weighted average for the
architecture metric of interest (CPI, miss rate, etc.). This
weighted average of the simulation points gives an accu-
rate representation of the complete execution of the pro-
gram/input pair.

3 Methodology

We performed our analysis for the complete set of SPEC2000
programs for multiple inputs using the Alpha binaries on the
SimpleScalar website. We collect all of the frequency vec-
tor profiles (basic block vectors) using SimpleScalar [4]. To
generate our baseline fixed length interval results, all programs
were executed from start to completion using SimpleScalar. The
baseline microarchitecture model is detailed in Table 1.

To examine the accuracy of our approach we provide re-
sults in terms of CPI error and k-means variance. CPI error is
the percent error in CPI between using simulation points from

SimPoint and the baseline CPI of the complete execution of the
program.

The k-means variance is the average squared distance be-
tween every vector and its closest center. Lower variances are
better. When sub-sampling, we still report the variance based
on every vector (not just the sub-sampled ones). The relative
k-means variance reported in the experiments is measured on
a per-input basis as the ratio of the k-means variance observed
for clustering on a sample to the k-means variance observed for
clustering on the whole input.

4 SimPoint 3.0 Features

In this section we describe how to reduce the run-time of Sim-
Point and the number of simulation points without sacrificing
accuracy.

4.1 Choosing an Interval Size
When using SimPoint one of the first decisions to make is the
interval size. The interval size along with the number of simu-
lation points chosen by SimPoint will determine the simulation
time of a binary/input combination. Larger intervals allow more
aggregation of profile information, allowing SimPoint to search
for large scale repeating behavior. In comparison, smaller inter-
vals allow for more fine-grained representations and searching
for smaller scale repeating behavior.

The interval size affects the number of simulation points;
with smaller intervals more simulation points are needed than
when using larger intervals to represent the same proportion
of a program. We showed that using smaller interval sizes (1
million or 10 million) results in high accuracy with reasonable
simulation limits [14]. The disadvantage is that with smaller
interval sizes warmup becomes more of an issue, but there are
efficient techniques to address warmup as discussed in [6, 2]. In
comparison, warmup is not really an issue with larger interval
sizes, and this may be preferred for some simulation environ-
ments [12]. For all of the results in this paper we use an interval
size of 10 million instructions.

4.1.1 Support for Variable Length Intervals
Ideally we should align interval boundaries with the code struc-
ture of a program. In [7], we examine an algorithm to pro-
duce variable length intervals aligned with the procedure call,
return and loop transition boundaries found in code. A Vari-
able Length Interval (VLI) is represented by a frequency vector
as before, but each interval’s frequency vector can account for
different amounts of the program’s execution.

To be able to pick simulation points with these VLIs, we
need to change the way we do our SimPoint clustering to in-
clude the different weights for these intervals. SimPoint 3.0
supports VLIs, and all of the detailed changes are described
in [8]. At a high level the changes focused around the following
three parts of the SimPoint algorithm:

• Computing k-means cluster centers – With variable length
intervals, we want the k-means cluster centers to represent
the centroid of the intervals in the cluster, based on the
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weights of each interval. Thus k-means must include the in-
terval weights when calculating the cluster’s center. This is
an important modification to allow k-means to better model
those intervals that represent a larger proportion of the pro-
gram.

• Choosing the Best Clustering with the BIC – The BIC cri-
terion is the log-likelihood of the clustering of the data, mi-
nus a complexity penalty. The likelihood calculation sums
a contribution from each interval, so larger intervals should
have greater influence, and we modify the calculation to in-
clude the weights of the intervals. This modification does not
change the BIC calculated for fixed-length intervals.

• Computing cluster centers for choosing the simulation points
– Similar to the above, the centroids should be weighted by
how much execution each interval in the cluster accounts for.

When using VLIs, the format of the frequency vector files
is the same as before. A user can either allow SimPoint to de-
termine the weight of each interval or specify the weights them-
selves (see the options in Section 5).

4.2 Methods for Reducing the Run-Time of K-Means
Even though SimPoint only needs to be run once per bi-
nary/input combination, we still want a fast clustering algorithm
that produces accurate simulation points. To address the run-
time of SimPoint, we first look at three options that can greatly
affect the running time of a single run of k-means. The three op-
tions are the number of intervals to cluster, the size (dimension)
of the intervals being clustered, and the number of iterations it
takes to perform a clustering.

To start we first examine how the number of intervals affects
the running time of the SimPoint algorithm. Figure 1 shows
the time in seconds for running SimPoint varying the number
of intervals (vectors) as we vary the number of clusters (value
of k). For this experiment, the interval vectors are randomly
generated from uniformly random noise in 15 dimensions.

The results show that as the number of vectors and clus-
ters increases, so does the amount of time required to cluster
the data. The first graphs show that for 100,000 vectors and
k = 128, it took about 3.5 minutes for SimPoint 3.0 to perform
the clustering. It is clear that the number of vectors clustered
and the value of k both have a large effect on the run-time of
SimPoint. The run-time changes linearly with the number of
clusters and the number of vectors. Also, we can see that divid-
ing the time by the multiplication of the number of iterations,
clusters, and vectors to provide the time per basic operation
gives improving performance for larger k, due to some new op-
timizations.

