
kForth-32
and

 kForth-Win32

User’s Guide

Ver. 1.8.x

Copyright © 1998 – 2023 Krishna Myneni

Table of Contents
Overview...3
Credits...4
1. Installation...7

1.1 Installation under GNU/Linux...7
1.1.1 Required Packages..7
1.1.2 kForth-32 on 64-bit Linux Systems..8
1.1.3 Library Packages for Forth Programming..8
1.1.4 Build and Configuration Under Linux..9

1.2 Installation under Windows..10
2. Using kForth...13

2.1 Basics...13
2.2 More Words..13
2.3 Using Forth’s Stack..15

2.3.1 The Data Stack..15
2.4 Variables and Constants..17
2.5 Stack Diagrams..19
2.6 Simple Word Examples..20
2.7 Acting on Conditions..23
2.8 The Return Stack..25
2.9 Factoring a Forth Program...28
2.10 Using Memory..29

2.10.1 Data Types..29
2.10.2 CREATE and ALLOT..29
2.10.3 Viewing Memory with DUMP...31

3. Dictionary..33
3.1 Dictionary Maintenance...34
3.2 Word Lists and Search Order...34
3.3 Compilation and Execution Words...36
3.4 Defining Words..38
3.5 Control Structures..39
3.6 Stack Operations..40
3.7 Memory Operations..42
3.8 String Operations..44
3.9 Logic and Bit Manipulation Operations...45
3.10 Arithmetic and Relational Operations..45

3.10.1 Single and Double Integer Operations..45
3.11 Floating Point Operations...48

3.11.1 Arithmetic and Relational Words..48
3.11.2 Floating Point Functions...48

3.12 Number Conversion...50
3.13 Input and Output...51
3.14 File Access..53

1

3.15 Operating System Interface..55
3.16 Miscellaneous...56

4. Technical Information...57
4.1 Forth-94 Compliance..57
4.2 Threading Model..57
4.3 Signed Integer Division..58
4.4 Double Numbers..59

4.4.1 Double Number Entry..59
4.4.2 kForth Method..59
4.4.3 Forth-94 Compatible Method...60

4.5 Floating Point Implementation...61
4.6 Special Features..61
4.7 Benchmarks and Tests..64
4.8 Exceptions..65
4.9 Source Code Map...66
4.10 Embedding kForth..67

References...68

2

Overview
kForth is a computer program that may be used in various ways:

1. It may be used as a calculator.
2. It may be used to run computer programs written in the Forth language.
3. It may be embedded into another computer program to give that program the

ability to understand and run Forth programs.

kForth, in its simplest mode of use, can evaluate arithmetic expressions typed in by
the user. Expressions are entered in a manner similar to that used for RPN (reverse
Polish notation) calculators, such as for Hewlett-Packard scientific calculators.
kForth permits arithmetic for single integer (32-bit), double integer (64-bit), and
double-precision floating point numbers. It also provides built-in transcendental
functions and other common number operations. Logic and bit operations may be
performed, and the number base may be changed – numbers may be entered and
displayed in hexadecimal (base 16), binary (base 2), or another base.

kForth is an implementation of the Forth programming language and environment.
The user may write Forth programs with an editor, load these program files from
kForth, and run them. kForth, like other implementations of Forth, provides an
interactive environment, allowing the user to examine or define variables and
execute or define individual words. Interactive use is one of the main advantages in
using a Forth environment for writing and testing computer programs.

kForth-32 for Linux and kForth-Win32 for Windows provide a large subset of the
Forth-94 standard (ANS Forth) for the Forth language. kForth also provides some
extensions and non-standard features which its authors have found to be useful.
Experienced Forth users should consult the Technical Information section of the
User’s Guide for specific information on the differences between kForth and
standard Forth-94.

Some notable features of kForth are:

• It is reasonably fast for many applications.

• It detects and reports many kinds of programming mistakes, providing
useful feedback to aid the user in correcting his/her Forth program.

• It includes this User’s Guide containing a beginner's tutorial on using
kForth, describes the function of each of kForth's intrinsic words, and
provides technical details about kForth for intermediate and advanced users.

• It comes with a large collection of example Forth programs, many of which
are complete and useful programs.

• It provides a set of Forth source libraries for productive programming.

• String manipulation, standard file access, and console output control,

3

http://en.wikipedia.org/wiki/Forth_programming_language

• Structures, lists, simple objects, and a portable modular programming
framework,

• A tested, precision numerical computing library, comprised of
modules from the Forth Scientific Library with many extra modules,
and scientific computing examples,

• Operating system calls, sockets, signals, and shared library interface
under Linux. A limited set of OS calls are available under Windows.

• Assembler for x86 processors.

• Its shared library interface supports bindings to pre-compiled external
libraries of functions written in C and Fortran. Library bindings are provided
for X-Windows programming (libX11), GNU Multiple Precision
Arithmetic Library (libgmp), and the GNU Multi-precision Floating Point
Library (libmpfr) .

• It provides a low-level operating system interface for Linux, making it
possible to write Forth programs for instrument control and data acquisition.
Examples include communicating via RS-232 and IEEE 488.2 (GPIB)
interfaces.

• It simplifies using the large amounts of memory available to the computer,
through its dynamic dictionary design.

• It provides a large amount of test code, written in Forth, to validate its own
operation. Tests for compliance to Forth-94 specified behavior and
validation of its floating point arithmetic are among the provided system
tests.

In addition to being as a stand-alone computing environment, kForth was designed
to be easily embedded into another program. Advanced programmers, typically
programming in the C and C++ languages, can use the kForth source code to make
their own programs user extensible. In fact kForth was originally developed to
allow users of XYPLOT for Linux, and for Windows, to customize and add their
own functions to the program. They can do this without modifying the XYPLOT
program itself. Instead, they may write separate Forth modules and load them to
extend XYPLOT’s capabilities.

Credits

kForth was developed over several decades by its principal author, Krishna Myneni,
with programming and technical contributions by the following people: David P.
Wallace, Matthias Urlichs, Guido Draheim, Brad Knotwell, Alaric B. Snell, Todd
Nathan, Bdale Garbee, Christopher M. Bannon, David N. Williams. Others have

4

https://github.com/mynenik/XYPLOT-32
http://www.taygeta.com/fsl/sciforth.html

graciously permitted porting of their work to kForth. If I have inadvertently omitted
mention of anyone who has made technical contributions to kForth, please let me
know at krishna.myneni@ccreweb.org.

5

mailto:krishna.myneni@ccreweb.org?subject=Credits%20for%20kForth-32

6

1. Installation

kForth is provided under the terms of the GNU Affero General Public License
(AGPL). New releases of this software will be posted at GitHub as they become
available. This manual provides a guide to the use and documents the features of
kForth.

For the Linux operating system, kForth must be built from its source package:

• kForth-32-x.y.z.tar.gz or kForth-32-x.y.z.zip

where x.y.z is the current version number. The source package unpacks to a
directory containing several subdirectories. The files needed to build the
executables, kforth32 and kforth32-fast may be found in the src/ subdirectory.

For the Windows operating system, kForth may be installed from the package:

• kForth-Win32-x.y.z.zip

where x.y.z is the version number. This package unzips to a folder containing
both the source code and a prebuilt executable, kforth.exe.

Difficulties with installation should be reported to: krishna.myneni@ccreweb.org

1.1 Installation under GNU/Linux

1.1.1 Required Packages
The following packages are required to build and maintain kForth from its source
package, on a GNU/Linux system:

• binutils
• gcc
• gcc-c++
• glibc
• glibc-devel
• libstdc++-devel
• make
• readline
• readline-devel
• ncurses
• ncurses-devel
• patchutils

7

mailto:krishna.myneni@ccreweb.org
https://github.com/mynenik/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Note that some of the package names may be slightly different, depending on your
GNU/Linux distribution. Some or all of these packages may already be installed on
your GNU/Linux system, but if they are not, you should be able to install them
manually for your distribution. You may use your system's graphical package
manager to check for installation of the required packages, or use a command line
query. For example, if your GNU/Linux system is rpm-based, you may verify that
these packages have been installed by using the rpm command in the following
way:

rpm -q package-name

The above command will return the version number of the package if it has been
installed. We recommend using GNU C/C++ version 4.9.0 or higher. On a
Debian package-based system, the following command line query may be used:

aptitude search package-name

While it may be tedious to determine the necessary package names and install any
needed packages on your system, this is a one-time procedure which will enable
your system to be used for building software from its source code, and for software
development.

1.1.2 kForth-32 on 64-bit Linux Systems
kForth is always built as a 32-bit application, even on 64-bit systems. If you are
building on a 64-bit system (x86_64), the 32-bit versions of of the C/C++ libraries
and other libraries (ncurses, readline) must be installed. On a system such as
CentOS 7, and other Red Hat Enterprise Linux 7 derived systems, additional
packages are installed using

sudo yum install package-name

Installing the following additional packages will provide the needed libraries to
build kForth on these systems:

• glibc-devel.i686
• libstdc++-devel.i686
• ncurses-devel.i686
• readline-devel.i686

1.1.3 Library Packages for Forth Programming
In addition to the packages needed to build kForth, additional libraries may be
installed to allow Forth programs access to X11 graphics and multi-precision
arithmetic. Various examples of Forth programs which use external libraries are

8

provided in forth-src/libs and forth-src/x11. The following packages
may be installed to run these examples (both 64-bit and 32-bit versions of the
packages may coexist on a system).

• libX11.i686

• libXft.i686

• libXrender.i686

• xorg-x11-fonts-75dpi.noarch

• xorg-x11-fonts-100dpi.noarch

• xorg-x11-fonts-Type1.noarch

• xorg-x11-fonts-misc.noarch

• xorg-x11-fonts-ISO8859-1-75dpi.noarch

• gmp.i686

• mpfr.i686

1.1.4 Build and Configuration Under Linux
Assuming your system has the required packages, follow these steps to unpack,
build, and install kForth:

1. Create a directory for the kForth source files, typically in your home
directory, e.g.

mkdir ~/kforth

2. Move the kForth archive file into this directory:

mv kforth-x86-linux-x.y.z.tar.gz ~/kforth

3. Change to the ~/kforth directory and extract the files:

cd ~/kforth

tar -zxvf kforth-x86-linux-x.y.z.tar.gz

After this step, a subdirectory will be created with the name kforth-
x.y.z. This directory will contain all of the kForth source files, the
Makefile(s), as well as a README file with these same instructions.

4. Change to the kforth-x.y.z directory:

cd kforth-x.y.z

9

5. Build the kForth executable. There are several options for building kForth,
but the simplest is to type:

make

All of the source files will be compiled/assembled and two executable files,
named kforth32 and kforth32-fast, will be generated.

6. At this point you should be able to run the executables from your
~/kforth/kforth-x.y.z directory. If you wish to make kforth
available to all users or to place the programs in the default search path,
move the executables to a suitable directory (/usr/local/bin/ is
recommended) using:

sudo mv kforth32 /usr/local/bin/
sudo mv kforth32-fast /usr/local/bin/

Any user should then be able to execute kforth32 or kforth32-fast.
You must have sudo privilege to do this last step.

7. Sample source code files are included in the archive. These files have
extension .4th. Users may copy the example programs to their own
directories.

8. You may specify a default directory in which kforth will search for .4th
files not found in the current directory. The environment variable
KFORTH_DIR must be set to this directory. For example, under the BASH
shell, if you want the default directory to be ~/kforth/kforth-x.y.z,
add the following lines to your .bash_profile file:

 KFORTH_DIR=~/kforth/kforth-x.y.z
 export KFORTH_DIR

The file kforth.xpm may be used to create a desktop icon for kForth under X
Windows. For example, if you are using the KDE environment, copy
kforth.xpm to the /usr/share/icons directory.

1.2 Installation under Windows

1. Extract the files from the downloaded zip file into a folder of your choice.
The executable, kforth.exe, is found in the bin/ subfolder. Forth programs
and Forth source libraries are found in the forth-src/ subfolder.

10

2. Make a shortcut for kforth.exe and drag the shortcut onto your Windows
desktop. Clicking on the shortcut will open a console window from which
you can interact with the kForth computing environment. Alternately, you
can execute kforth.exe from Windows PowerShell by navigating to its
folder and typing

kforth.exe

at the PowerShell prompt.

