
The Therion Book
Stacho Mudrák

Martin Budaj

Therion is copyrighted software. Distributed under the GNU

General Public License.

Copyright c© 1999–2021 Stacho Mudrák, Martin Budaj

This book describes Therion 6.2.0 (2023-12-21).

Code contributions by Matěj Plch, Olly Betts, Marco Corvi,

Vladimir Georgiev, Georg Pacher and Dimitrios Zachariadis.

We owe thanks to Martin Sluka, Ladislav Blažek, Martin Heller,

Wookey, Olly Betts and all users for their feedback, support and

suggestions.

Table of Contents

Introduction 7

Why Therion? 7

Features 9

Software requirements 10

Installation 11

Setting-up an environment 12

How does it work? 12

First run 14

Creating data files 16

Basics 16

Data types 18

Coordinate systems 19

Magnetic declination 20

Data format 21

‘encoding’ 22

‘input’ 22

‘survey’ 23

‘centreline’ 25

‘scrap’ 32

‘point’ 36

‘line’ 41

‘area’ 47

‘join’ 49

‘equate’ 50

‘map’ 50

‘surface’ 52

‘import’ 54

‘grade’ 55

‘revise’ 56

Custom attributes 56

XTherion 57

XTherion—text editor 58

XTherion—map editor 58

Additional tools 64

Keyboard and mouse shortcuts in the Map editor 65

Thinking in Therion 68

How to enter a centreline 69

How to draw maps 70

How to create models 71

Therion in depth 71

How the map is put together 72

Processing data 75

Configuration file 75

‘system’ 75

‘encoding’ 75

‘language’ 76

‘cs’ 76

‘sketch-warp’ 76

‘input’ 77

‘source’ 77

‘select’ 77

‘unselect’ 79

‘maps’ 79

‘maps-offset’ 79

‘log’ 80

‘text’ 80

‘layout’ 80

‘lookup’ 92

‘setup3d’ 94

‘sketch-colors’ 94

‘export’ 94

Running Therion 98

XTherion—compiler 101

What do we get 102

Information files 102

Log file 102

XTherion 103

SQL export 103

Lists—caves, surveys, continuations . . . 105

2D maps 106

Maps for printing 106

Maps for GIS 107

Special-purpose maps 107

3D models 107

Loch 107

Changing layout of PDF maps 108

Page layout in the atlas mode 108

Page layout in the map mode 117

Customizing text labels 119

New map symbols 119

Point symbols 122

Line symbols 123

Area symbols 124

Special symbols 125

Appendix 126

Compilation 126

Installing the dependencies 126

Using CMake 128

Legacy approach: using make 129

Hacker’s guide 130

Environment variables 133

Initialization files 133

Therion 134

XTherion 141

Limitations 141

Example data 143

History 145

Future 147

General 147

2D maps 148

3D models 148

XTherion 148

Loch 148

Labyrinth 148

Introduction

Therion is a tool for cave surveying. Its purpose is to help

• archive survey data on a computer in a form as close to the

original notes and sketches as possible and retrieve them in a

flexible and efficient way;

• draw a nice up-to-date plan or elevation map;

• create a realistic 3D model of the cave.

It runs on Unix, Linux, MacOS X and Win32 operating systems.

Source code and Windows installer are available on the Therion web

page (https://therion.speleo.sk).

Therion is distributed under the GNU General Public License.

Why Therion?

In the 1990s we did a lot of caving and cave surveying. Some

computer programs existed which displayed survey shots and

stations after loop closure and error elimination. These were a

great help, especially for large and complicated cave systems. We

used the output of one of them—TJIKPR—as a background layer

with survey stations for hand-drawn maps. After finishing a huge

166-page Atlas of the Cave of Dead Bats in early 1997, we soon

had a problem: we found new passages connecting between known

passages and surveyed them. After processing in TJIKPR, the new

loops influenced the position of the old surveys; most survey stations

now had a slightly different position from before due to the changed

7

https://therion.speleo.sk
https://www.gnu.org/

error distribution. So we could either draw the whole Atlas again,

or accept that the location of some places was not accurate—in

the case of loops with a length of approximately 1 km there were

sometimes errors of about 10 m—and try to distort the new passages

to fit to old ones.