4.2.1 Number of Intervals and Sub-sampling
The k-means algorithm is fast: each iteration has run-time that
is linear in the number of clusters, and the dimensionality. How-
ever, since k-means is an iterative algorithm, many iterations
may be required to reach convergence. We already found in
prior work [17], and revisit in Section 4.2.2 that we can reduce
the number of dimensions down to 15 and still maintain the

Program # Vecs × # B.B. SP2 SP3-All SP3-BinS
gcc-166 4692 × 102038 41 min 9 min 3.5 min

crafty 19189 × 16970 577 min 84 min 10.7 min

Table 2: This table shows the running times (in minutes) by Sim-
Point 2.0 (SP2), SimPoint 3.0 without using binary search (SP3-
All) and SimPoint 3.0 using binary search (SP3-BinS). SimPoint
is run searching for the best clustering from k=1 to 100, uses 5
random seeds, and projects the vectors to 15 dimensions. The
second column shows how many vectors and the size of the vec-
tor (static basic blocks) the programs have.

SimPoint’s clustering accuracy. Therefore, the main influence
on execution time for SimPoint 2.0 was the number of intervals.

To show this effect, Table 2 shows the SimPoint running
time for gcc-166 and crafty-ref, which shows the lower
and upper ranges for the number of intervals and basic block
vectors seen in SPEC 2000 with an interval size of 10 million
instructions. The second and third column shows the number of
intervals (vectors) and original number of dimensions for each
vector (these are projected down to 15 dimensions). The last
three columns show the time it took to execute SimPoint search-
ing for the best clustering from k=1 to 100, with 5 random ini-
tializations (seeds) per k. SP2 is the time it took for SimPoint
2.0. The second to last column shows the time it took to run
SimPoint 3.0 when searching over all k in the same manner as
SimPoint 2.0, and the last column shows clustering time when
using our new binary search described in Section 4.4.3. The
results show that increasing the number of intervals by 4 times
increased the running time of SimPoint around 10 times. The
results show that we significantly reduced the running time for
SimPoint 3.0, and that combined with the new binary search
functionality results in 10x to 50x faster choosing of simulation
points over SimPoint 2.0. The results also show that the number
of intervals clustered has a large impact on the running time of
SimPoint, since it can take many iterations to converge, which
is the case for crafty.

The effect of the number of intervals on the running time of
SimPoint becomes critical when using very small interval sizes
like 1 million instructions or smaller, where there can be mil-
lions of intervals to cluster. To speed the execution of SimPoint
on these very large inputs, we sub-sample the set of intervals
that will be clustered, and run k-means on only this sample. We
sample the vector dataset using weighted sampling for VLIs,
and uniform sampling for fixed-length vectors. The number of
desired intervals is specified, and then SimPoint chooses that
many intervals (without replacement). The probability of each
interval being chosen is proportional to the weight of its interval
(the number of dynamically executed instructions it represents).

Sampling is common in clustering for datasets which are
too large to fit in main memory [5, 15]. After clustering the
dataset sample, we have a set of clusters with centroids. We
then make a single pass through the unclustered intervals and
assign each to the cluster that has the nearest center (centroid)
to that interval. This then represents the final clustering from
which the simulation points are chosen. We originally examined
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Figure 1: These plots show how varying the number of vectors and clusters affects the amount of time required to cluster with
SimPoint 3.0. For this experiment we generated uniformly random data in 15 dimensions. The first plot shows total time, the second
plot shows the time normalized by the number of iterations performed, and the third plot shows the time normalized by the number
of operations performed. Both the number of vectors and the number of clusters have a linear influence on the run-time of k-means.

using sub-sampling for variable length intervals in [8]. When
using VLIs we had millions of intervals, and had to sub-sample
10,000 to 100,000 intervals for the clustering to achieve a rea-
sonable running time for SimPoint, while still providing very
accurate simulation points.

The experiments shown in Figure 2 show the effects of sub-
sampling across all the SPEC 2000 benchmarks using 10 mil-
lion interval size, 30 clusters, 15 projected dimensions, and sub-
sampling sizes that used 1/8, 1/4, 1/2, and all of the vectors
in each program. The first two plots show the effects of sub-
sampling on the CPI errors and k-means variance, both of which
degrade gracefully when smaller samples are used. The average
SPEC INT and SPEC FP average results are shown.

As shown in the second graph of Figure 2, sub-sampling a
program can result in k-means finding a slightly less represen-
tative clustering, which results in higher k-means variance and
higher CPI errors, on average. Even so, when sub-sampling,
we found in some cases that it can reduce the k-means variance
and/or CPI error (compared to using all the vectors), because
sub-sampling can remove unimportant outliers in the dataset
that k-means may be trying to fit. It is interesting to note the dif-
ference between floating point and integer programs, as shown
in the first two plots. It is not surprising that it is easier to
achieve lower CPI errors on floating point programs than on
integer programs, as the first plot indicates. In addition, the sec-
ond plot suggests that floating point programs are also easier to
cluster, as we can do quite well even with only small samples.
The third plot shows the effect of the number of vectors on the
running time of SimPoint. This plot shows the time required
to cluster all of the benchmark/input combinations and their 3
sub-sampled versions. In addition, we have fit a logarithmic
curve with least-squares to the points to give a rough idea of
the growth of the run-time. The plot shows that two different
datasets with the same number of vectors may require differ-
ent amounts of time to cluster due to the number of k-means
iterations required for the clustering to converge.