3. Create and set the value of an environment variable under Windows to tell
kForth where to look for Forth programs and libraries if they do not happen
to be in the current folder. Follow the instructions below to create and
specify the environment variable.

4. Go to your search field next to the Windows Start button, and type
“environment”.

5. Select the link, “Edit the environment variables for your account”. Note: do
not select the “Edit the system environment variables.”

6. In the “User variables …” section of the dialog, click on the “New” button.

7. For the “variable name” field, enter “KFORTH_DIR” without the quotes.
For the “variable value” field, enter the full path to the location of your
Forth programs folders, e.g. “C:\Users\kamala\apps\kForth-
Win32-1.8.0\forth-src”

8. Click “OK” to accept the new environment variable.

9. To check the proper setup of the environment variable, launch kforth.exe
and type the following in the Forth environment,

include ans-words.4th

10. If the Forth environment responds with “ ok”, kForth is able to look for
Forth programs in the folder specified by its environment variable.

11

12

2. Using kForth

2.1 Basics

Type or launch kforth32 (kforth.exe under Windows) to start the program. Upon
startup, kForth will inform you that it is ready to accept input by displaying

Ready!

You may type commands, a sequence of words, and press Enter. kForth will
respond with the prompt

ok

after it finishes executing each line of input. To illustrate, try typing the following

2 5 + .

and press Enter. kForth will respond with

7 ok

You may now enter another sequence of words. One particularly useful word to
know is

bye

kForth will respond by saying

Goodbye

and exiting. kForth is not case sensitive – you may enter words in lower case or
upper case.

2.2 More Words

The word

words

13

will display a list of currently defined words in the dictionary. You may define your
own words by typing them at the kForth prompt. For example, a word that counts
from one to ten and displays each number counted may be defined by entering

: count-to-ten 10 0 DO I 1+ . LOOP ;

The symbols “:” and “;” mark the beginning and ending of the definition of the
word, called count-to-ten in this example. Later you will learn that “:” and
“;” are actually words which you may use to write a word which can define new
words. kForth will display the prompt ok after the new word has been compiled
into the dictionary.

You can verify that our newly defined word has been added to the dictionary by
using words. Now, execute the word by typing

count-to-ten

and pressing Enter. kForth will display the output

1 2 3 4 5 6 7 8 9 10 ok

If you are entering a definition that requires several lines of typing, the ok prompt
will not be displayed until the end of the definition has been entered, i.e. until the
compiler encounters a semicolon.

Although you can write Forth programs this way, it is much easier to create the
definitions in a separate source file and then load them into kForth by issuing the
command

include filename

For example, the definition of count-to-ten could have been entered into a
plain text file called prog1.4th. Once kForth has been started, you can simply
issue the command

include prog1

kForth will read the input from the specified file as though it was being entered
from the keyboard. You may have noticed that the full file name was not entered in
the include command. If no extension is specified, the file is assumed to have an
extension of .4th.

You may also load a source file upon startup of kForth by typing

kforth filename

14

2.3 Using Forth’s Stack

Forth provides reserved memory regions, called stacks, in which certain types of
data may be placed and operated upon by defined words. One of these stacks is the
data stack, often referred to as just the “stack”. Another is called the return stack.
We will discuss use of the data stack for performing computations on integer
numbers and on floating point numbers. The return stack will be discussed in a later
section.

2.3.1 The Data Stack
You may enter numbers onto the data stack simply by typing them and pressing
Enter. You can use the word .S to list the contents of the stack. For example, type
the following and press Enter.

2 5

You have placed two numbers onto the “stack”. Now, type

.S

and press Enter. kForth will respond by listing the items on the stack:

5
2

Notice that 5 is on the top of the stack – items are placed into the stack in a first-in,
last-out order. Stack operators (words) are a part of the Forth language. Examples
include the arithmetic operators

+ - * /

These operate on the top two items on the stack and replace them with the result.
Other words change the order of items on the stack or copy or remove items from
the stack:

SWAP ROT DUP OVER TUCK DROP NIP

Each stack cell holds a single integer number.

You may also place representations of real numbers, also known as floating point
numbers, onto the data stack. These numbers must be input in a special way known
as exponential notation, for Forth’s interpreter to recognize them as floating point

15

numbers. For example, to place the computer representation of the real number 3.14
onto the stack, type

3.14e0

and press Enter. The zero following the 'e' indicates the power of ten that is
multiplied to the number (10 raised to the zero power is equal to 1). Therefore,
3.14e0 corresponds to the real number, 3.14×100. If the exponent is zero, as in
this example, the entry may be shortened to simply

3.14e

Exponential format allows you to enter very small and very large numbers easily. To
enter the fractional number representing one-billionth, 0.000000001, or 1×10-9, you
may type

1e-9

and press Enter.

When you place a floating point number onto the stack and list the stack using .S,
you will see two integer numbers printed instead of one real number. A floating
point number occupies two stack cells instead of one, and .S lists the contents of
each cell as though it were a single integer. You may print the floating point number
occupying the top two cells of the stack with the word

F.

Use the words

F+ F- F* F/

to perform arithmetic on floating point numbers which have been placed onto the
stack. For example,

3.14e 6.28e f+ f.

will print the result 9.42. Words to manipulate floating point numbers on the stack
include

FSWAP FROT FDUP FOVER FDROP

Computer users should be aware that floating point representations of real numbers
are rarely exact representations, and arithmetic with floating point numbers will

16

likely produce errors from the ideal mathematical result with real numbers. The
precision with which real numbers are represented by floating point numbers affects
the numerical accuracy of a floating point calculation on the computer. In kForth,
the default precision for floating point numbers is that given by the IEEE 754
double-precision representation, which provides about 16 significant decimal digits
for representing a real number.

2.4 Variables and Constants

An integer variable may be declared as follows:

variable name

Values may be stored and retrieved from the variable using the “store” (!) and
“fetch” (@) operators. For example, if we want to define a variable called counter
and initialize its value to 20, we enter the following:

variable counter
20 counter !

When you define a variable, memory is reserved at some address to hold an integer
value, and the name of the variable becomes part of the dictionary. Typing the name
counter at the Forth prompt and pressing enter will cause the memory address of
counter to be placed onto the stack. Try the following:

counter
.s

You will see a memory address on top of the stack.

To examine the value stored in the variable counter, place the address of counter
on the stack, then use the fetch operator to retrieve the value from that address onto
the stack, as follows.

counter @

The number 20 will be on top of the stack. Of course to see the value, we must print
it using the word “dot” (.), so entering

counter @ .

will print the value 20. Forth also has a built-in word, ?, that performs the sequence
“@ .”.

17

Now, let's say we want to increment the value of counter by ten. First we fetch
the value stored in counter onto the stack, then add ten, and finally store the new
value into the variable. This is accomplished by the sequence,

counter @ 10 + counter !

Actually, Forth provides a shorter way of doing the same thing:

10 counter +!

Floating point variables are defined in a similar way:

fvariable name

The corresponding operators for storing and retrieving floating point numbers into
the variable are f! and f@. Let's define a floating point variable called velocity
and initialize it to zero.

fvariable velocity
0e velocity f!

Note that a floating point value of zero is entered as 0e and we used the operator
f! to store the value into velocity. If we now want to increment the value of
velocity by 9.8, we can enter

velocity f@ 9.8e f+ velocity f!

kForth does not have a word called f+!, but with a little more familiarity with
Forth, you may easily define such a word! To print a floating point value on the
stack, use the word f. as explained previously. For example,

velocity f@ f.

will print the value 9.8.

Integer constants are defined as follows

value constant name

To define a constant called megabyte, for example, type

1048576 constant megabyte

18

I often can't remember how many bytes there are in a megabyte, so I may have
written instead

1024 1024 * constant megabyte

Now, type the name of the constant and print the top item on the stack

megabyte .

and you will see printed the value 1048576. Typing the name of the constant
retrieves its value (not an address) onto the stack.

Floating point constants are defined in a similar fashion

fvalue fconstant name

To define a constant containing the acceleration due to gravity, 9.8 meters per
second squared, type

9.8e fconstant g

The name of the constant is g. Typing

g f.

will print 9.8. Now, let's add the value of g to the value of velocity and print the
result to illustrate the use of floating point variables and constants

velocity f@ g f+ f.

2.5 Stack Diagrams

The kForth dictionary contains many words that you may execute simply by typing
them at the ok prompt. Some words expect values to have been placed on the stack
when they begin executing. During execution of the word, these values may be
removed from the stack and other values may be placed onto the stack. The values
that are expected on the stack at the beginning of execution and those values that
are returned on the stack at the end of execution are stated in the form of a stack

19

../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html

diagram for the word. For example, the stack diagram for the word NEGATE is
written as follows:

(n -- m)

This diagram indicates that a single integer n must be on the stack prior to
executing NEGATE. After NEGATE finishes executing, the original value n has been
removed from the stack and is replaced by a new single integer m. Try typing

3 negate

Now, list the items on the stack using .S.

A stack diagram is simply a comment which allows the programmer to understand
the expectations for the stack(s) before and after a word is executed. Their presence
is ignored by the Forth interpreter. Words that do not expect any items to be on the
stack, and which do not return anything on the stack (e.g. CR and DECIMAL) have a
stack diagram that looks like

(--)

The word @ has the stack diagram

(a -- n)

with the meaning that @ expects an address a on the stack and returns a single
integer n on the stack. In contrast the word ! has the stack diagram

(n a --)

with the meaning that ! expects two items to be on the stack, a single integer n and
an address a, with “a” being the top item on the stack. During execution, both n and
a are removed from the stack, the word ! using and dispensing with them. Nothing
is returned on the stack.

2.6 Simple Word Examples

Now let us practice writing some simple and useful words.

Example 1: Compounding Interest

Suppose we invest $1000 and we expect that it will grow with a yearly interest of
6%, which is compounded annually. What will be the final amount after 10 years?

We can determine the amount of interest accumulated after each year by taking 6%
of the current amount and adding that to the current amount. For example, you can

20

type the following to compute and print the amount at the end of the first year:

1000 dup 6 * 100 / + .

We placed the starting amount on the stack, then duplicated this value on the stack
to compute 6% interest. Finally we add the top two numbers on the stack, the
starting amount and the interest, and print the sum. If you are confused by the above
example, it will help to print the contents of the stack using .S after you enter each
word on a separate line,

1000 .S
dup .S
6 .S
* .S
100 .S
/ .S
+ .S
.

To solve the problem for 10 years, we simply need to repeat this calculation ten
times. However, we must skip the first word, 1000 and the last word, ., in between
years so that we can use the compounded amount from one year as the starting
amount for the next year. The final result may be printed at the end.

Performing a repetetive calculation is easy in Forth – it is done with a DO...LOOP.
The word DO expects two numbers on the stack. The difference between the two
numbers is the number of times that the words between DO and LOOP will be
executed. The smaller number should be on top of the stack The following word
illustrates using the DO...LOOP to solve this problem:
\ compound 6% interest on $1000 for 10 years and print answer

: compound10 (--)
 1000 \ starting amount
 10 0 DO \ do this for ten years
 dup 6 * 100 / \ compute 6% interest of current amount
 + \ add interest to current amount
 LOOP \ loop to next year
 . \ finally print the result
;

Executing the word compound10 will display the answer 1786.