These problems remained when we tried to draw maps using some

CAD programs in 1998 and 1999. It was always hard to add new

surveys without adapting the old ones to the newly calculated

positions of survey stations in the whole cave. We found no program

that was able to draw an up-to-date complex map (i.e. not just

survey shots with LRUD envelope), in which the old parts are

modified according to the most recent known coordinates of survey

stations.

In 1999 we began to think about creating our own program for map

drawing. We knew about programs which were perfectly suited

for particular sub-tasks. There was METAPOST, a high level

programming language for vector graphics description, Survex for

excellent processing of survey shots, and TEX for typesetting the

results. We only had to glue them together. By Xmas 1999 we

had a minimalistic version of Therion working for the first time.

This consisted only of about 32 kB of Perl scripts and METAPOST

macros but served the purpose of showing that our ideas were

implementable.

During 2000–2001 we searched for the optimal format of the input

data, programming language, concept of interactive map editor and

internal algorithms with the help of Martin Sluka (Prague) and

Martin Heller (Zürich). In 2002 we were able to introduce the first

really usable version of Therion, which met our requirements.

8

Features

Therion is a command-line application. It processes input files,

which are—including 2D maps—in text format, and creates files

with 2D maps or 3D model as the output.

The syntax of input files is described in detail in later chapters. You

may create these files in an arbitrary plain text editor like ed or vi.

They contain instructions for Therion, e.g.

point 1303 1004 pillar

where point is a keyword for point symbol followed by its

coordinates and a symbol type specification.

Hand-editing of such files is not easy—especially when you draw

maps, you need to think in spatial (Cartesian coordinate) terms.

Thus there is a special GUI for Therion called XTherion. XTherion

works as an advanced text editor, map editor (where maps are drawn

fully interactively) and compiler (which runs Therion on the data).

It may look quite complicated, but this approach has a lot of

advantages:

• There is strict separation of data and visualization. The data files

specify only where the objects are, not what they look like. The

visual representation is added by METAPOST in later phases

of data processing. (It’s a very similar concept to XML data

representation.)

This makes it possible to change map symbols used without

changing the input data, or merge more maps created by different

9

people in different styles into one map with unified map symbols

set.

2D maps are adapted for particular output scale (level of

abstraction, non-linear scaling of symbols and texts)

• All data is relative to survey station positions. If the coordinates

of survey stations are changed in the process of loop closure, then

all relevant data is moved correspondingly, so the map is always

up-to-date.

• Therion is not dependent on particular operating system,

character encoding or input files editor; input files will remain

human readable

• It’s possible to add new output formats

• 3D model is generated from 2D maps to get a realistic 3D model

without entering too much data

• although the support for WYSIWYG is limited, you get what you

want

Software requirements

“A program should do one thing, and do it well.” (Ken Thompson)

Therefore we use some valuable external programs, which are related

to the problems of typesetting and data visualization. Therion can

then do its task much better than if it were a standalone application

in which you could calibrate your printer or scanner and, with one

click, send e-mail with your data.

Therion needs:

• PROJ library.

10

• TEX distribution. Necessary only if you want to create 2D maps

in PDF or SVG format.

• Tcl/Tk with BWidget and optionally tkImg extension. It is only

required for XTherion.

• LCDF Typetools if you want to use easy setup for custom fonts in

PDF maps

• convert and identify utilities from ImageMagick distribution, if

you want to use warping of survey sketches.

• ghostscript if you want to create calibrated images from

georeferenced PDF maps.

Windows installer includes all required packages with the exception

of ghostscript. Read the Appendix if you want to compile Therion

yourself.

For displaying maps and models you may use any of the following

programs:

• any PDF or SVG viewer displaying 2D maps;

• any GIS supporting DXF or shapefile formats for analyzing the

maps;

• appropriate 3D viewer for models exported in other than default

format;

• any SQL database client to process the exported database.

Installation

Installation from sources (therion-5.*.tar.gz package):

11

The source code is a primary Therion distribution. It needs to be

compiled and installed according to the instructions in the Appendix.

Installation on Windows:

Run the setup program and follow the instructions. It installs all

the required dependencies and creates shortcuts to XTherion and

Therion Book.

Setting-up an environment

Therion reads settings from the initialization file. Default settings

should work fine for users using just latin characters1, standard TEX

and METAPOST.

If you want to use your own fonts for latin or non-latin characters in

PDF maps, edit the initialization file. Instructions on how to do this

are in the Appendix.

How does it work?