4.2.2 Number of Dimensions and Random Projection
Along with the number of vectors, the other most important as-
pect in the running time of k-means is the number of dimensions

used. In [17] we chose to use random linear projection to reduce
the dimension of the clustered data for SimPoint, which dra-
matically reduces computational requirements while retaining
the essential similarity information. SimPoint allows the user to
define the number of dimensions to project down to. We have
found that SimPoint’s default of 15 dimensions is adequate for
SPEC 2000 applications as shown in [17]. In that earlier work
we looked at how much information or structure of frequency
vector data is preserved when projecting it down to varying di-
mensions. We did this by observing how many clusters were
present in the low-dimensional version. We noted that at 15 di-
mensions, we were able to find most of the structure present in
the data, but going to even lower dimensions removed too much
structure.

To examine random projection, Figure 3 shows the effect of
changing the number of projected dimensions on both the CPI
error (left) and the run-time of SimPoint (right). For this exper-
iment, we varied the number of projected dimensions from 1 to
100. As the number of dimensions increases, the time to clus-
ter the vectors increases linearly, which is expected. Note that
the run-time also increases for very low dimensions, because
the points are more “crowded” and as a result k-means requires
more iterations to converge.

It is expected that by using too few dimensions, not enough
information is retained to accurately cluster the data. This is re-
flected by the fact that the CPI errors increase rapidly for very
low dimensions. However, we can see that at 15 dimensions,
the SimPoint default, the CPI error is quite low, and using a
higher number of dimensions does not improve it significantly
and requires more computation. Using too many dimensions is
also a problem in light of the well-known “curse of dimension-
ality” [1], which implies that as the number of dimensions in-
crease, the number of vectors that would be required to densely
populate that space grows exponentially. This means that higher
dimensionality makes it more likely that a clustering algorithm
will converge to a poor solution. Therefore, it is wise to choose
a dimension that is low enough to allow a tight clustering, but
not so low that important information is lost.
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Figure 2: These three plots show how sub-sampling before clustering affects the CPI errors, k-means variance, and the run-time
of SimPoint. The first plot shows the average CPI error across the integer and floating-point SPEC benchmarks. The second plot
shows the average k-means clustering variance relative to clustering with all the vectors. The last plot shows a scatter plot of the
run-time to cluster the full benchmarks and sub-sampled versions, and a logarithmic curve fit with least squares.
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Figure 3: These two plots show the effects of changing the number of projected dimensions when using SimPoint. The default
number of projected dimensions SimPoint uses is 15, but here we show results for 1 to 100 dimensions. The left plot shows the
average CPI error, and the right plot shows the average time relative to 100 dimensions. Both plots are averaged over all the SPEC
2000 benchmarks, for a fixed k = 30 clusters.

4.2.3 Number of Iterations Needed
The final aspect we examine for affecting the running time of
the k-means algorithm is the number of iterations it takes for a
run to converge.

The k-means algorithm iterates either until it hits a user-
specified maximum number of iterations, or until it reaches a
point where no further improvement is possible, whichever is
less. k-means is guaranteed to converge, and this is determined
when the centroids no longer change. In SimPoint, the default
limit is 100 iterations, but this can easily be changed. More iter-
ations may be required, especially if the number of intervals is
very large compared to the number of clusters. The interaction
between the number of intervals and the number of iterations
required is the reason for the large SimPoint running time for
crafty-ref in Table 2.

For our results, we observed that only 1.1% of all runs on all
SPEC 2000 benchmarks reach the limit of 100 iterations. This
experiment was with 10-million instruction intervals, k=30, 15
dimensions, and with 10 random (seeds) initializations (runs)
of k-means. Figure 4 shows the number of iterations required

for all runs in this experiment. Out of all of the SPEC pro-
gram and input combinations run, only crafty-ref, gzip-
program, perlbmk-splitmail had runs that had not con-
verged by 100 iterations. The longest-running clusterings for
these programs reached convergence in 160, 126, and 101 iter-
ations, respectively.

4.3 MaxK and Controlling the Number of Simulation
Points

The number of simulation points that SimPoint chooses has a di-
rect effect on the simulation time that will be required for those
points. The maximum number of clusters, MaxK, along with
the interval size as discussed in Section 4.1, represents the max-
imum amount of simulation time that will be needed. When
fixed length intervals are used, MaxK ∗ interval size puts a
limit on the instructions simulated.

SimPoint enables users to trade off simulation time with ac-
curacy. Researchers in architecture tend to want to keep sim-
ulation time to below a fixed number of instructions (e.g., 300
million) for a run. If this is desirable, we find that an interval
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Figure 4: This plot shows the number of iterations required
for 10 randomized initializations of each benchmark, with 10-
million interval vectors, k = 30, and 15 dimensions. Note that
only three program/inputs had a total of 5 runs that required
more than the default limit of 100 iterations, and these all con-
verge within 160 iterations or less.

size of 10M with MaxK=30 provides very good accuracy (as
we show in this paper) with reasonable simulation time (below
300 million and around 220 million instructions on average). If
even more accuracy is desired, then decreasing the interval size
to 1 million and setting MaxK=300 or MaxK equal to the square
root of the total number of intervals:

√
n performs well. Empir-

ically we discovered that as the granularity becomes finer, the
number of phases discovered increases at a sub-linear rate. The
upper bound defined by this heuristic works well for the SPEC
benchmarks.

Finally, if the only thing that matters to a user is accuracy,
then if SimPoint chooses a number of clusters that is close to the
maximum allowed, then it is possible that the maximum is too
small. If this is the case and more simulation time is acceptable,
it is better to double the maximum k and re-run the SimPoint
analysis.