Now let's generalize our word so that it is more useful. We want to be able to
specify the starting amount, the interest, and the number of years to compound the
interest. Finally, we want to print the result as before. The following word takes
inputs from the stack, computes the final amount, and prints the answer:

21

: compound (nstart npercent nyears --)
 0 DO \ do this for nyears
 2dup * 100 / \ compute interest on current amount
 rot + \ add interest to current amount
 swap \ swap items on stack to keep same order
 LOOP \ loop to next year
 drop . \ drop interest and print final amount
;

The word compound assumes that we have entered the starting amount, the
percent interest per year, and the number of years onto the stack, as indicated in its
stack diagram. Therefore, to solve the problem of our previous example using the
more general word we would type

1000 6 10 compound

and press Enter. The same answer found previously will be displayed. But with
our new word we can also determine the compounded growth after any number of
years (except zero), at any interest rate, and for any starting amount. To see what
our investment will grow to after 20 years, type:

1000 6 20 compound

To conclude this example, let's modify the word compound so that it prints a table
of the accumulated amount at the end of each year:

: compound (nstart npercent nyears --)
 0 DO
 2dup * 100 /
 rot +
\ print year, right-justified in 2 character field
 I 1+ 2 .r
 9 emit \ print a tab
\ print year-ending amount, right justified in 6 char field
 dup 6 .r
 cr \ advance to the next line
 swap
 LOOP
 2drop ;

Notice that we made use of the word I in the above example. I gets the loop
index and places it on the stack. The loop index starts at the number on top of the
stack when DO executes, which is 0 in this example. The loop index increments by
one after each LOOP. You can look up in the dictionary other words that may not be
familiar to you in this example, such as 1+, .R, EMIT, and CR.

Finally, it is easy in kForth to send the output from the last example to a file instead
of printing it on the screen. This is done by typing

>file interest.txt
1000 6 20 compound
console

22

The word >FILE redirects output from the screen (console) to the file name
specified subsequently, interest.txt in the above example. The word
CONSOLE closes the file and redirects output back to the screen. We used >FILE
and CONSOLE to send the results of our interest calculations to a file, which can
then be imported into a spreadsheet to make a chart!

2.7 Acting on Conditions

Nearly all computer programs, except for the simplest, will check to see if a
specified condition is either true or false, and carry out different instructions based
on the result. We have already seen how a DO ... LOOP works in Forth. In this
special case, the word LOOP adds one to the loop counter and then checks whether
or not the condition that the loop counter is equal to the ending count of the loop is
true or false. Often, we will want to instruct the computer to check conditions that
are not related to loops and then execute one sequence of words if the condition is
true, or another sequence of words if the condition is false. Let's see how we can do
this in Forth.

To start, let's look at how to test a condition and how the result of the test is
represented. As an example, our condition to be tested is whether or not the variable
X is greater than 2. In Forth, such a test would be written as

X @ 2 >

We fetch the value of X onto the stack, next place the integer 2 on the stack, and
then use the word > to check whether or not the number buried one cell deep into
the stack is greater than the number on the top of the stack. The stack diagram for
> is

n1 n2 -- b

Therefore, > removes both numbers from the stack and leaves a boolean flag,
written as "b" in the stack diagram above. The flag b is itself another number, but it
is a number that is always either 0 or -1. The value of the flag represents one of two
states: true, corresponding to the value -1 and false, corresponding to the value 0.
For convenience, Forth provides two predefined constants TRUE and FALSE. Try
the following.

TRUE .

FALSE .

Now we have learned that the result of a test is a flag value, either true or false,
placed on top of the stack. Although our example used the word >, other words in

23

Forth can test for equality of two numbers, a less than condition, and perform
several other comparisons.

A flag on top of the stack is used by the word IF to cause the computer to jump to
different locations within the executing word, based on the flag's value. This
process is called conditional branching and all programming languages provide a
way to do this. The word IF is part of a control structure made up of the words IF
... ELSE ... THEN, where ... represents some arbitrary word sequences.
Many other programming languages have a structure similar to this, but in Forth its
use is slightly different. The word IF assumes the conditional test has already been
performed and that there is a flag on top of the stack. Let's illustrate the use of the
IF ... ELSE ... THEN structure with an example. Suppose we want to
write a word that prints whether a number given to it is “even” or “odd”. We could
define this word as follows

: parity (n -- | print whether number is even or odd)
 2 MOD 0=
 IF
 ." even"
 ELSE
 ." odd"
 THEN ;

In our definition of the word parity, the conditional test is given by the line

2 MOD 0=

The word MOD performs a division, except that it returns the remainder instead of
the quotient. An “even” number divided by 2 has a zero remainder, so we check to
see if the value returned by MOD, on top of the stack, is equal to zero. The word 0=
returns a true flag when the number on top of the stack is zero, a false flag
otherwise. When IF examines this flag, if it finds the flag to be true, execution
jumps to the word following IF. On the other hand, if the flag is false, execution
branches to the word following ELSE. To see how it works, try typing a number
followed by the word parity, e.g.

4 parity

A few other points to note about the IF ... ELSE ... THEN structure:

• When the word IF examines the flag on top of the stack, it treats any non-
zero value as representing true. A zero value always corresponds to false.
Therefore, we could define the word parity as:

: parity (n --) 2 MOD IF ." odd" ELSE ." even"
THEN ;

24

Notice the exchange of ." odd" and ."even" in the new version of
parity.

• In some cases we may not want to do anything when the condition is false.
For example, suppose we want to write a word that prints “odd” only when
the number we give it is odd, but does nothing if the number is even. Then
we can omit the ELSE ... portion of the structure. For example, we can
define

: odd? (n --) 2 MOD IF ." odd" THEN ;

Try passing different numbers to the word odd?, such as

5 odd?
• When the condition flag is true, the words enclosed between IF and ELSE

are executed; when the flag is false, the words enclosed between ELSE and
THEN are executed. After either branch is executed, the computer resumes
execution after the word THEN. The two branches come back together again
following THEN – this is a feature of structured programming, which makes
it easier for a person to trace the possible paths a computer may take through
a sequence of instructions.

• An IF ... ELSE ... THEN structure can be placed inside a branch of
another IF ... ELSE ... THEN structure. This is called nesting, and
you will see an example of nested structures in the next section.

2.8 The Return Stack

Forth uses the return stack to store the return location within a program after a word
finishes executing. Therefore, modifying the data on the return stack can alter the
behavior of program, usually resulting in the program crashing. However, Forth
permits use of the return stack, with care, for temporary storage by words written by
the user. Indeed, standard Forth words often use the return stack for temporary
storage of parameters. For example DO may store the current and ending loop count,
in addition to the starting location of the loop on the return stack, while LOOP
increments the loop count and decides whether to branch back to the start of the
loop or to terminate the loop. On loop termination, LOOP removes exactly the same
number of items from the return stack as placed on it by DO, so that the return stack
is, overall, unchanged when the word finishes executing.

25

Forth words usually take input values from the data stack and store intermediate
results of the computation on the data stack. You may have difficulty keeping items
ordered exactly as needed during the computation, especially when more than two
input values are required. Even though Forth provides data stack manipulation
words such as DUP SWAP ROT, etc., sometimes the most convenient method is to
make use of the return stack. An item on the data stack can be “pushed” onto the
return stack by using the word >R. The item can be “popped” from the return stack
onto the data stack with the word R>.

The following example also illustrates the use of the return stack.

: this-date (-- day month year)
 time&date >r >r >r 2drop drop r> r> r> ;

The word this-date returns today's date on the stack with the year on top. It
does this by calling kForth's built-in word, TIME&DATE, which has the following
stack diagram:

time&date (-- secs mins hours day month year)

We want our word this-date to only return the day, month, and year, so we
must remove secs, mins, and hours left on the stack by TIME&DATE. However,
day, month, and year are on top and the three numbers we want to drop (secs,
mins, and hours) are buried underneath. Using >R three times, we remove the
year, month, and day from the stack, in that order. These numbers are pushed onto
the return stack. Now we use 2DROP and DROP to remove hours, mins, and secs
from the stack. Finally, we use the word R> three times to pop the day, month, and
year from the return stack back onto the data stack.

A word of caution to the new Forth user: the return stack must be used with the
following restrictions because, as discussed previously, the Forth system itself
places items on the return stack at the beginning of executing a word and also when
executing DO loops:

• Inside the definition of a word, every item pushed onto the return stack with
>R must be popped from the return stack with a corresponding R> before the
end of the word.

• There must also be a matching R> for every >R inside of a DO ... LOOP.
• Inside of DO loops, the loop index words I and J must not be used when

items have been pushed onto the return stack but not yet popped.

26

Example 2: Calculating Age

In this example, we will make use of what we have learned up to now to compute
the age of a person given their birth date. Following good Forth practice, we will
first define a few simple words which we anticipate will be helpful for writing the
actual age calculator:

: this-year (-- year)
 this-date >r 2drop r> ;

: this-month (-- month)
 this-date drop nip ;

: this-day (-- day)
 this-date 2drop ;

The words this-year, this-month, and this-day all use this-date,
defined previously, and remove any extra items from the stack. A couple more
words will be helpful in our calculation:

: date< (day1 month1 day2 month2 -- flag)
 rot swap
 2dup \ is month1 less than month2?
 < IF
 2drop 2drop \ remove items on stack
 true \ leave true flag on the stack
 ELSE
 = IF \ is month1 equal to month2?
 < \ flag represents day1 less than day2
 ELSE
 2drop \ remove items on stack -- month1 > month2
 false \ so return false flag
 THEN
 THEN ;

Notice that we used two nested IF ... ELSE ... THEN structures in our
definition of DATE<. The first IF examines the flag returned by <, which tests
whether or not month1 is less than month2. If month1 is not less than month2,
we must then check to see if month1 is equal to month2. The word = tests this
condition and returns the appropriate flag, which is examined by the second IF.

\ test whether day and month are in future

: after-today (day month -- b)
 this-day this-month 2swap date< ;

We are ready now to calculate a person's age, given their birth date.

27

: age (day month year -- age | calculate age given birth date)
 this-year swap - \ # of years elapsed from birth year
 -rot \ move top item to bottom of stack
 after-today IF \ is birthday later than today?
 1- \ yes, subtract one from number of years
 THEN ;

We may test our definition of AGE by typing

day month year age .

where day, month, and year are the numbers for your birth day, month, and year.
kForth will respond by printing your current age.

2.9 Factoring a Forth Program

You may have noticed that in our example of the age calculator, we defined several
words, not just one. Breaking the calculation into individual short words is a way to
make writing a program simpler, easier to understand, and easier to test when, as is
inevitable, a program doesn't work like you imagined. Previously defined words can
be used to write higher level words, making the higher level words more readable.

Well-written Forth programs will often have short low-level words, each of which
performs a single and simple computation matching well the name of that word. As
an example, consider the game tetris.4th written in Forth (see forth-
src/games/). Notice how the words defined towards the beginning of the
program, such as DRAW-PIT and UPDATE-SCORE are short words with well-
defined functions matching their names. Near the end of the program, various words
are combined to define the higher level word, PLAY-GAME. Although the working
of the lower level words may not be immediately apparent from reading their
definitions, in a properly factored Forth program, the high level word(s), such as
PLAY-GAME, are very readable and often times resemble a natural language
description of the actions performed by the word. Readable factoring is a skill
acquired through practice with writing programs in any programming language, and
often results in programs which are more easy to diagnose and repair when things
don't work as expected.

28

2.10 Using Memory

2.10.1 Data Types
Earlier, in section 2.4, we learned how to create named integer and floating point
variables using VARIABLE and FVARIABLE. These words define new words,
which when executed, return the starting location (address) of the memory region
containing their value. Different data types such as integers and floating point
numbers require different amounts of memory for storing their values, and the
words VARIABLE and FVARIABLE automatically reserve (ALLOT) the
appropriate sized region.

In addition to the VARIABLE and FVARIABLE data types, Forth also provides
2VARIABLE for a double length integer. Thus, VARIABLE will allot one cell
(typically 4 bytes on a 32-bit system) and 2VARIABLE will allot two cells of
memory. To find out how many bytes of memory represent one cell in a Forth
system, type

1 cells .

We would use 2VARIABLEs, for example, when we want to store integer numbers
that are too large, or will become too large in the course of executing our program,
to be represented by single length VARIABLEs. The largest signed single length
integer representable on a 32-bit Forth system can sometimes be limiting,
necessitating the use of double length integers. On a 32-bit system, the range of
signed whole numbers which can be represented by a single stack cell is

−2,147,483,648 to +2,147,483,647

For double length integers, the range of signed numbers which can be represented is

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Should you need to perform arithmetic which results in integers within that range,
kForth provides double length integer arithmetic operators such as, D+ and D−, as
well as a number of mixed length arithmetic operators between single and double
length integers.