So, now it’s clear what Therion needs, let’s have a look at the way it

interacts with all these programs:

1 In the PDF map Therion renders most of the accented characters as a
combination of accent and a base character. Some obscure accents might be
omitted. Precomposed accented letters are included for Slovak and Czech
languages.

12

Therion

therion.mp

therion.tex

XTherion

Loch & other viewers

MetaPost

Plain base

makempx mpto

TEXdvitomp

Plain format

pdfTeX
Plain format

input data

PDF maps

info & log files

maps, models, DB

scanned sketches

DON’T PANIC! When your system is set-up correctly the majority

of this is hidden from the user and all necessary programs are run

automatically by Therion.

For working with Therion it is enough to know that you have to

create input data (best done with XTherion), run Therion, and

display the output files (3D model, map, log file) in the appropriate

program.

For those who want to understand more about it, here is a brief

explanation of the above flowchart. Program names are in roman

font, data files in italics. Arrows show data flow between programs.

Temporary data files are not shown. The meaning of colours:

• black—Therion programs and macros (XTherion is written in

Tcl/Tk, so it needs this interpreter to run)

• red—TEX package

13

• green—input files created by the user and output files created by

Therion

Therion itself does the main task. It reads the input files,

interprets them, finds closed loops and distributes errors. Next it

transforms all other data (e.g. 2D maps) according to new stations

position. Therion exports data for 2D maps in METAPOST format.

METAPOST gives the actual shape to abstract map symbols

according to map symbol definitions; it creates a lot of PostScript

files with small fragments of the cave. These are read back and

converted to a PDF-like format, which forms input data for pdfTEX.

PdfTEX does all the typesetting and creates a PDF file of the cave

map.

Therion also exports 3D models (full or centreline) in various

formats.

Centreline may be exported for further processing in any SQL

database.

First run

After explaining the basic principles of Therion it’s a good idea to

try it on the example data.

• Download the sample data from Therion web page and unpack it

somewhere on your computer’s hard drive.

• Run XTherion (under Unix and MacOS X by typing ‘xtherion’ in

the command line, under Windows there is a shortcut in the Start

menu).

• Open the file ‘thconfig’ from the sample data directory in the

‘Compiler’ window of XTherion

14

• Press ‘F9’ or ‘compile’ in the menu to run Therion on the

data—you’ll get some messages from Therion, METAPOST and

TEX.

• PDF maps and 3D models are created in the data directory.

Additionally, you may open survey data files (*.th) in the ‘Text

editor’ window and map data files (*.th2) in the ‘Map editor’

window of XTherion. Although the data format may look confusing

at first, it will be explained in the following chapters.

15

Creating data files

Basics

The input files for Therion are in text format. There are a few rules

about how such a file should look:

• There are two kinds of commands. One-line commands and

multi-line commands.

• A one-line command is terminated by an end of line character.

The syntax of these is

command arg1 ... argN [-option1 value1 -option2 value2

...]

where arg1 ... argN are obligatory arguments, and pairs -option

value are options, which you may freely omit. Which arguments

and options are available depends on the particular command. An

example may be

point 643.5 505.0 gradient -orientation 144.7

with three obligatory arguments and one optional option/value

pair. Sometimes options have no or multiple values.

• Multi-line commands begin similarly to one line commands, but

continue on subsequent lines until explicit command termination.

These lines may contain either data or options, which are applied

to subsequent data. If a data line starts with a word reserved for

an option, you have to insert ‘!’ in front of it. The syntax is

16

command arg1 ... argN [-option1 value1 -option2 value2

...]

...

optionX valueX

data

...

endcommand

Again, for better illustration, a real example follows:

line wall -id walltobereferenced

1174.0 744.5

1194.0 756.5 1192.5 757.5 1176.0 791.0

smooth off

1205.5 788.0 1195.5 832.5 1173.5 879.0

endline

This command line has one obligatory argument, a line type

(passage wall in this case), followed by one option. The next two

lines contain data (coordinates of Bézier curves to be drawn). The

next line (“smooth off”) specifies an option which applies to

subsequent data (i.e. not for the whole line, unlike the option -id

in the first line) and the last line contains some more data.

• if the value of an option or argument contains spaces, you

should enclose this value in " " or []. If you want to put a

double-quote " into text in " " you need to insert it twice. Quotes

are used for strings; brackets for numerical values and keywords.

• each line ending with a backslash (\) is considered to continue on

the next line, as if there was neither line-break nor backlash.

• everything that follows #, until the end of line—even inside a

command—is considered to be a comment, and is ignored.