4.3.1 Choosing Simulation Points to Represent the Top
Percent of Execution

One advantage to using SimPoint analysis is that each simu-
lation point has an associated weight, which tells how much
of the original program’s execution is represented by the clus-
ter that simulation point represents. The simulation points can
then be ranked in order of importance. If simulation time is too
costly, a user may not want to simulate simulation points that
have very small weights. SimPoint 3.0 allows the user to spec-
ify this explicitly with the -coveragePct p option. When
this option is specified, the value of p sets a threshold for how
much of the execution should be represented by the simulation
points that are reported in an extra set of files for the simulation
points and weights. The default is p = 1.0: that the entire
execution should be represented.

For example, if p = 0.98 and the user has specified -

saveSimpoints and -saveWeights, then SimPoint will
report simulation points and associated weights for all the non-
empty clusters in two files, and also for the largest clusters
which make up at least 98% of the program’s weight. Using his
reduced-coverage set of simulation points can potentially save
a lot of simulation time if there are many simulation points with
very small weights without severely affecting the accuracy of
the analysis.

Figure 5 shows the effect of varying the percentage of cover-
age that SimPoint reports. These experiments use binary search
with MaxK=30, 15 dimensions, and 5 random seeds. The left
graph shows the CPI error and the right shows the number of
simulation points chosen when only representing the top 95%,
98%, 99% and 100% of execution. The three bars show the
maximum value, the second highest value (max-1), and the
average. The results show that when the coverage is reduced
from 100%, the average number of simulation points decreases,
which reduces the simulation time required, but this is at the
expense of the CPI error, which goes up on average. For ex-
ample, comparing 100% coverage to 95%, the average num-
ber of simulation points is reduced from about 22 to about 16,
which is a reduction of about 36% in required simulation time
for fixed-length vectors. At the same time, the average CPI er-
ror increases from 1.5% to 2.8%. Depending on the user’s goal,
a practitioner can use these types of results to decide on the ap-
propriate tradeoff between simulation time and accuracy. Out
of all of the SPEC binary/input pairs there was one combina-
tion (represented by the maximum) that had a bad error rate for
95% and 98%. This was ammp-ref, and the reason was that
a simulation point was removed that had a small weight (1-2%
of the executed instructions) but its behavior was significantly
different enough to effect the estimated CPI.

Note, when using simulation points for an architecture de-
sign space exploration, the CPI error compared to the baseline
is not as important as making sure that this error is consistent
between the different architectures being examined. What is
important is that a consistent relative error is seen across the de-
sign space exploration, and SimPoint has this consistent bias as
shown in [14]. Ignoring a few simulation points that account
for only a tiny fraction of execution will create a consistent bias
across the different architecture runs when compared to com-
plete simulation. Therefore, this can be acceptable technique
for reducing simulation time, especially when performing large
design space exploration trade-offs.

4.4 Searching for the Smallest k with Good Clustering
As described above, we suggest setting MaxK as appropriate
for the maximum amount of simulation time a user will tolerate
for a given run. We then use three techniques to search over
the possible values of k, which we describe now. The goal is
to try to pick a k to reduce the number of clusters (simulation
points), which reduces simulation time by reducing the number
of points needed to represent the program’s execution.

4.4.1 Setting the BIC Percentage
As we examine several clusterings and values of k, we need to
have a method for choosing the best clustering. The Bayesian
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Figure 6: These plots show how the CPI error and number of simulation points chosen is affected by varying the BIC threshold.
Bars labeled “max-1” show the second largest value observed.

Information Criterion (BIC) [13] gives a score of the goodness
of the clustering of a set of data. These BIC scores can then be
used to compare different clusterings of the same data. The BIC
score is a penalized likelihood of the clustering of the vectors,
and can be considered the approximation of a probability. How-
ever, the BIC score often increases as the number of clusters in-
crease. Thus choosing the clustering with the highest BIC score
can lead to often selecting the clustering with the most clusters.
Therefore, we look at the range of BIC scores, and select the
score which attains some high percentage of this range. The
SimPoint default BIC threshold is 0.9. When the BIC rises and
then levels off, this method chooses a clustering with the fewest
clusters that is near the maximum value. Choosing a lower BIC
percent would prefer fewer clusters, but at the risk of less accu-
rate simulation.

Figure 6 shows the effect of changing the BIC threshold on
both the CPI error (left) and the number of simulation points
chosen (right). These experiments are for using binary search
with MaxK=30, 15 dimensions, and 5 random seeds. BIC
thresholds of 70%, 80%, 90% and 100% are examined. As

the BIC threshold decreases, the average number of simulation
points decreases, and similarly the average CPI error increases.
At the 70% BIC threshold, perlbmk-splitmail has the
maximum CPI error in the SPEC suite. This is due to clustering
that was picked at that threshold which has only 9 clusters. This
anomaly is an artifact of the looser threshold, and better BIC
scores point to better clusterings and better error rates, which is
why we recommend to the BIC threshold to be set at 90%.

4.4.2 Varying the Number of Random Seeds, and k-means
initialization

The k-means clustering algorithm is essentially a hill-climbing
algorithm, which starts from a randomized initialization, which
requires a random seed. Because of this, running k-means mul-
tiple times can produce very different results depending on the
initializations. Sometimes this means k-means can converge to
a locally-good solution that is poor compared to the best cluster-
ing on the same data for that number of clusters. Therefore con-
ventional wisdom suggests that it is good to run k-means several
times using a different randomized starting point each time, and
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take the best clustering observed, based on the k-means vari-
ance or the BIC. SimPoint has the functionality to do this, using
different random seeds to initialize k-means each time. Based
on our experience, we have found that using 5 random seeds
works well.