2.10.2 CREATE and ALLOT
In writing our own Forth programs, we may need to store and retrieve data of
different size than the sizes given by the data types discussed above. Examples are a
paragraph of text, or an array of integers. How do we go about reserving memory
for, say, 100 single length integers? In addition to reserving the memory, we need to

29

assign a name with which to refer to the memory region. These tasks are
accomplished through the use of the words CREATE and ALLOT:

CREATE iarray 100 CELLS ALLOT

The above statement will create a new word in the dictionary, called iarray, and
reserve 100 cells (400 bytes on a 32-bit system). Executing the word iarray will
return the starting address of the memory region. The words CREATE and ALLOT
are, in fact, primitive Forth words which may be used to define words such as
VARIABLE, e.g.

: VAR CREATE 1 CELLS ALLOT ;

Example 3: Initializing and Printing an Array of Integers

In our example above, we reserved a memory region of 100 cells in size using
ALLOT. Simply alloting this memory does not specify what is initally stored in
this region. We might need to set the initial values of the 100 integers in iarray
before using it in our computation. A word to set all of the 100 integers to zero
could be defined in the following way.

: init-iarray (-- | initialize iarray to zeros)
 iarray 100 0 DO 0 over ! cell+ LOOP drop ;

Study the above example to see how the word performs the action of storing a zero
in each of the 100 cells. You may look up the action of the word CELL+ in the
dictionary. A word to print the 100 integers stored in iarray may be defined as
follows.
: print-iarray (--)
 cr iarray
 100 0 DO
 dup @
 6 .R I 1+ 8 mod 0= IF cr THEN \ nice output formatting
 cell+
 LOOP drop ;

Forth also provides the words, FILL, BLANK, and ERASE, to set all of the bytes in
a memory region to a single byte value. Using ERASE, the word init-iarray
may also be defined as

: init-iarray (--) iarray 100 cells erase ;

Exercise: Try modifying our first definition of init-iarray so that it stores a
running count from 1 to 100 in iarray, instead of initializing all the values to
zero. The following output should be produced by print-iarray.

print-iarray

30

 1 2 3 4 5 6 7 8
 9 10 11 12 13 14 15 16
 17 18 19 20 21 22 23 24
 25 26 27 28 29 30 31 32
 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48
 49 50 51 52 53 54 55 56
 57 58 59 60 61 62 63 64
 65 66 67 68 69 70 71 72
 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88
 89 90 91 92 93 94 95 96
 97 98 99 100 ok

Exercise: Write a more general version of init-iarray which takes the array
and the number of elements which may be stored in the array as arguments. The
new word and its stack diagram will be,

init-array (a n --)

where a is the starting memory address of the array and n is the number of elements
in the array. Write a similarly generalized word to print any specified array or
arbitrary length,

print-array (a n –)

2.10.3 Viewing Memory with DUMP
In some applications, particularly those involving sending and receiving data between the
computer and another device, it is often very useful to be able to view the individual bytes
stored in a region of memory. Forth provides the word DUMP to allow the user to view the
individual byte contents of a memory region. In kForth, the word DUMP is provided as a
source definition, that is, a word defined using more primitive Forth words, within the file
dump.4th. To use the word DUMP, we must first include this file with

include dump

Then, typing IARRAY 64 DUMP should output something like
134969216 : 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00
00
134969232 : 05 00 00 00 06 00 00 00 07 00 00 00 08 00 00
00
134969248 : 09 00 00 00 0A 00 00 00 0B 00 00 00 0C 00 00
00
134969264 : 0D 00 00 00 0E 00 00 00 0F 00 00 00 10 00 00
00 ok
At first glance, the above output does not seem too useful; however, if we look
closely, the data stored previously in iarray may be seen – the running count
starting from one can be seen in the successive groups of four bytes. Also, DUMP

31

displays the individual bytes in base 16, or hexadecimal. This is not immediately
apparent, until we see that the number 10 in iarray is displayed as the four-byte
sequence " 0A 00 00 00". Engineers trying to debug programs communicating
with hardware often find “hex” output to be more useful than the ordinary decimal
representation because it allows them to visualize the bit-pattern represented by
each hex character.

DUMP also shows the address of the first byte of each line on the left hand side, and
shows additional characters on the right hand side. When the bytes in memory
represent printable characters, also known as ASCII codes, the corresponding
character is displayed on the right hand side. To see this, try IARRAY 64 CELLS
+ 128 DUMP. The following output will be shown by DUMP:
134969472 : 41 00 00 00 42 00 00 00 43 00 00 00 44 00 00 00
A...B...C...D...
134969488 : 45 00 00 00 46 00 00 00 47 00 00 00 48 00 00 00
E...F...G...H...
134969504 : 49 00 00 00 4A 00 00 00 4B 00 00 00 4C 00 00 00
I...J...K...L...
134969520 : 4D 00 00 00 4E 00 00 00 4F 00 00 00 50 00 00 00
M...N...O...P...
134969536 : 51 00 00 00 52 00 00 00 53 00 00 00 54 00 00 00
Q...R...S...T...
134969552 : 55 00 00 00 56 00 00 00 57 00 00 00 58 00 00 00
U...V...W...X...
134969568 : 59 00 00 00 5A 00 00 00 5B 00 00 00 5C 00 00 00
Y...Z...[...\...
134969584 : 5D 00 00 00 5E 00 00 00 5F 00 00 00 60 00 00
00]...^..._...`... ok

32

3. Dictionary

1. Dictionary Maintenance
2. Word Lists and Search Order
3. Compilation and Execution Words
4. Defining Words
5. Control Structures
6. Stack Operations
7. Memory Operations
8. String Operations
9. Logic and Bit Manipulation Operations
10.Arithmetic and Relational Operations
11.Floating Point Words
12.Number Conversion
13.Input and Output
14.File Access
15.Operating System Interface
16.Miscellaneous

All of the words provided by kForth version 1.8.x are documented in this chapter.
The notation used to express their stack diagrams is shown in the table below.

Arg Prefix Data Type Stack Cells
a address 1
n signed single integer 1
u unsigned single integer 1
d signed double length integer 2
ud unsigned double length integer 2
t signed triple length integer 3
ut unsigned triple length integer 3
b boolean flag: true or false (-1 or 0) 1
r double precision floating point value 2

^str counted string address 1
x value of any single cell type 1
xt execution token 1
wid word list identifier 1

33

../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Miscellaneous
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Operating%20System%20Interface
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#File%20Access
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Input%20and%20Output
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Number%20Conversion
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Floating%20Point%20Functions
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Floating%20Point%20Functions
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Arithmetic%20and%20Relational%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Logic%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#String%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Memory%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Stack%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Control%20Structures
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Defining%20Words
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Compilation%20and%20Execution%20Words
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Word%20Lists%20and%20Search%20Order
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Dictionary%20Maintenance

Word names which are UNDERLINED are either not part of the Forth-94 standard,
or have usage with additional constraints beyond those specified in the standard.
The few words which may have non-standard behavior in kForth rarely cause any
difficulty for writing programs which run on both kForth and other Forth-94
compliant systems; however, the differences should be noted when attempting to
run the programs on other systems.

Pleas refer to the Forth-94 standards documen for definitions of special terms.
Examples are execution token, interpretation semantics, and compilation semantics.

3.1 Dictionary Maintenance

FORGET -- parse the next word in the input stream and remove the word
and all subsequently defined words from the dictionary

COLD -- restore the Forth environment to the startup state
WORDS -- list the defined words in the current search order

The word FORGET may be used to remove words from the dictionary. Typing

FORGET name

will remove name and all words defined after name from the dictionary.

The word COLD deletes all non-intrinsic wordlists, definitions and strings, resets the
search order and all stacks, and restarts the Forth environment in interpretation state
– this is useful when you want to start over with the Forth system in a known state.

3.2 Word Lists and Search Order

Words in the dictionary are grouped into word lists. kForth provides the following
built-in word lists:

Root Forth Assembler

New definitions are added to the current compilation word list, which is initially the
Forth word list. When the compiler searches the dictionary for a word name, the search
proceeds in a specified order through a specified series of word lists. This set of ordered
word lists is known as the search order. The Root word list must always be a part of the
search order; however, any other word lists may be added or removed from the search

34

order. The user may create custom word lists to group new words added to the dictionary,
and control their visibility to the Forth compiler.

ORDER -- display the word lists in the search order. The
word list at the beginning of the search order
is displayed to the left, and the compilation
word list is shown in brackets.

GET-ORDER -- widn …
wid1 n

return the word list identifiers, and the
number of word lists; wid1 is the first word
list in the search order.

SET-ORDER widn … wid1
n --

set the search order to the specified sequence
of word lists, where wid1 identifies the first
word list in the search order

ONLY -- remove all word lists from the search order,
except the minimal Root word list

FORTH -- replace the first word list in the search order
with the Forth word list

ASSEMBLER -- replace the first word list in the search order
with the Assembler word list.

GET-CURRENT -- wid return the word list identifier for the current
compilation word list.

SET-CURRENT wid -- set the compilation word list to be the word
list identified by wid

FORTH-
WORDLIST

-- wid return the word list identifier for the Forth
word list.

ALSO -- duplicate the word list at the beginning of the
search order.

PREVIOUS -- remove the first word list in the search order
DEFINITIONS -- set the first word list in the search order as the

compilation word list.
WORDLIST -- wid create a new empty word list and return its

identifier.
VOCABULARY -- create a new named word list which, when

executed, will replace the first word list in the
search order.

SEARCH-
WORDLIST

a u wid --
0 | xt n

search the word list identified by wid for
the word name in the string, a u. Return
n=0 if the word is not found in the word list,
n=1 if the word is found and is an immediate
word, n=-1 if the word is found and is not an
immediate word.

35

FIND ^str -- xt
n

search all the word lists in the search order for
the word specified by the counted string;
Return code meaning:
n is 0 if not found,
n is 1 if found and the word is an
IMMEDIATE word,
n is -1 if found and the word is not an
immediate word, and xt is a valid
execution token if the word is found.

[DEFINED] -- b parse a word name from the input stream,
search for the name in the search order, and
return a flag indicating whether or not the
name was found (TRUE if found).

[UNDEFINED] -- b parse a word name from the input stream,
search for the name in the search order, and
return a flag indicating whether or not the
name was found (FALSE if found).

3.3 Compilation and Execution Words

IMMEDIATE -- set the precedence of the most recently defined word
NONDEFERRED -- set the interpretation precedence of the most recently

defined word (see Technical Info)
POSTPONE -- parse the next word in the input stream and append its

compilation semantics to the current definition
LITERAL x -- compile a single cell value from the stack into the

current definition
2LITERAL d -- compile a double length number from the stack into

the current definition
SLITERAL a u -- compile a string address and count from the stack into

the current definition
FLITERAL r -- compile a floating point number from the stack into

the current definition
' -- xt parse the next word in the input stream and return its

execution token
['] -- parse the next word in the input stream and compile its

execution token into the current definition
>BODY xt -- a convert the xt for a word to its body address

36

COMPILE, xt -- append execution semantics for xt to current
definition

EXECUTE xt -- perform the execution semantics specified by xt
EVALUATE a u -- interpret and execute source code contained in a string
: -- parse a word name from the input stream, begin a new

definition for the word, and enter compilation state
; -- |

–- xt
terminate a named or unnamed definition and return to
interpretation state. For unnamed definition, return xt.

:NONAME -- begin an unnamed definition and enter compilation
state

[-- enter interpretation state
] -- enter compilation state
STATE -- a return address containing a flag: true if compiling;

false if interpreting.

The words ' (TICK), and ['] may be used to search the dictionary for a specified
word. ' (TICK) parses the next word and returns an execution token on the stack,
while ['] is an immediate word used in compilation state to parse the next word
and compile its execution token as a literal into the current definition. The word
EXECUTE may be used to execute code specified by an execution token on the
stack. The word NONDEFERRED is a non-standard word which is used to set the
enhanced precedence state of a word in kForth. For more information on the
concept of precedence in kForth, refer to the Technical Information section of the
user's guide.