17

• multiline comments inside comment ... endcomment block are

allowed in data and configuration files

Data types

Therion uses following data types:

• keyword . a sequence of A-Z, a-z, 0-9 and _-/ characters (not

starting with ‘-’).

• ext keyword . keyword that can also contain +*.,’ characters,

but not on the first position.

• date . a date (or a time interval) specification in the format

YYYY[.MM[.DD[@HH[:MM[:SS[.SS]]]]]] [-

YYYY[.MM[.DD[@HH[:MM[:SS[.SS]]]]]]] or ‘-’ to leave a date

unspecified.

• person . a person’s first name and surname separated by

whitespace characters. Use ‘/’ to separate first name and surname

if there are more names.

• string . a sequence of any characters. Strings may contain special

tag <lang:XX> to separate translations. In multilingual strings

only the text between <lang:XX> (where XX is the language

selected in initialization or configuration file) and the next

<lang:YY> tag is displayed on the output. If no match is found,

everything before any occurrence of <lang:ZZ> tag is displayed.

• units . length units supported: meter[s], centimeter[s], inch[es],

feet[s], yard[s] (also m, cm, in, ft, yd). Angle units supported:

degree[s], minute[s] (also deg, min), grad[s], mil[s], percent[age]

(clino only). A degree value may be entered in decimal notation

18

(x.y) or in a special notation for degrees, minutes and seconds

(deg[:min[:sec]]).

Coordinate systems

Therion supports coordinate transformations in geodetic coordinate

systems. You can specify cs option in centreline, surface,

import and layout objects and then enter XY data in given system.

You can also specify output cs in configuration file.

If you do not specify any cs in your dataset, it is assumed you are

working in local coordinate system, and no conversions are done. If

you specify cs anywhere in the data, you have to specify it for all

location data (fix, origin in layout etc.).

cs applies to all subsequent location data until other cs is specified

or until the end of the current object, whichever comes first.

Following coordinate systems are supported:

• UTM1 – UTM60 . Universal Transverse Mercator in northern

hemisphere and given zone, WGS84 datum. Equivalent to

EPSG:32601–EPSG:32660.

• UTM1N – UTM60N . same as UTM1 – UTM60

• UTM1S – UTM60S . UTM in southern hemisphere, WGS84 datum.

Equivalent to EPSG:32701–EPSG:32760.

• lat-long, long-lat . latitude (N positive, S negative) and

longitude (E positive, W negative) in given order in degrees

(deg[:min[:sec]] allowed), WGS84 datum. Not supported on

output. Equivalent to EPSG:4326.

19

• EPSG:<number> . Most of EPSG coordinate systems.

Almost every coordinate system used worldwide has its own

EPSG number. To find the number of your system, see

https://epsg.org.

• ESRI:<number> . Similar to EPSG, but ESRI standard.

• ETRS . European Terrestrial Reference System 1989 (ETRS89);

long-lat order, not supported on output. Equivalent to

EPSG:4258.

• ETRS28 – ETRS37 . ETRS89 zones in UTM projection; east-north

order. Equivalent to EPSG:25828–EPSG:25837.

• JTSK, iJTSK . Czechoslovak S-JTSK system used since 1920s with

south and west axis (JTSK) and its modified version with axis

pointing east and north and negative numbers (iJTSK). JTSK is

not supported on output (iJTSK is).

• JTSK03, iJTSK03 . new S-JTSK realisation introduced in Slovakia

in 2011.

• OSGB:<H, N, O, S or T><A-Z except I> . British Ordnance

Survey National Grid.

• S-MERC . the spherical Mercator projection, as used by various

online mapping sites. Equivalent to EPSG:3857.

Magnetic declination

Therion contains built-in IGRF2 Earth geomagnetic field model valid

for period 1900–2025. It is automatically used if the cave is located

in space with a fix station using any of the supported geodetic

2 See https://www.ngdc.noaa.gov/IAGA/vmod/

20

https://epsg.org
https://www.ngdc.noaa.gov/IAGA/vmod/

coordinate systems and in time with the centerlines date command.

The computed declination is listed in the LOG file for information.

If the user specified a declination in the centerline, that value

takes precedence over the automatic calculation.

Data format

The syntax of input files is explained in the description of individual

commands. Studying the example files distributed with Therion will

help you understand. See also an example in the Appendix.