Figure 7 shows the effect on CPI error of using two differ-
ent k-means initialization methods (furthest-first and sampling)
along with different numbers of initial k-means seeds. These
experiments are for using binary search with MaxK=30, 15 di-
mensions, and a BIC threshold of .9. When multiple seeds are
used, SimPoint runs k-means multiple times with different start-
ing conditions and takes the best result.

Based on these results we see that sampling outperforms
furthest-first k-means initialization. This can be attributed to
the data we are clustering, which has a large number of anomaly
points. The furthest-first method is likely to pick those anomaly
points as initial centers since they are the furthest points apart.
The sampling method randomly picks points, which on average
does better than the furthest-first method. It is also important
to try multiple seed initializations in order to avoid a locally
minimal solution. The results in Figure 7 shows that 5 seed
initializations should be sufficient in finding good clusterings.

4.4.3 Binary Search for Picking k

SimPoint 3.0 makes it much faster to find the best cluster-
ing and simulation points for a program trace over earlier ver-
sions. Since the BIC score generally increases as k increases,
SimPoint 3.0 uses this to perform a binary search for the best
k. For example, if the maximum k desired is 100, with ear-
lier versions of SimPoint one might search in increments of 5:
k = 5, 10, 15, . . . , 90, 100, requiring 20 clusterings. With the
binary search method, we can ignore large parts of the set of
possible k values and examine only about 7 clusterings.

The binary search method first clusters 3 times: at k = 1,
k = max k, and k = (max k + 1)/2. It then proceeds to di-
vide the search space and cluster again based on the BIC scores

observed for each clustering. The binary search may stop early
if the window of k values is relatively small compared to the
maximum k value. Thus the binary search method requires the
user only to specify the maximum k value, and performs at most
log(max k) clusterings.

Figure 8 shows the comparison between the new binary
search method for choosing the best clustering, and the old
method used in SimPoint 2.0, which searched over a large num-
ber of k values in the same range. The top graph shows the CPI
error for each program, and the bottom graph shows the number
of simulation points (clusters) chosen. These experiments are
for using binary search with MaxK=30, 15 dimensions, 5 ran-
dom seeds, and a BIC threshold of .9. SimPoint 2.0 performs
slightly better than the binary search method, since it searches
exhaustively through all k values for MaxK=30. Using the bi-
nary search, it possible that it will not find as small of clustering
as the exhaustive search. This is shown in the bottom graph
of Figure 8, where the exhaustive search picked 19 simulation
points on average, and binary search chose 22 simulation points
on average. In terms of CPI error rates, the average is about the
same across the SPEC programs between exhaustive and binary
search.

5 SimPoint 3.0 Command Line Options

Clustering and projection options:

• -k regex: This specifies which values of k should be
searched. The regular expression is

regex := "search" | R(,R)*
R := k | start:end | start:step:end

Search means that SimPoint should search using a bi-
nary search between 1 and the user-specified maxK. The
-maxK option must be set for search. Searching is the
default behavior. If the user chooses not to use search,
they may specify one or more comma-separated ranges of
positive integers for k. The argument k specifies a sin-
gle k value, the range start:end indicates that all in-
tegers from start to end (inclusive) should be used,
and the range start:step:end indicates that SimPoint
should use values starting at start and stepping by in-
terval step until reaching end. Here is an example of
specifying specific values with the regular expression: -k
4:6,10,12,30:15:75, which represents searching the
k values 4,5,6,10,12,30,45,60,75.

• -maxK k: When using the “search” clustering method (see
-k option), this command line option must be provided.
It specifies the maximum number of clusters that SimPoint
should use.

• -fixedLength "on" | "off": Specifies whether the
frequency vectors that are loaded should be treated as fixed-
length vectors (which means having equal weights), or VLI
vectors. The default is on. When off, if no weights are
loaded (using -loadVectorWeights) then the weight of
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Figure 8: These plots show the CPI error and number of simulation points chosen for two different ways of searching for the best
clustering. The first method, which was used in SimPoint 2.0, is searching for all k between 1 and 30, and choosing the smallest
clustering that achieves the BIC threshold. The second method is the binary search for MaxK=30, which examines at most 5
clusterings.

each interval is determined by summing up all the frequency
counts in the vector for an interval and dividing this by the
total frequency count over all intervals.

• -bicThreshold t: SimPoint finds the highest and low-
est BIC scores for all examined clusterings, and then chooses
the one with the smallest k which has a BIC score greater
than t*(max score-min score)+min score. The
default value for t is 0.9.

• -dim d | "noProject": d is the number of dimen-
sions down to which SimPoint should randomly project the
un-projected frequency vectors. If the string “noProject” is
instead given, then no projection will be done on the data.
If the -dim option is not specified at all, then a default is
15 dimensions is used. This option does not apply when
loading data from a pre-projected vector file using options
-loadProjData or -loadProjDataBinary.

• -seedproj seed: The random number seed for random
projection. The default is 2042712918. This can be changed

to any integer for different random projections.