The following standard compilation words are provided in Forth source in ans-
words.4th :

TO -- determine the body address of the next word and append the run-
time semantics to store a value at that address

37

3.4 Defining Words

In addition to ordinary “colon definitions” of the form,

: NAME ... ;

the following defining words are also provided:

CREATE name
VARIABLE name
n CONSTANT name
2VARIABLE name
d 2CONSTANT name
FVARIABLE name
r FCONSTANT name

Both : and CREATE may be used inside a word definition to make your own
defining words. The word DOES>, as part of a CREATE ... DOES> expression,
allows you to specify the run time behavior of a word defined by CREATE.

The following common Forth defining words have source code definitions,
provided in ans-words.4th:

n VALUE name
DEFER name

An existing word may be referred to by another name, using the common practice
word, SYNONYM, defined in the Forth source file, ans-words.4th. Another way
is to use the built-in non-standard word ALIAS.

SYNONYM -- create a new word which has the same behavior as an
existing word

ALIAS xt -- create a new word which has the same execution behavior as
xt

They may be used as follows,

SYNONYM name2 name1

' name1 ALIAS name2

where name1 is the name of an existing word in the search order, and name2 is the
new name.

38

3.5 Control Structures

The following control structures are provided in kForth:

DO ... LOOP
DO ... +LOOP
?DO ... LOOP
?DO ... +LOOP
IF ... THEN
IF ... ELSE ... THEN
BEGIN ... AGAIN
BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT
CASE ... OF ... ENDOF ... ENDCASE

In addition to the basic flow control structures above, the indefinite loop structures
starting with BEGIN have extended conditional branching capability. In the BEGIN
… WHILE … REPEAT structure, a false condition for WHILE will cause a branch
to the execution point beyond REPEAT, breaking out of the indefinite loop.
Additional WHILE statements may also be used inside the BEGIN … WHILE …
REPEAT structure to break out of the indefinite loop. Each additional WHILE must
terminate with a THEN statement, or with ELSE … THEN, beyond the REPEAT
statement.

Similarly, the loop structures, BEGIN … AGAIN, and BEGIN … UNTIL may
include one or more WHILE statements. For these two loop structures, each WHILE
statement must have a corresponding THEN or ELSE … THEN termination outside
of the loop.

All control stuctures may be nested. For DO loops the number of levels of nesting is
limited only by return stack space. The following execution control words are also
defined:

RECURSE
LEAVE
EXIT
QUIT
ABORT
ABORT"

RECURSE appends the execution semantics of the current definition to the current
definition. It allows for recursive execution of a word. Note that other languages

39

provide recursion by using a call to the same name as the function/procedure being
described; however, this is not possible in standard Forth since the same name may
exist within the search order. In standard Forth, the use of name within the
definition of name is prescribed to refer to the prior definition of name within the
search order. A classic example of using recursion is to find the greatest common
divisor of two integers,

: gcd (n1 n2 -- gcd)

 ?DUP IF TUCK MOD RECURSE THEN ABS ;

LEAVE removes the current loop parameters from the return stack, by calling
UNLOOP, and jumps out of the current loop. Execution resumes at the instruction
following the loop.

EXIT returns from the word currently being executed. EXIT from within a loop
requires that the loop parameters be discarded from the return stack explicitly with
UNLOOP.

QUIT empties the return stack, terminates execution of the current word and returns
kForth to the interpreter mode.

ABORT empties the data stack and executes QUIT.

ABORT" examines the flag on top of the stack and if the flag is true, prints the
message delimited by ", then executes ABORT.

The exception handling words CATCH and THROW are defined in source in ans-
words.4th.

3.6 Stack Operations

DUP x -- x x duplicate
?DUP x -- x x | 0 dup if not zero
SWAP x1 x2 -- x2 x1 swap
OVER x1 x2 -- x1 x2 x1 over
ROT x1 x2 x3 -- x2 x3 x1 rotate cw
-ROT x1 x2 x3 -- x3 x1 x2 rotate ccw
DROP x -- drop

40

NIP x1 x2 -- x2 nip
TUCK n1 n2 -- n2 n1 n2 tuck
PICK i*x n -- i*x xn copy item n cells deep to top of stack
ROLL i*x n – (i-1)*xx xn rotate item n cells deep to top of stack
DEPTH i*x -- i*x u u is the data stack depth in cells
2DUP x1 x2 -- x1 x2 x1 x2
2SWAP x1 x2 x3 x4 -- x3 x4

x1 x2
2OVER x1 x2 x3 x4 -- x1 x2

x3 x4 x1 x2
2ROT x1 x2 x3 x4 x5 x6 --

x3 x4 x5 x6 x1 x2
2DROP x1 x2 --
FDUP r -- r r duplicate a floating point number on top

of the stack. Note: r occupies two stack
cells

FSWAP r1 r2 -- r2 r1 swap two floating point numbers on the
stack

FOVER r1 r2 -- r1 r2 r1 copy the floating point number one deep
onto top of stack

FROT
r1 r2 r3 -- r2 r3 r1

rotate the order of three fp numbers on
the stack

FDROP r -- drop a floating point number from the
stack

F2DROP r1 r2 -- drop two fp numbers from the stack
F2DUP

r1 r2 -- r1 r2 r1 r2
duplicate a pair of fp numbers on the
stack

Return stack operations are:

>R x --
R: -- x

push x onto return stack

R> -- x
R: -- x

pop x from return stack

R@ -- x
R: x -- x

copy x from top of return stack

2>R d --
R: -- d

push two stack cells onto return stack

2R> -- d
R: d --

pop two cells from return stack

41

2R@ -- d
R: d -- d

copy two cells from top of return stack

I -- n current loop index
J -- n next outer loop index
UNLOOP --

R: ... x1 x2 x3
-- ...

discard loop parameters from return stack

Note that 2>R is not equivalent to the sequence >R >R. The order of the two single
length elements on top of the return stack is different for the two cases. 2>R pushes
two items from the top of the stack so that they have the same order on the return
stack. The sequence 2>R 2R>, however, is identical to the sequence >R >R R>
R>.

3.7 Memory Operations

@ a -- n fetch single
! n a -- store single n to address a
2@ a -- d fetch double number from address a
2! d a -- store double number to address a
A@ a1 -- a2 fetch address from address a
C@ a -- n fetch byte
C! n a -- store byte
SW@ a -- n fetch signed word
UW@ a –- u fetch unsigned word
W! n a -- store signed word
SL@ a –- n fetch signed dword (same as @ on 32-bit system)
UL@ a -– u fetch unsigned dword (same as @ on 32-bit

system)
L! n a –- store signed/unsigned dword (same as ! on 32-bit

system)
SF@ a -- r fetch single precision float
SF! r a -- store r as single precision float
DF@ a -- r fetch double precision float
DF! r a -- store double precision float
F@ a -- r same as DF@
F! r a -- same as DF!
SP@ -- a fetch data stack pointer

42

RP@ -- a fetch return stack pointer
SP! a -- set data stack pointer
RP! a -- set return stack pointer
? a -- fetch and print single; equivalent to @ .
ALLOT u -- allocates u bytes in the dictionary
ALLOT? u -- a allocates u bytes in the dictionary and returns

starting address of the allocated region
ALLOCATE u -- a n reserve u bytes of system memory and return

starting address of the allocated region and error
code

FREE a -- n release memory previously reserved with
ALLOCATE and return error code (0 = success)

RESIZE a1 u -- a2
ior

change size of previously ALLOCATEd region to
u bytes; ior = 0 if success

C" -- ^str compile a counted string into the string table; the
string is taken from the input stream and must be
terminated by "

S" -- a u compile a string and return address and count
COUNT ^str -- a u convert counted string address to character buffer

address a and character count u
MOVE a1 a2 u -- move u bytes from source a1 to dest a2 ;

handle overlapping region
FILL a u1 n2 -- fill u1 bytes with byte value n2 starting at a
ERASE a u -- fill u bytes with zero starting at a

The following standard memory words are provided in Forth source in ans-
words.4th and dump.4th:

PAD -- a return address of a scratch-pad in memory
for temporary use

ans-
words.4th

DUMP a u -- output a hexadecimal display of the u bytes
starting at address a

dump.4th

The non-ANS standard word A@ is needed because kForth performs type checking
for operands involved in memory access. A@ performs @ and sets the type field in
the hidden type stack to represent an address for the retrieved value. Addresses may
be stored in ordinary variables using !; however they should be retrieved with A@.

The behavior of ALLOT is more limited than allowed by the standard. ALLOT
dynamically allocates the requested amount of memory and sets the parameter field

43

address (PFA) of the last created word to the address of the alloted region. Thus, in
kForth, ALLOT should always be preceded by CREATE . Attempting to ALLOT
without first creating a named dictionary entry, using CREATE, will result in a
system-specific exception. Thus, kForth limits the use of ALLOT, but code written
for kForth will be portable to standard Forth systems.

The non-standard word ALLOT? is provided because kForth contains no HERE
address. ALLOT? both reserves the requested memory and returns the starting
address of the allotted memory region.

ALLOT? should be preceded by CREATE as described above. All memory is
dynamically allocated, and freed upon exiting kForth.

3.8 String Operations

 -TRAILING a u1 -- a u2 reduce string length to ignore trailing spaces
/STRING a1 u1 n --

a2 u2 a2 = a1 + n, u2 = u1 - n

BLANK a u -- fill u bytes with the blank-space character
starting at a

CMOVE a1 a2 u -- move u bytes from source a1 to dest a2
CMOVE> a1 a2 u -- move u bytes from a1 to a2 in

descending order
COMPARE a1 u1 a2 u2

-- n
compare the strings a1 u1 and a2 u2.
Return zero if they are equal.

SEARCH a1 u1 a2 u2
-- a3 u3 b

search for the string a2 u2 within the string
a1 u1; return true if found and the substring
a3 u3

SLITERAL a u -- compile a string address and count from the
stack into the current definition

The following useful string words are provided in strings.4th.

SCAN a1 u1 n -- a2
u2

search for first occurrence of character value n in
the string specified by a1 u1. Return the
substring a2 u2 starting with the search
character

SKIP a1 u1 n -- a2
u2

search for first occurrence of character value not
equal to n

See also Memory Operations.

44

3.9 Logic and Bit Manipulation Operations

AND x1 x2 -- x3 bitwise AND of x1 and x2
OR x1 x2 -- x3 bitwise OR of x1 and x2
XOR x1 x2 -- x3 bitwise exclusive OR of x1 and x2
NOT x1 -- x2 one's complement of x1
INVERT x1 -- x2 same as NOT
LSHIFT x1 u -- x2 x2 is x1 shifted left by u bits
RSHIFT x1 u -- x2 x2 is x1 shifted right by u bits

3.10 Arithmetic and Relational Operations

3.10.1 Single and Double Integer Operations

1+ n1 -- n2 increment: n2 = n1 + 1
1- n1 -- n2 decrement: n2 = n1 - 1
2+ n1 -- n2 n2 = n1 + 2
2- n1 -- n2 n2 = n1 - 2

2* n1 -- n2 arithmetic left shift: n2 = n1*2
2/ n1 -- n2 arithmetic right shift: n2 = n1/2
CELLS n1 -- n2 n2 is n1 times size in bytes of a cell
CELL+ n1 -- n2 n2 is n1 plus the size in bytes of a cell
FLOATS n1 -- n2 n2 is n1 times size of a floating point

number
FLOAT+ n1 -- n2 n2 is n1 plus the size of a floating point

number
DFLOATS n1 -- n2 n2 is n1 times size of double precision

floating point number
DFLOAT+ n1 -- n2 n2 is n1 plus size of double precision

floating point number
SFLOATS n1 -- n2 n2 is n1 times size of single precision

floating point number
SFLOAT+ n1 -- n2 n2 is n1 plus size of single precision floating

point number
CHAR+ n1 -- n2 same as 1+
+ n1 n2 -- n3 add

45

- n1 n2 -- n3 subtract: n3 = n1 - n2
* n1 n2 -- n3 multiply
/ n1 n2 -- n3 divide: n3 = n1 / n2
+! n a -- add n to value at address a
MOD n1 n2 -- n3 modulus or remainder
/MOD n1 n2 -- n3 n4 n3 = remainder and n4 = quotient for

n1/n2
U/MOD u1 u2 -- urem

uq
divide u1 by u2, return u remainder and u
quotient

*/ n1 n2 n3 -- n4 n4 = n1*n2/n3; intermediate value is 64 bit
*/MOD n1 n2 n3 -- n4

n5
n4 and n5 are remainder and quotient for
n1*n2/n3

UD/MOD ud u -- urem
udq

divide ud by u, return u remainder and ud
quotient

M+ d1 n -- d2 add single to double integer
M* n1 n2 -- d multiply two singles and return signed double
M*/ d1 n1 +n2 -- d2 multiply d1 by n1 to obtain triple cell

result; then divide result by n2>0 to give signed
double d2

UM* u1 u2 -- ud multiply unsigned singles and return unsigned
double

UM/MOD ud u1 -- u2 u3 divide unsigned double number by unsigned
single and return remainder (u2) and quotient
(u3). Returns -1 -1 for u2 and u3 on
division overflow.