Each of the following sections describes one Therion command using

the following structure:

Description: notes concerning this command.

Syntax: schematic syntax description.

Context: specifies the context in which is this command allowed.

The survey context means that the command must be enclosed

by survey ... endsurvey pair. The scrap context means that

the command must be enclosed within scrap ... endscrap pair.

Context all means that the command may be used anywhere.

Arguments: a list of the obligatory arguments with explanations.

Options: a list of the available options.

Command-like options: options for multi-line commands, which can

be specified among the data lines.

21

‘encoding’

Description: sets the encoding of input file. This allows the use of

non-ASCII characters in input files.

Syntax: encoding <encoding-name>

Context: It should be the very first command in the file.

Arguments:

• <encoding-name> . to see a list of all the supported encoding

names, run Therion with --print-encodings option. ‘UTF-8’

(Unicode) and ‘ASCII’ (7 bit) encodings are always supported.

‘input’

Description: inserts the contents of a file in place of the command.

Default extension is ‘.th’ and may be omitted. For greatest

portability use relative paths and Unix slashes ‘/’, not Windows

backslashes ‘\’, as directory separators.

Syntax: input <file-name>

Context: all

Arguments:

• <file-name>

22

‘survey’

Description: Survey is the main data structure. Surveys may be

nested—this allows a hierarchical structure to be built. Usually

some level of this hierarchical structure survey represents caves,

higher levels karst areas and lower levels e.g. passages.

Each survey has its own namespace specified by its <id> argument.

Objects (like survey stations or scraps; see below) which belong to a

subsurvey of the current survey are referenced as

<object-id>@<subsurvey-id>,

or, if there are more nesting levels

<object-id>@<subsubsurvey-id>.<subsurvey-id>.3

This means, that object identifiers must be unique only in the scope

of one survey. For instance, survey stations names can be the same

if they are in different surveys. This allows stations to be numbered

from 0 in each survey or the joining of two caves into one cave

system without renaming survey stations.

Syntax: survey <id> [OPTIONS]

... other therion objects ...

endsurvey [<id>]

Context: none, survey

Arguments:

• <id> . survey identifier

3 Note: it’s not possible to reference any object from the higher-level surveys.

23

Options:

• namespace <on/off> . specify whether survey creates namespace

(on by default)

• declination <specification> . set the default declination

for all data objects in this survey (which can be overridden by

declination definitions in subsurveys). The <specification> has

three forms:

1. [] an empty string. This will reset the declination definition.

2. [<value> <units>] will set a single value (also for undated

surveys).

3. [<date1> <value1> [<date2> <value2> ...] <units>]

will set declination for several dates. Then the declination of each

shot will be set according to the date specification of the data

object. If you want to explicitly set the declination for undated

survey data, use ‘-’ instead of date.

If no declination is specified and some geodetic coordinate system

is defined, the declination is automatically computed using

built-in geomagnetic model.

N.B.: The declination is positive when the magnetic north is east

of true north.

• person-rename <old name> <new name> . rename a person

whose name has been changed

• title <string> . description of the object

• entrance <station-name> . specifies the main entrance to the

cave represented by this survey. If not specified and there is

exactly one station marked entrance in this survey, it is considered

24

to represent a cave also. This information is used for cave-list

export.

‘centreline’

Description: Survey data (centreline) specification. The syntax is

borrowed from Survex with minor modifications; the Survex manual

may be useful as an additional reference for the user. A synonym

term ‘centerline’ may be used.

Syntax: centreline [OPTIONS]

date <date>

team <person> [<roles>]

explo-date <date>

explo-team <person>

instrument <quantity list> <description>

calibrate <quantity list> <zero error>

[<scale>]

units <quantity list> [<factor>] <units>

sd <quantity list> <value> <units>

grade <grade list>

declination <value> <units>

grid-angle <value> <units>

infer <what> <on/off>

mark <type>

flags <shot flags>

station <station> <comment> [<flags>]

cs <coordinate system>

fix <station> [<x> <y> <z> [<std x> <std y>

<std z>]]

25

equate <station list>

data <style> <readings order>

break

group

endgroup

walls <auto/on/off>

vthreshold <number> <units>

extend <spec> [<station> [<station>]]

station-names <prefix> <suffix>

...

[SURVEY DATA]

...

endcentreline

Context: none, survey

Options:

• id <ext_keyword> . id of the object

• author <date> <person> . author of the data and its creation

date

• copyright <date> <string> . copyright date and name

• title <string> . description of the object

Command-like options:

• date <date> . survey date. If multiple dates are specified, a time

interval is created.