• -initkm "samp" | "ff": The type of k-means ini-
tialization (sampling or furthest-first). The default is
"samp". Sampling chooses k different vectors from the
program at random as the initial cluster centers. Furthest-
first chooses a random vector as the first cluster center, then
repeats the following k − 1 times: find the closest center to
each vector, and choose as the next new center the vector
which is furthest from its closest center.

• -seedkm seed: The random number seed for k-means
initialization (see -initkm). The default is 493575226.
This can be changed to any integer obtain different k-means
initializations, and using the same seed across runs will pro-
vide reproducible initializations.

• -numInitSeeds n: The number of random initializa-
tions to try for clustering each k. For each k, the dataset is
clustered num times using different k-means initializations
(the k-means initialization seed is changed for each initial-
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ization). Of all the num runs, only the best (the one with the
highest BIC score) is kept. The default is 5.

• -iters n | "off": The maximum number of k-means
iterations per clustering. The default is 100, but the algo-
rithm often converges and stops much earlier. If ”off” is in-
stead chosen, then k-means will terminate once it has con-
verged. In running all of the SPEC programs with all of
their inputs using the default parameters to SimPoint 3.0 only
1.1% of all runs did not converge by 100 iterations. Clearly,
the default number of iterations is usually sufficient, but can
be increased if SimPoint is often reaching the limit.

• -verbose level: The amount of output that SimPoint
should produce. The argument level is a non-negative in-
teger, where larger values indicate more output. The default
is 0, which is the minimum amount of output.

Sampling options:

• -sampleSize n: The number of frequency vectors (in-
tervals) to randomly sample before clustering with k-means.
Using a smaller number of vectors allows k-means to run
faster, at a small cost in accuracy. The vectors are sampled
without replacement, so each vector can be sampled only
once. For VLI vectors, vectors are chosen with probability
proportional to how much of the execution they represent.
The default is to use all vectors for clustering.

• -seedsample n: The random number seed for vector
sampling. The default is 385089224. This can be changed to
any integer for different samples.

Load options:

• -loadFVFile file: Specifies an unprojected sparse-
format frequency vector (FV) file of all of the in-
tervals. Either this argument, -loadProjData, or
-loadProjDataBinary must always be present to pro-
vide SimPoint with the frequency vectors that should be an-
alyzed.

• -numFVs n, -FVDim n: These two options together
specify the number of frequency vectors and maximum num-
ber of dimensions in the unprojected frequency vector file so
the file doesn’t need to be parsed twice (both options must
be used together).

• -loadProjData file: Specifies an already-projected
text vector file (saved with -saveProjData). When
loaded this way, SimPoint does not use random projection
or otherwise change the vectors.

• -loadProjDataBinary file:
Specifies an already-projected binary vector file (saved with
-saveProjDataBinary). This is the binary-format ver-
sion of -loadProjData. This option provides the fastest
way to load a dataset.

• -inputVectorsGzipped: When present, this option
specifies that the input vectors given by -loadFVFile,
-loadProjData, or -loadProjDataBinary are
compressed with gzip compression, and should be decom-
pressed while reading.

• -loadInitCtrs file: Specifies initial centers for clus-
tering (rather than allowing SimPoint to choose the initial
centers with furthest-first or sampling). These centers are
points in the same dimension as the projected frequency vec-
tors, but they are not necessarily actual frequency vectors.
This option is incompatible with using multiple values of
k; only the k corresponding to the number of centers in the
given file will be run. This is useful if you want to specify
the exact starting centers to perform a clustering.

• -loadInitLabels file: Specifies the labels that will
be used to form initial clusters (rather than allowing Sim-
Point to choose with furthest-first or sampling). Like
-loadInitCtrs, this option is incompatible with multi-
ple k values. This is used if you want to specify the initial
starting clusters to perform a clustering based on a set of la-
bels. In doing this, the new starting centers will be formed
from these labels and clustering iterations will proceed from
there.

• -loadProjMatrix file: Specifies a text projection
matrix to use to project the unprojected frequency vector
file (saved from a previous run with -saveProjMatrix),
rather than allowing SimPoint to choose a random projec-
tion matrix. This option also allows users to specify their
own projection matrix.

• -loadProjMatrixBinary file: Specifies a binary
projection matrix to use to project the unprojected fre-
quency vector file. This is the binary version of
-loadProjMatrix.

• -loadVectorWeights file: Specifies a text file that
contains the weights that should be applied to the frequency
vectors. The weights should all be non-negative, and their
sum should be positive.

Save options:

• -saveSimpoints file: Saves a file of the vectors cho-
sen as Simulation Points and their corresponding cluster
numbers. Frequency vectors are numbered starting at 0,
which means the first vector in the execution has an index
of 0. Note that earlier versions of SimPoint started number-
ing vectors from 1.

• -saveSimpointWeights file: Saves a file contain-
ing a weight for each Simulation Point, and its correspond-
ing cluster number. The weight is the proportion of the pro-
gram’s execution that the Simulation Point represents.

• -saveVectorWeights file: Saves a file with a
weight for each frequency vector as computed by SimPoint.
The weight of a vector is the proportion that vector represents
of the all of the vectors provided. When using VLIs (and the
option -fixedLength off, this is calculated for a vector
by taking the total value of all of the entries in a vector di-
vided by the total value of all of the entries in all vectors. The
weights are also stored in projected vector files saved with
-saveProjData and -saveProjDataBinary, so this
option is not necessary for just saving and loading projected
data.
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• -saveAll: When this option is not specified, SimPoint
only saves specified outputs for the best clustering found (ac-
cording to the BIC threshold). When this option is specified,
SimPoint will save the specified outputs for all k values clus-
tered. This option only affects saving labels, simulation point
weights, simulation points, initial centers, and final centers.