FM/MOD d n1 -- n2 n3 divide double by single to give floored quotient
n3 and modulus n2

SM/REM d n1 -- n2 n3 divide double by single to give symmetric
quotient n3 and remainder n2

DS* d n -- t multiply double and single to give signed triple
length product

UDM* ud u -- ut multiply unsigned double and unsigned single
to give unsigned triple length product

UTM/ ut u -- ud divide unsigned triple by unsigned single to
give unsigned double quotient

UTS/MOD ut1 u1 -- ut2
u2

Divide unsigned triple ut1 by unsigned
single u1 to give unsigned triple quotient
ut2 and unsigned single remainder u2

STS/REM t1 n1 -- t2 n2 Divide signed triple t1 by signed single n1
to give signed triple quotient t2 and signed
remainder n2

46

D+ d1 d2 -- d3 double number addition
D- d1 d2 -- d3 double number subtraction
ABS n1 -- n2 absolute value
NEGATE n1 -- n2 n2 = -n1

DABS d1 -- d2 double number absolute value
DNEGATE d1 -- d2 double number negation
MIN n1 n2 -- n1 |

n2
minimum of n1 and n2

MAX n1 n2 -- n1 |
n2

maximum of n1 and n2

DMIN d1 d2 -- d1|d2 minimum of d1 and d2
DMAX d1 d2 -- d1|d2 maximum of d1 and d2
= n1 n2 -- b test n1 equal to n2
<> n1 n2 -- b test n1 not equal to n2
< n1 n2 -- b test n1 less than n2
> n1 n2 -- b test n1 greater than n2
<= n1 n2 -- b test n1 less than or equal to n2
>= n1 n2 -- b test n1 greater than or equal to n2
U< u1 u2 -- b test unsigned u1 less than u2
U> u1 u2 -- b test unsigned u1 greater than u2
D= d1 d2 -- b test d1 equal to d2
D< d1 d2 -- b test d1 less than d2
DU< ud1 ud2 -- b test ud1 less than ud2
0< n -- b test n less than zero
0> n -- b test n greater than zero
0= n -- b test n equal to zero
0<> n -- b test n not equal to zero
D0= d -- b test d equal to zero
D0< d -- b test d less than zero
D2* d1 -- d2 d2 is the arithmetic left shift of d1
D2/ d1 -- d2 d2 is the arithmetic right shift of d1
WITHIN n1|u1 n2|u2 n3|

u3 -- b
return TRUE if n2|u2 <= n1|u1 < n3|
u3, given n2|u2 < n3|u3

kForth provides pre-defined constants TRUE (-1) and FALSE (0).

47

3.11 Floating Point Operations

3.11.1 Arithmetic and Relational Words

F+ r1 r2 -- r3 add
F- r1 r2 -- r3 subtract: r3 = r1 - r2
F* r1 r2 -- r3 multiply
F/ r1 r2 -- r3 divide: r3 = r1/r2
FABS r1 -- r2 absolute value
FNEGATE r1 -- r2 r2 = -r1

FROUND r1 -- r2 round to nearest whole number
FTRUNC r1 -- r2 truncate, towards zero, to whole number
FLOOR r1 -- r2 truncate, towards minus infinity, to whole

number
FMIN r1 r2 -- r1 | r2 minimum of r1 and r2
FMAX r1 r2 -- r1 | r2 maximum of r1 and r2
F0= r -- b test r equal to zero
F0< r -- b test r less than zero
F0> r -- b test r greater than zero
F= r1 r2 -- b test r1 equal to r2
F<> r1 r2 -- b test r1 not equal to r2
F< r1 r2 -- b test r1 less than r2
F> r1 r2 -- b test r1 greater than r2
F<= r1 r2 -- b test r1 less than or equal to r2
F>= r1 r2 -- b test r1 greater than or equal to r2

The following standard word is provided as Forth source in ans-words.4th:

F~ r1 r2 r3 -- b test r1 approximately equal to r2, within uncertainty
r3; if r3 = 0e, r1 and r2 must be exactly equal in
their binary representation

3.11.2 Floating Point Functions

F** r1 r2 -- r3 r3 = r1 raised to power of r2
FSQRT r1 -- r2 square root
FLOG r1 -- r2 r2 = log base 10 of r1

48

FALOG r1 -- r2 r2 = 10 raised to power of r1
FEXP r1 -- r2 r2 = exp(r1)
FEXPM1 r1 –- r2 r2 = exp(r1) - 1
FLN r1 -- r2 r2 = log base e of r1
FLNP1 r1 -- r2 r2 = loge(r1) + 1
DEG>RAD r1 -- r2 degrees to radians
RAD>DEG r1 -- r2 radians to degrees
FSIN r1 -- r2 r2 = sin(r1)
FCOS r1 -- r2 r2 = cos(r1)
FSINCOS† r1 -- r2 r3 r2 = sin(r1); r3 = cos(r1)
FTAN r1 -- r2 r2 = tan(r1)
FASIN r1 -- r2 arc sine
FACOS r1 -- r2 arc cosine
FATAN r1 -- r2 arc tangent
FATAN2 r1 r2 -- r3 r3 is arc tangent of r1/r2 with proper

quadrant
FSINH r1 -- r2 r2 = sinh(r1)
FCOSH r1 -- r2 r2 = cosh(r1)
FTANH r1 -- r2 r2 = tanh(r1)
FASINH r1 -- r2 inverse hyperbolic sine
FACOSH r1 -- r2 inverse hyperbolic cosine
FATANH r1 -- r2 inverse hyperbolic tangent

† In kForth-32, FSINCOS always uses the x86’s native FSINCOS instruction. The
returned sine and cosine values from FSINCOS may differ in accuracy from those
returned by kForth’s FSIN and FCOS words. FSIN and FCOS words will provide
higher accuracy over a larger range of angles, while FSINCOS will be faster, in
general.

49

3.12 Number Conversion

S>D n -- d convert single integer to double length integer
D>S d -- n convert signed double integer to signed integer
S>F n -- r convert single integer to floating point number
D>F d -- r convert double length integer to fp number
FROUND>S r -- n convert floating point to integer by rounding
FTRUNC>S r -- n convert floating point number r to integer n

by truncating towards zero†
F>D r -- d convert fp number to double integer by

truncating towards zero
>FLOAT a u -- r TRUE |

FALSE
convert string to floating point number; return
fp number and TRUE if successful, FALSE
otherwise

>NUMBER ud1 a1 u1 --
ud2 a2 u2

convert digits of string a1 u1 and add this
number to ud1*base; result is ud2, and a2
u2 point to remaining part of string

NUMBER? ^str -- d b convert counted string to signed double
number in the current BASE; b is TRUE if
successful

<# ud -- ud begin conversion of unsigned double to a
string

ud1 -- ud2 convert the least significant digit of ud1 to a
character; concatenate character to conversion
string.

#S ud1 -- 0 0 convert all significant digits in ud1 to string
SIGN n -- attach minus sign to conversion string if n < 0
HOLD n -- attach character with ASCII code n to the

conversion string
#> ud -- a u drop the double number and return the string

address and count

Other useful conversion words for number to string conversion and vice-versa, such
as F>FPSTR, are given in Forth source in strings.4th.

†The word FTRUNC>S has the same behavior as the word F>S in some Forth-94
systems; however, F>S has previously been implemented in some Forth systems,
prior to the 2012 standard, with rounding or truncating to single length signed
integer behavior. Therefore, we have not implemented F>S in kForth, preferring
instead that the rounding mode for conversions from floating point to single length

50

signed integer be explicitly specified using either FROUND>S or FTRUNC>S . The
Forth-94 specification calls for F>D conversions to be truncating, and kForth’s F>D
conversion is compliant with those specifications. Explicit words to perform
rounding to nearest and truncating conversions from floating point to double length
signed integer may be defined as

: FROUND>D FROUND F>D ;

: FTRUNC>D F>D ;

3.13 Input and Output

BASE -- a return the address containing current number base
DECIMAL -- set the number base to ten
BINARY -- set the number base to two
HEX -- set the number base to sixteen
KEY? -- b return TRUE if a character from a key press is

available (use KEY to obtain the character)
KEY -- n wait for key press and return key code
ACCEPT a n1 -- n2 read up to n1 characters into buffer a from

keyboard. n2 is actual number of chars input.
BL -- 32 return the ascii value for a blank space character
WORD n -- ^str parse text from the input stream, delimited by

character with ascii value n and return the address
of a counted string containing the word

PARSE n -- a u parse text from the input stream, delimited by
character n and return the parsed string

CHAR -- n parse the next word, delimited by a space and
return the ascii value of its first character

[CHAR] -- parse the next word, delimited by a space, and
compile a character literal into the current
definition

. n -- display top item on the stack in the current base

.R n u -- display n in the current base in u-wide field
U. u -- display unsigned single u in current base
U.R u1 u2 -- display u1 in the current base in u2-wide field
D. d -- display signed double length number d
D.R d u -- display signed double d in u-wide field
UD. ud -- display unsigned double length number

51

UD.R ud u -- display unsigned double ud in u-wide field
PRECISION -- u return the number of significant digits output by

FS.
SET-
PRECISION

u -- set the numer of significant digits output by FS.

FS. r -- display the floating point number using scientific
notation, with the number of significant digits
specified by PRECISION

F. r -- display the floating point number on top of the
stack, using an automatic format.

.S i*x -- i*x non-destructive display of the stack

." -- parse text from the input stream, delimited by "
and append the execution semantics to display the
string within the current definition.

.(-- parse and display text, delimited by ‘)’, from the
input stream. The word is executed immediately.

CR -- output carriage return
SPACES n -- output n spaces
EMIT n -- output character with ascii value n
TYPE a u -- display u characters from buffer at a
SOURCE -- a u return address and count of the input buffer
REFILL -- b attempt to read another line from the input source

and return flag
>FILE -- parse the filename from the input stream and

change output stream from the console to the file.
CONSOLE -- reset output stream to the console

The following non-standard output word is provided in strings.4th.

F.RD r u1 u2 -- print a floating point number r in fixed point format
with u2 decimal places, right justified in a field of
width u1.

The following standard terminal control words, and more, are provided in Forth
source in ansi.4th:

PAGE -- clear the screen and put cursor at top left
AT-XY n1 n2 -- position cursor at column n1 and row n2. Origin is

(0, 0).

52

3.14 File Access

OPEN ^name n1 --
n2

open file specified by counted string ^name in
mode n1, which can be the following:
 0 read-only (R/O)
 1 write-only (W/O)
 2 read-write (R/W)
n2 is the file descriptor, a non-negative integer if
successful.

LSEEK n1 n2 n3 --
n4

change current position in opened file; n1 is the file
descriptor, n2 is the offset, and n3 is the mode with
the following meaning:
 0 offset is relative to start of file
 1 offset is relative to current position
 2 offset is relative to end of file
n4 is the resulting offset from the beginning of the
file, or -1 if error.

READ n1 a n2 --
n3

read n2 bytes into buffer address a, from file with
descriptor n1. n3 is the number of bytes actually
read.

WRITE n1 a n2 --
n3

write n2 bytes from buffer address a to file with
descriptor n1. n3 is the number of bytes actually
written.

FSYNC n1 -- n2 flush all buffered data written to file/device with
descriptor n1. Return error code n2.

CLOSE n1 -- n2 close file with descriptor n1 and return status n2 (0
if successful, -1 if error).