• explo-date <date> . discovery date. If multiple dates are

specified, a time interval is created.

• team <person> [<roles>] . a survey team member. The first

argument is his/her name, the others describe the roles of the

26

person in the team (optional—currently not used). The following

role keywords are supported: station, [back]length, [back]tape,

[back]compass, [back]bearing, [back]clino, [back]gradient, counter,

depth, station, position, notes, pictures, pics, instruments (insts),

assistant (dog).

• explo-team <person> . a discovery team member.

• instrument <quantity list> <description> . description of

the instrument that was used to survey the given quantities (same

keywords as team person’s role)

• infer <what> <on/off> . ‘infer plumbs on’ tells the program

to interpret gradients ±90 ◦ as UP/DOWN (this means no clino

corrections are applied). ‘infer equates on’ will case program

to interpret shots with 0 length as equate commands (which

means that no tape corrections are applied)

• declination <value> <units> . sets the declination for

subsequent shots

true bearing = measured bearing + declination.

The declination is positive when the magnetic north is east of true

north. If no declination is specified, or the declination is reset (-),

then a valid declination specification is searched for in all surveys

the data object is in. See declination option of survey command.

• grid-angle <value> <units> . specifies the magnetic grid angle

(declination against grid north).

• sd <quantity list> <value> <units> . sets the standard

deviation for the given measurements. The Quantity list can

contain the following keywords: length, tape, bearing, compass,

27

gradient, clino, counter, depth, x, y, z, position, easting, dx,

northing, dy, altitude, dz.

• grade <grade list> . sets standard deviations according to the

survey grade specification (see grade command). All previously

specified standard deviations or grades are lost. If you want to

change an SD, use the sd option after this command. If multiple

grades are specified, only the last one applies. You can specify

grades only for position or only for surveys. If you want to

combine them, you must use them in one grade line.

• units <quantity list> [<factor>] <units> . set the units

for given measurements (same quantities as for sd).

• calibrate <quantity list> <zero error> [<scale>]

. set the instrument calibration. The measured

value is calculated using the following formula:

measured value = (read value − zero error) × scale. The

supported quantities are the same as sd.

• break . can be used with interleaved data to separate two

traverses

• mark [<station list>] <type> . set the type of named

stations. <type> is one of: fixed, painted and temporary (default).

If there is no station list, all subsequent stations are marked.

• flags <shot flags> . set flags for following shots. The

supported flags are: surface (for surface measurements),

duplicate (for duplicated surveys), splay (for short side legs

that are hidden in maps and models by default). These are

excluded from length calculations.

All shots having one of the stations named either ‘.’ or ‘-’ are

splay shots by default (see also data command).

28

If flag is set to approx[imate], it is included to total length

calculations, but also displayed separately in survey statistics. It

should be used for shots, that were not surveyed properly and

need to be resurveyed.

Also “not” is allowed before a flag.

• station <station> <comment> [<flags>] . set the station

comment and its flags. If "" is specified as a comment, it is

ignored.

Supported flags: entrance, continuation,

air-draught[:winter/summer], sink, spring, doline, dig,

arch, overhang. Also not is allowed before a flag, to remove

previously added flag.

You can also specify custom attributes to the station using attr

flag followed by attribute name and value. Example:

station 4 "pit to explore" continuation attr code "V"

If there is a passage, that was explored, but not surveyed

yet, estimated explored length of this passage can be added

to the station with continuation flag. Just add explored

<explored-length> to the station flags. Explored lengths are a

part of survey/cave statistics, displayed separately. Example:

station 40 "ugly crollway" continuation explored 100m

• cs <coordinate system> . coordinate system for stations with

fixed coordinates

• fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] .

fix station coordinates (with specified errors—only the units

transformation, not calibration, is applied to them).

• equate <station list> . set points that are equivalent

29

• data <style> <readings order> . set data style (normal,

topofil, diving, cartesian, cylpolar, dimensions, nosurvey) and

readings order. Reading is one of the following keywords: station,

from, to, [back]tape/[back]length, [back]compass/[back]bearing,

[back]clino/[back]gradient, depth, fromdepth, todepth,

depthchange, counter, fromcount, tocount, northing, easting,

altitude, up/ceiling4, down/floor, left, right, ignore, ignoreall.