• -coveragePct p: This option tells SimPoint to save ad-
ditional simulation points and weights that belong to the
largest clusters that together make up at least p proportion
of the vector weights for the entire program. The range of
p is between 0 and 1; the default is 1. For example, .98
means to output the smallest number of simulation points to
account for at least 98% of execution (vectors). This option
only affects the saving of simulation points and simulation
point weights. The simulation points and associated weights
for all clusters will also be saved.

• -saveProjData file: Specifies the file in which to
save a text version of the projected frequency vectors to en-
able faster loading later. See -loadProjData.

• -saveProjDataBinary file: Specifies the file in
which to save a binary version of the projected fre-
quency vectors to enable faster loading later. See
-loadProjDataBinary.

• -saveProjMatrix file: Specifies the file in which to
save a text version of the projection matrix so it may be re-
used. See -loadProjMatrix.

• -saveProjMatrixBinary file: Specifies the file in
which to save a binary version of the projection matrix so it
may be re-used. See -loadProjMatrixBinary.

• -saveInitCtrs file: Specifies the file in which to
save the initial cluster centers.

• -saveFinalCtrs file: Specifies the file in which to
save the final cluster centers found by k-means.

• -saveLabels file: Specifies the file in which to save
the final label and distance from cluster center for each clus-
tered vector.

Table 3 shows all of the default and required options for
running SimPoint. The two required parameters for every run
of SimPoint are providing the frequency vectors and the setting
of MaxK either using the -k option or -maxK option.

6 Common Pitfalls

There are a few important potential pitfalls worth addressing to
ensure accurate use of SimPoint’s simulation points.

Setting MaxK Appropriately – MaxK must be set based
on the interval size used and the maximum number of instruc-
tions you are willing to simulate as described in Section 4.3.

The maximum number of clusters and the interval size rep-
resent the maximum amount of simulation time needed for the
simulation points selected by SimPoint. Finding good simula-
tion points with SimPoint requires recognizing the tradeoff be-
tween accuracy and simulation time. If a user wants to place
a low limit on the number of clusters to limit simulation time,

Option Default Value

-k “search”
-initkm “samp”
-numInitSeeds 5
-bicThreshold 0.9
-fixedLength “on”
-dim 15
-iters 100
-sampleSize no sub-sampling
-coveragePct 1 (100%)

Table 3: This table gives the standard options that are used
with SimPoint and their default values. For every run of Sim-
Point, the frequency vectors must be provided as an unpro-
jected frequency vector file, or a pre-projected data file given
via -loadProjData or -loadProjDataBinary. When
using the -k "search" method, -maxK must always be pro-
vided.

SimPoint can still provide accurate results, but some intervals
with differing behaviors may be grouped together as a result. In
such cases it may be advantageous to increase MaxK and with
that use the option -coveragePct with a value less than 1
(e.g. .98). This can allow different behaviors to be grouped
into more clusters, but the final set of simulation points can be
smaller since only the most dominant behaviors will be chosen
for simulation points.

Off by One Interval Errors – SimPoint 3.0 starts count-
ing intervals and cluster IDs at 0. These are the counts and IDs
written to a file by -saveSimpoints, where SimPoint indi-
cates which intervals have been selected as simulation points
and their respective cluster IDs. A common mistake may be to
assume that SimPoint 3.0, like previous versions of SimPoint,
counts intervals starting from 1, instead of 0. Just remember
that the first interval of execution and the first cluster in Sim-
Point 3.0 is number 0.

Reproducible Tracking of Intervals and Using Simula-
tion Points – It is very important to have a reproducible simu-
lation environment for (a) creating interval vectors, and (b) us-
ing the simulation points during simulation. If the instruction
counts are not stable between runs, then selection of intervals
can be skewed, resulting in additional error.

SimPoint provides the interval number for each simulation
point. Interval numbers are zero-based, and are relative to the
start of execution, not to the previous simulation point. So for
fixed-length intervals, to get the instruction count at the start of
a simulation point, just multiply the interval number by the in-
terval size, but watch out for Interval Drift described later. For
example, interval number 15 with an interval size of 10 mil-
lion instructions means that the simulation point starts when 150
million (15*10M) correct path instructions have been fetched.
Detailed simulation of this simulation point would occur from
instruction 150 million until just before 160 million.

One way to get more reproducible results is to use the first
instruction program counter (Start PC) that occurs at the start
of each interval of execution, instead of relying on instruction
count. The same program counter can reappear many times, so
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it is also necessary to keep track of how many times a program
counter value must appear to indicate the start of an interval of
execution. For example, if a simulation point is triggered when
PC 0x12000340 is executed the 1000th time. Then detailed sim-
ulation starts after that PC is seen 1000 times, and simulation
occurs for the length of the interval. For this to work, the user
needs to profile PCs in parallel with the frequency vector pro-
file, and record the first PC seen for each interval along with
the number of times that PC has executed up to that point in the
execution. SimPoint provides the interval chosen for a simula-
tion point, and this data can easily be mapped to this PC profile
to determine the start PC and the Nth occurrence of it where
simulation should start.