INCLUDE -- i*x parse the Forth source filename from the input
stream and interpret the file.

INCLUDED a u -- i*x set the input stream for the interpreter to the
specified file and process it line by line

The following ANS standard file access words are provided as Forth definitions in
files.4th:

R/O -- n "read-only" file access method
W/O -- n "write-only" file access method
R/W -- n "read-write" file access method
BIN n1 -- n2 modify file access method for binary mode
CREATE-FILE a u n1 -- n2

n3
create a file with name specified by string
address and count a u, and access method
n1. Return file descriptor n2 and result

53

code n3
OPEN-FILE a u n1 -- n2

n3
open an existing file, specified by string
address and count a u, using access
method n1, and return file descriptor n2
and result code n3

CLOSE-FILE n1 -- n2 close the file with descriptor n1 and return
result code n2

READ-FILE a u1 n1 -- u2
n2

read u1 bytes into buffer at address a from
file with descriptor n1 and return actual
number of bytes read u2 and result code
n2

WRITE-FILE a u n1 -- n2 write u bytes from buffer a to file with
descriptor n1; return result code n2

FILE-
POSITION n1 -- ud n2

return current file position ud and result
code n2

REPOSITION-
FILE

ud n1 -- n2 set file position to ud for file with
descriptor n1 and return result code n2

FILE-SIZE n1 -- ud n2
return the size of the file ud and the result
code n2

FLUSH-FILE n1 -- n2 force buffered info for file with descriptor
n1 to be written to disk. n2 is the result
code.

FILE-EXISTS ^str -- b return TRUE if the specified file exists
DELETE-FILE a u -- n delete the file specified by string a u, and

return result code n
RENAME-FILE

a1 u1 a2 u2
-- n1

existing file name is specified by string a1
u1; new file name is specified by string,
a2 u2.

READ-LINE a u1 n1 -- u2
b n2

read a line of text, with at most u1 bytes,
from file with descriptor n1 into the buffer
a; return actual bytes read u2, success flag
b, and result code n2

WRITE-LINE a u n1 -- n2 write a line of text having u bytes from
buffer a into file with descriptor n1, and
return result code n2

54

3.15 Operating System Interface

SYSTEM ^str -- n execute a shell command; ^str is the
command line passed to the shell.
Return code n is -1 on error, or the
return value from the command.

SYSCALL n1 ... nm m
ncall -- nerr

perform system call ncall, with
arguments n1 to nm, where 0<= m
<=6

BYE -- close the Forth environment and exit to
the system.

CHDIR ^path -- n change the current directory to the one
specified in the counted string ^path;
Return code n is OS dependent.

IOCTL n1 n2 a -- n3 send device control request n2 to file
with descriptor n1. Additional
parameters are passed through buffer at
address a. n3 is the status (0 if
successful, -1 if error).

TIME&DAY -- sec min hr
day mo yr

return the local time

MS u -- wait for u milliseconds
MS@ -- u return number of milliseconds elapsed

since start of kForth
US u -- wait for u microseconds
US2@ -- ud return number of microseconds elapsed

since start of kForth
DLOPEN azstr bflag --

nhandle
load the dynamic library file

DLERROR -- azstr return address of null terminated error
string

DLSYM nhandle azsym --
a

return address of symbol in library

DLCLOSE nhandle -- nerr close the dynamic library
FORTH-
SIGNAL a n -- aold install Forth word as handler for signal

n

RAISE n -- ior assert signal n
SET-ITIMER n1 a1 a2 -- n2 set up timer signals
GET-ITIMER n a -- n2 get timer countdown count
USLEEP u -- wait for at least u microseconds

55

Shaded words are available only under Linux. Numerous operating system
functions and constants are also defined as Forth words in syscalls.4th. The
use of FORTH-SIGNAL for handling signals is illustrated in the example Forth
source files, signals-ex.4th and sigfpe.4th. The use of IOCTL for
communicating with a device driver is illustrated in the Forth source file,
serial.4th. The Forth source file, dltest.4th, provides an example of
importing an external C library function, from a shared object file, into kForth using
DLOPEN, etc. and calling the function from a Forth word.

Under Windows, USLEEP provides only millisecond resolution. Intrinsic Windows
API calls include

VALLOC anew usize ntype
nprot -- a | -1

Win32 API call VirtualAlloc

VFREE a -- ior Win32 API call VirtualFree
VPROTECT a usize newprot

aoldprot -- ior
Win32 API call VirtualProtect

kForth-Win32 also provides the following definition.

WIN32 -- b return TRUE if running under Windows

The word sequence [DEFINED] _WIN32_ may be used to test whether or not
the OS being used is Windows.

3.16 Miscellaneous

kForth’s CALL word provides a means for calling machine language procedures
placed in protected memory (read-executable memory). The Forth source file,
mc.4th, provides words for placing machine code into protected memory. See the
file, fcalls-x86.4th, for an example of defining a Forth word to call machine
code.

CALL a -- call machine language subroutine at address a
VMTHROW n -- throw exception n, bypassing catch.

56

4. Technical Information

1. Forth- 94 Compliance
2. Threading Model
3. Signed Integer Division
4. Double Numbers
5. Floating Point Implementation
6. Special Features
7. Benchmarks and Tests
8. VM Error Codes
9. Source Code Map
10. Embedding kForth

4.1 Forth-94 Compliance

kForth-32/kForth-Win32 version 1.x provides a subset of the Forth-94 standard
(ANS Forth), specified in DPANS94. Code may be written for kForth to be portable
to standard Forth-94 systems with the use of trivially defined extensions (see the
Special Features section below). Compliance with Forth-94 may be checked using
John Hayes' suite of tests for the core words of an ANS Forth system:
tester.4th and core.4th. Tests involving unsupported words such as HERE
and , and C, have been commented out as, well as some weird variants of
CREATE and DOES> usage. Compliance with the Forth-94 extension words for
working with double length numbers may be checked using dbltest.4th. Tests
are commented out for words which are not implemented in kForth.

4.2 Threading Model

kForth is an indirect threaded code (ITC) system. The kForth compiler/interpreter
parses the input stream into a vector of pseudo op-codes or Forth Byte Code. Upon
execution, the vector of byte codes is passed on to a virtual machine which looks up
the execution address of the words and performs either a call or an indirect jump to
the next execution address. The type of threading used in the virtual machine is a
hybrid of indirect call threading and indirect jump threading. The kForth virtual
machine is implemented as a mixture of assembly language, C, and C++ functions.

57

http://mips.complang.tuwien.ac.at/forth/threaded-code.html
http://lars.nocrew.org/dpans/dpans.htm

Only the assembly language portion of the virtual machine utilizes indirect jump
threading.

4.3 Signed Integer Division

kForth implements symmetric integer division. An alternative form of signed integer
division is called floored integer division. Both symmetric and floored division
yield identical results when the two operands, dividend and divisor, are either both
positive integers or both negative integers. However, when the two operands differ
in sign, symmetric and floored integer division can give different results. For
example,

Floored Division: -8 3 / . -3 ok

Symmetric Division: -8 3 / . 2 ok

Similarly, the word MOD yields different results on floored and symmetric division
systems. Under floored division, MOD is truly a modulus operator (i.e. the result of
n1 n2 MOD is a number in the range [0, n2)), while under symmetric division, MOD
simply returns a remainder. The following paper provides a discussion of integer
division in computing languages: Division and Modulus for Computer Scientists by
Daan Leijen.

Floored integer division was guaranteed by the Forth-83 standard. However, the
Forth-94 standard revoked this guarantee and allowed system implementors to
choose either symmetric or floored integer division. The rationale in revoking a
fixed standard was to allow Forth systems to implement whatever form of integer
division was best supported by the microprocessor hardware. Most microprocessors
which provide signed integer division implement symmetric division. In kForth, the
original rationale for using symmetric division was simply to maintain consistency
with the GNU C implementation, which mandates the use of symmetric integer
division per the ISO C99 standard (the symmetric version of MOD corresponds to
the % operator in C). In general, floored division is considered by computer
scientists and mathematicians to be the more useful form of signed integer division.

A significant problem with the Forth-94 standard is that, in practice, implementors
of compliant Forth systems for a single hardware platform such as Intel x86 have
chosen to use different forms of division. Consider the behavior of the Forth
systems below, all running under Linux on Intel x86:

gforth: -8 3 MOD . 1 ok
pfe: -8 3 MOD . 1 ok
kforth: -8 3 MOD . -2 ok
iforth: -8 3 MOD . -2 ok

58

http://research.microsoft.com/pubs/151917/divmodnote.pdf

bigforth: -8 3 MOD . 1 ok

Therefore, a Forth program using signed integer division words (/ MOD /MOD
*/MOD) may produce different outputs under two different Forth-94-compliant
systems. The Forth-94 standard addresses the portability issue by calling for use of
the explicit floored and symmetric division words FM/MOD and SM/REM whenever
it is important to explicitly specify the type of division. However, it is highly likely
that Forth programmers will casually use signed integer division words such as MOD
without always remembering the portability issue.

4.4 Double Numbers

kForth supports working with signed and unsigned double length numbers, and
implements nearly all of the optional double number word set specified by Forth-
94, either intrinsically or in the form of Forth source definitions (see ans-
words.4th for the latter). In addition to the Forth-94 tests involving double
numbers given in core.4th, further tests of double number words implemented
in kForth are given in system-test/dbltest.4th.

4.4.1 Double Number Entry
One significant departure in kForth from typical Forth systems is the method of
entry of double length numbers. Traditional Forth recognizes the decimal point as a
marker for a double number, e.g.

234.

is interpreted as a double number. kForth does not permit double number entry in
this manner. The rationale behind this restriction is that such entries may easily be
confused with floating point numbers. Such confusion will likely be common for
new Forth users who have previously used other computer languages such as C.
Even experienced Forth users who make frequent use of floating point calculations
are also susceptible to such confusion. Since kForth uses the data stack to hold
floating point numbers, and since a floating point number also occupies two stack
cells (see next section), mistakes arising from misinterpreting entries with a decimal
point may not be as readily apparent, leading to hard-to-find bugs.

4.4.2 kForth Method
The prohibition on standard double number entry in kForth demands that an
alternate method be provided for entry of double numbers. This may be easily
accomplished by using a string to double number conversion word. There are two
ways to accomplish this. The first method is simple, but it is specific to kForth,
while the second is more complex, but portable to other ANS systems. In the simple

59

method, we may make use of the non-standard word, NUMBER?, to convert a
counted string to a signed double length number, as follows.

c" -20123456789" NUMBER? DROP

NUMBER? actually returns a flag indicating whether or not the conversion
succeeded, but we drop the flag in the above example for simplicity. If the
conversion did not succeed, a double length zero will result.

4.4.3 Forth-94 Compatible Method
The second method should be used if it is desired to port the code to other Forth
systems. Forth-94 provides >NUMBER for converting a string to an unsigned double
number. A more general string to double number conversion word, handling both
signed and unsigned double numbers, may be written as follows.
variable dsign

: >d (a u -- d|ud | convert string to a signed/unsigned double)
 0 0 2SWAP
 \ skip leading spaces and tabs
 BEGIN OVER C@ DUP BL = SWAP 9 = OR WHILE 1 /STRING REPEAT
 ?DUP IF
 FALSE dsign !
 OVER C@
 CASE
 [char] - OF TRUE dsign ! 1 /STRING ENDOF
 [char] + OF 1 /STRING ENDOF
 ENDCASE
 >NUMBER 2DROP
 dsign @ IF DNEGATE THEN
 ELSE DROP THEN ;

Using the above definition of >D, examples of double number entry are:

 s" 20123456789" >d
 s" -20123456789" >d
 s" +20123456789" >d

Note that the method used above is not needed if the double number being entered
fits within the bounds of a signed single number. Most cases of double number
entry fit this scenario. In such a case, we may simply enter the single number,
followed by S>D, e.g.