It is highly recommended that you use the simulation point
Start PCs for performing simulations. There are two reasons for
this. The first reason deals with making sure you calculate the
instructions during fast-forwarding exactly the same as when
the simulation points were gathered. The second reason is that
there can be slight variations in execution count between differ-
ent runs of the same binary/input due to subtle changes in the
simulation environment. Both of these are discussed in more
detail later in this section.

Interval “Drift” – When creating intervals, the problem
may occur that the counts inside an interval might be just
slightly larger than the interval size. Over time these counts can
add up, so that if you were to try to find a particular fixed length
interval in a simulation environment different from where the
intervals were generated, you might be off by a few intervals.

For example, this can occur when forming fixed length in-
tervals of X instructions. After X instructions execute the in-
terval should be created, but since this boundary may occur in
the middle of a basic block, an additional Y instructions are
included into the interval to complete the basic block. Even
though Y may be extremely small, it will accumulate over many
thousands of intervals and cause a slow “drift” in the interval
endpoints in terms of instruction count.

This is mainly a problem if you use executed instructions
to determine the starting location for a simulation point. If you
have drift in your intervals, to calculate the starting instruction
count, you cannot just multiply the simulation point by the fixed
length interval size as described above, since the interval lengths
are not exactly the same. This can result in simulating the wrong
set of instructions for the simulation point. When using the in-
struction count for the start of the simulation point, you need to
keep track of the total instruction count for each interval if you
have interval drift. You can then calculate the instruction count
starting location for a simulation point by summing up the ex-
act instruction counts for all of the intervals up to the interval
chosen as the simulation point.

Accurate Instruction Counts (No-ops) – It is important
to count instructions exactly the same for the frequency vector
profiles as for the detailed simulation, otherwise they will di-
verge. Note that the simulation points on the SimPoint website
include only correct path instructions and the instruction counts
include no-ops. Therefore, to reach these simulation points in a

simulator, every committed (correct path) instruction (including
no-ops) must be counted.

System Call Effects – Some users have reported system call
effects when running the same simulation points under slightly
different OS configurations on a cluster of machines. This can
result in slightly more or fewer instructions being executed to
get to the same point in the program’s execution, and if the num-
ber of instructions executed is used to find the simulation point,
this may lead to variations in the results. To avoid this, we sug-
gest using the Start PC and Execution Count for each simula-
tion point as described above. Another way to avoid variations
in startup is to use checkpointing [2].

Calculating Weighted IPC – For IPC (instructions/cycle)
we cannot just apply the weights directly as is done for CPI.
Instead we must convert all the simulated samples to CPI, com-
pute the weighted average of CPI, and then and then convert the
result back to IPC.

Calculating Weighted Miss Rates – To compute an over-
all miss rate (e.g. cache miss rate), first we must calculate both
the weighted average of the number of cache accesses, and the
weighted average of the number of cache misses. Dividing the
second number by the first gives the estimated cache miss rate.
In general, care must be taken when dealing with any ratio be-
cause both the numerator and the denominator must be averaged
separately and then divided.

Number of intervals – There should be a sufficient number
of intervals for the clustering algorithm to choose from. A good
rule of thumb is to make sure to use at least 1,000 intervals
in order for the clustering algorithm to be able to find a good
partition of the intervals. If there are too few intervals, one can
decrease the interval size to obtain more intervals for clustering.

Using SimPoint 2.0 with VLIs – As described in Sec-
tion 4.1.1, SimPoint 2.0 assumes fixed-length intervals, and
should not be used if the vectors to be clustered are variable
length. The problem with using VLIs with SimPoint 2.0 is that
the data will be clustered with a uniform weight distribution
across all intervals, which is not correct for representing the
execution properly. This means that the centroids may not be
representative of the program’s execution in a cluster. This can
result in large error rates, since a vector that is not representative
of the majority of the cluster could be chosen as the simulation
point.

Wanting Variable Length, but not asking for it – If you
want variable length weighting for each interval then you need
to use the -fixedLength off option. You may need to also
use -loadVectorWeights if your vector weights cannot be
automatically calculated from the vector’s values.

7 Summary

Modern computer architecture research depends on understand-
ing the cycle level behavior of a processor running an applica-
tion, and gaining this understanding can be done efficiently by
judiciously applying detailed cycle level simulation to only a
few simulation points. The level of detail provided by cycle
level simulation comes at the cost of simulation speed, but by
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targeting only one or a few carefully chosen samples for each of
the small number of behaviors found in real programs, this cost
can be reduced to a reasonable level.

The main idea behind SimPoint is the realization that pro-
grams typically only exhibit a few unique behaviors which are
interleaved with one another through time. By finding these be-
haviors and then determining the relative importance of each
one, we can maintain both a high level picture of the program’s
execution and at the same time quantify the cycle level interac-
tion between the application and the architecture. The key to
being able to find these phases in a efficient and robust manner
is the development of a metric that can capture the underlying
shifts in a program’s execution that result in the changes in ob-
served behavior. SimPoint uses frequency vectors to calculate
code similarity to cluster a program’s execution into phases.

SimPoint 3.0 automates the process of picking simulation
points using an off-line phase classification algorithm, which
significantly reduces the amount of simulation time required.
These goals are met by simulating only a handful of intelligently
picked sections of the full program. When these simulation
points are carefully chosen, they provide an accurate picture
of the complete execution of a program, which gives a highly
accurate estimation of performance. This release provides new
features for reducing the run-time of SimPoint and simulation
points required, and provides support for variable length inter-
vals. The SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder/simpoint/
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