-234 S>D
 2147483647 S>D
-2147483649 S>D

60

4.5 Floating Point Implementation

Forth-94 and earlier Forth standards allowed floating point numbers to be stored
either on the data stack or on a separate floating point stack. kForth-32 and kForth-
Win32, ver. 1.x, uses the data stack for holding floating point numbers. The
rationale for using the data stack for floating point operations in kForth was to allow
legacy code written for earlier Forth systems (in particular the Forth systems from
Laboratory Microsystems Inc.) to run without significant modifications under
kForth. In kForth, a floating point number on the data stack occupies two cells.
Thus, under 32-bit Windows or Linux, floating point numbers are 64-bit double-
precision numbers (equivalent to C's double).

The quality of the floating point arithmetic in kForth may be checked using the
program, paranoia.4th, and other floating point tests provided in forth-
src/system-test.

4.6 Special Features

Special features of kForth are described in a two-part article in Forthwrite
magazine, issues 116 and 117.These features are:

• The kForth dictionary is dynamically allocated as new definitions are added.
Thus kForth does not implement a monolithic, fixed size dictionary, but can
use as much memory as provided by the host operating system. Several side
effects result from using dynamic memory allocation to grow the dictionary:

• There is no HERE address in kForth.
• There is no , (comma operator) in kForth.
• There is no C, operator in kForth.

Owing to the fact that HERE does not exist, the word ALLOT not only
allocates the requested amount of memory, but also has the non-standard
behavior that it assigns the address of the new memory region to the body
address, also called the parameter field address (PFA), of the last defined
word. In kForth, the use of ALLOT must always be preceded by the use of
CREATE. A variant of ALLOT, named ALLOT? is also provided. ALLOT?
has the same behavior as ALLOT plus it returns the start address of the
dynamically allocated region on the parameter stack. ALLOT? has the
following equivalent definition under ANS Forth:

: ALLOT? (u -- a) HERE SWAP ALLOT ;

61

http://www.figuk.plus.com/articles.htm

ALLOT? is particularly useful in writing defining words in the absence of
HERE and the comma operators. For example, to write your own integer
constant defining word:

: CONST (n --) CREATE 4 ALLOT? ! DOES> @ ;

or to write an address constant defining word (see below):

: PTR (a --) CREATE 4 ALLOT? ! DOES> A@ ;

• kForth maintains type stacks corresponding to both the data and return
stacks. The type stacks contain a type code for each corresponding data stack
cell or return stack cell. This allows kForth to perform some rudimentary
type checking, for example when an address is being accessed kForth
verifies that the value's type is that of an address. Address values that are
stored in variables must be retrieved with the word A@ instead of @ so that
the type can be validated. Code written for kForth may be ported to other
ANS Forth implementations by defining A@ as follows:

: A@ @ ;

• Unlike a conventional Forth interpreter which executes each token as it is
interpreted, kForth continues to build up a vector of byte codes, until a
keyword or end of line in the input stream necessitates execution. Deferred
execution in interpreter mode is implemented by extending the normal
concept of precedence in Forth. Instead of a single precedence-bit associated
with each word, kForth uses a precedence-byte having two significant bits to
describe the behavior of each word in both compiled and interpreted modes.
Thus, a word may have one of four possible precedence values:

0 not IMMEDIATE Deferred execution
1 IMMEDIATE Deferred execution
2 not IMMEDIATE NONDEFERRED execution
3 IMMEDIATE NONDEFERRED execution

To understand the execution behavior of a word in each of these states, it is
helpful to view a table of execution modes for each precedence value and for
the two compilation states: interpret and compile. We define the following
execution modes:

62

• E0 – no execution, the opcode for the word is compiled into the
opcode vector.

• E1 – execute current opcode vector up to and including current
opcode.

• E2 – execute only current opcode and remove it from the opcode
vector.

Precedence Interpret Compile
0 E0 E0
1 E2 E2
2 E1 E0
3 E1 E2

The ability to defer execution in interpreter mode allows “one-liners” to be
executed from the kForth prompt without having to define a word. For
example, the following line can be typed directly at the kForth prompt:

10 0 do i . loop

Ordinary Forth interpreters do not allow do-loop, begin-while-
repeat, and if-then structures to occur outside of word definitions.
kForth can interpret and execute such structures as long as they are
completed on a single line of input.

Words which are nondeferred are those for which interpretation of the rest of
the input line will depend on the execution of the word. Thus, the following
intrinsic words in kForth have the nondeferred precedence attribute:

\ .(: :NONAME CREATE
] ' WORD PARSE
ALLOT ALLOT? CHAR CONSTANT 2CONSTANT
FCONSTANT VARIABLE 2VARIABLE FVARIABLE FORTH
ASSEMBLER WORDLIST DEFINITIONS SET-ORDER SET-CURRENT
ALSO ONLY PREVIOUS [DEFINED] [UNDEFINED]
FORGET DECIMAL HEX BINARY SET-PRECISION
COMPILE, INCLUDE INCLUDED SYNONYM TO
VALUE DEFER IS VOCABULARY >FILE
CONSOLE COLD #! ALIAS

63

Only in very special cases will it be necessary for a programmer to use the
NONDEFERRED keyword to set explicitly the interpretation precedence of a
word. This is due to the automatic inheritance of the nondeferred attribute: if
a word definition includes a nondeferred word, then the new word is
automatically nondeferred also. Thus, for example, any word which has a
definition including WORD is also a nondeferred word. Another example is a
defining word, i.e. one which uses CREATE. Since CREATE is nondeferred
the new defining word is also nondeferred.

The most common case in which the NONDEFERRED keyword should be
explicitly used is in the definition of a word which changes the number base.
For example,

DECIMAL
: BASE3 3 BASE ! ; NONDEFERRED
BASE3 21

If BASE3 was not declared to be a nondeferred word, then 21 in the above
line would be interpreted as decimal 21 rather than as decimal 7 (which is 21
in base 3).

• kForth can be started up in debug mode using the command line switch -D.
Compiled op-codes and other debugging information are displayed in this
mode. It is useful primarily for programmers interested in extending and
debugging their own versions of kForth.

4.7 Benchmarks and Tests

Versions of standard benchmark programs for measuring kForth execution speed
may be found in the subdirectory, forth-src/benchmarks. Forth source files
in forth-src/system-test provide tests for compliance of core and standard
extension words in Forth-94, for words which are specific to kForth, and for
floating point arithmetic. The tests require one of the following test harnesses:
ttester.4th or tester.4th.

asm-x86-test.4th
core.4th
coreplus.4th
dbltest.4th
divtest.4th
facilitytest.4th
fatan2-test.4th

64

filetest.4th
fpio-test.4th
fpzero-test.4th
ieee-arith-test.4th
ieee-fprox-test.4th
memorytest.4th
paranoia.4th
regress.4th
searchordertest.4th
stringtest.4th
to-float-test.4th

4.8 Exceptions

Non-zero return codes from the virtual machine (VM) follow the standardized
throw codes specified in Forth-94 (see Table 9.1 in the standard). Reserved throw
codes fall within the range -1 to -255. System-specific throw codes are allowed in
the range, -256 to -4095. kForth uses the system-specific throw codes shown in the
table below.

Code Exception

-256 Value on the stack did not have expected type addr

-257 Value on the stack did not have expected type ival

-258 Return stack was corrupted

-259 VM encountered invalid opcode

-260 ALLOT failed – cannot reallot memory for a word

-261 Failed on CREATE

-262 End of string not found

-263 No matching DO

-264 No matching BEGIN

-265 ELSE without matching IF

-266 THEN without matching IF

-267 ENDOF without matching OF

-268 ENDCASE without matching CASE

65

-269 Address outside of stack space

-270 Division overflow

-271 Unsigned double number overflow

-272 Incomplete IF … THEN structure

-273 Incomplete BEGIN structure

-274 Incomplete LOOP structure

-275 Incomplete CASE structure

-276 End of definition with no beginning

-277 Not allowed inside colon definition

-278 Unexpected end of input stream

-279 Unexpected end of string

-280 VM returned unknown error

4.9 Source Code Map

Source code for kForth-32 and kForth-Win32 consists of the following C++ and C
files:

kforth.cpp
ForthCompiler.cpp
ForthVM.cpp
vmc.c
fbc.h
ForthWords.h
ForthCompiler.h
ForthVM.h
kfmacros.h
VMerrors.h

Much of the virtual machine is written in assembly language. The Linux assembly
source files (for the GNU assembler, as) are

vm32-common.s
vm32.s
vm32-fast.s

66

kForth-Win32 uses a single assembly language source file, written for the A386
assembler,

vm32.asm

The assembled object file, vm32.obj, is included in the kForth-Win32 package, as
is the executable program, kforth.exe.

Auxiliary files to build the executable(s) under Linux are

Makefile

Auxiliary files to build the executable under Windows, using the Digital Mars C++
compiler/linker, are

kforth.def
kforth.mak
kforth.rc
kforth.ico

The source code is made available to users under the GNU Affero General Public
License (AGPL). The Linux version is provided as source code only and must be
built locally on the user's machine (see installation). Under Linux, the standard
GNU assembler, GNU C and C++ compilers, and the C++ Standard Template
Library (STL) are required to build the executable.

4.10 Embedding kForth

The file kforth.cpp serves as a skeleton C++ program to illustrate how the
kForth compiler and virtual machine may be embedded in a standalone program.
XYPLO T-32 is a more complex GUI program which embeds kForth to allow user
extensibility. The file xyplot.cpp shows how to set up hooks for calling C++
functions in the host program from the embedded kForth interpreter and vice-versa.

67

https://github.com/mynenik/XYPLOT-32
https://github.com/mynenik/XYPLOT-32
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

References

1. American National Standard for Information Systems – Programming
Languages – Forth (ANSI X3.215-1994), American National Standards
Institute, Inc., Approved March 24 1994.

2. Starting Forth, Leo Brodie / Forth Inc., Second Edition, Prentice-Hall, 1987.

3. Scientific Forth, a modern language for scientific computing, J. V. Noble,
Mecham Banks Publishing, 1992.

4. UR/Forth Manual, Laboratory Microsystems Inc., 1990.

5. K. Myneni and D. P. Wallace, Special Features of kForth, Forthwrite
Magazine, 116 and 117.

6. K. Myneni and D. N. Williams, A Forth Modules System with Name Reuse,
15 February 2012.

7. K. Myneni, Introduction to Forth for Scientists and Engineers, LibreOffice
Presentation, January 2004.

68

	Overview
	Credits
	1. Installation
	1.1 Installation under GNU/Linux
	1.1.1 Required Packages
	1.1.2 kForth-32 on 64-bit Linux Systems
	1.1.3 Library Packages for Forth Programming
	1.1.4 Build and Configuration Under Linux

	1.2 Installation under Windows

	2. Using kForth
	2.1 Basics
	2.2 More Words
	2.3 Using Forth’s Stack
	2.3.1 The Data Stack

	2.4 Variables and Constants
	2.5 Stack Diagrams
	2.6 Simple Word Examples
	2.7 Acting on Conditions
	2.8 The Return Stack
	2.9 Factoring a Forth Program
	2.10 Using Memory
	2.10.1 Data Types
	2.10.2 CREATE and ALLOT
	2.10.3 Viewing Memory with DUMP

	3. Dictionary
	3.1 Dictionary Maintenance
	3.2 Word Lists and Search Order
	3.3 Compilation and Execution Words
	3.4 Defining Words
	3.5 Control Structures
	3.6 Stack Operations
	3.7 Memory Operations
	3.8 String Operations
	3.9 Logic and Bit Manipulation Operations
	3.10 Arithmetic and Relational Operations
	3.10.1 Single and Double Integer Operations

	3.11 Floating Point Operations
	3.11.1 Arithmetic and Relational Words
	3.11.2 Floating Point Functions

	3.12 Number Conversion
	3.13 Input and Output
	3.14 File Access
	3.15 Operating System Interface
	3.16 Miscellaneous

	4. Technical Information
	4.1 Forth-94 Compliance
	4.2 Threading Model
	4.3 Signed Integer Division
	4.4 Double Numbers
	4.4.1 Double Number Entry
	4.4.2 kForth Method
	4.4.3 Forth-94 Compatible Method

	4.5 Floating Point Implementation
	4.6 Special Features
	4.7 Benchmarks and Tests
	4.8 Exceptions
	4.9 Source Code Map
	4.10 Embedding kForth

	References