See Survex manual for details.

For interleaved data both newline and direction keywords are

supported. If backward and forward compass or clino reading are

given, the average of them is computed.

If one of the shot stations is named either ‘.’ or ‘-’, the shot has

splay attribute set. Dot should be used for shots ending on

features inside passage, dash for shots ending on passage walls,

floor or ceiling. Although Therion makes no distinction between

them yet, it should be used to improve 3D modeling in the future.

• group

• endgroup . group/endgroup pair enables the user to make

temporary changes in almost any setting (calibrate, units, sd,

data, flags...)

• walls <auto/on/off> . turn on/off passage shape generation

from LRUD data for subsequent shots. If set auto, passage is

generated only if there is no scrap referencing given centreline.

• vthreshold <number> <units> . threshold for interpreting

LRUD readings as left-right-front-back reading perpendicular to

the shot.

4 dimension may be specified as a pair [<from> <to>], meaning the size at
the beginning and end of the shot

30

If passeges are horizontal (inclination < vthreshold), LR is

perpendicular to the shot and UD is vertical.

If passages are more or less vertical (inclination >

vthreshold), even UD becomes perpendicular to the shot –

otherwise passages would not look very good. In the case of

vertical shots, UD is interpreted as north-south dimension from

the station to allow tube-like modelling of verticals.

• extend <spec> [<station> [<station>]] . control how the

centerline is extended. <spec> is one of the following

normal/reverse . extend given and following stations to the

same/reverse direction as previous station. If two stations are

given—direction is applied only to given shot.

left/right . same as above, but direction is specified explicitly.

vertical . do not move station (shot) in X direction, use only Z

component of the shot

start . specify starting station (shot)

ignore . ignore specified station (shot), continue extended

elevation with other station (shot) if possible

hide . do not show specified station (shot) in extended elevation

If no stations are specified, <spec> is valid for following shots

specified.

• station-names <prefix> <suffix> . adds given prefix/suffix to

all survey stations in the current centreline. Saves some typing.

31

‘scrap’

Description: Scrap is a piece of 2D map, which doesn’t contain

overlapping passages (i.e. all the passages may be drawn on the

paper without overlapping). For small and simple caves, the whole

cave may belong to one scrap. In complicated systems, a scrap

is usually one chamber or one passage. Ideally, a scrap contains

about 100 m of the cave.5 Each scrap is processed separately by

METAPOST; scraps which are too large may exceed METAPOST’s

memory and cause errors.

Scrap consists of point, line and area map symbols. See chapter How

the map is put together for explanation how and in which order are

they displayed.

Scrap border consists of lines with the -outline out or -outline

in options (passage walls have -outline out by default). These

lines shouldn’t intersect—otherwise Therion (METAPOST) can’t

determine the interior of the scrap and METAPOST issues a warning

message “scrap outline intersects itself”.

Each scrap has its own local cartesian coordinate system, which

usually corresponds with the millimeter paper (if you measure the

coordinates of map symbols by hand) or pixels of the scanned image

5 If necessary, scraps may be much smaller—just to display a few meters of the
cave. When deciding about scrap size please take into account the following:
Using small scraps may take more time for cartographer to optimize scrap
joins. On the other hand smaller scraps will probably be less distorted by
map warping algorithms than larger scraps. Using too large scraps may
exhaust METAPOST’s memory if passage fills are frequently used and the
map editor in XTherion is much less responsive when editing huge scraps.

32

(if you use XTherion). Therion does the transformation from this

local coordinate system to the real coordinates using the positions of

survey stations, which are specified both in the scrap as point map

symbols and in centreline data. If the scrap doesn’t contain at least

two survey stations with the -name reference, you have to use the

-scale option for calibrating the scrap. (This is usual for cross

sections.)

The transformation consists of the following steps:

• Linear transformation (shifting, scaling and rotation) which ‘best’

fits stations drawn in the scrap to real ones. ‘Best’ means that the

sum of squared distances between corresponding stations before

and after transformation is minimal. The result is displayed red if

debug option of the layout command is set on.

• Non-linear transformation of the scrap which (1) moves survey

stations to their correct position, (2) is continuous. Displayed

blue in the debug mode.

• Non-linear transformation of the scrap which (1) moves

joined points together, (2) doesn’t move survey stations, (3)

is continuous. Finally the position of curves’ control points is

adjusted to preserve smoothness. The result is final map.

Syntax: scrap <id> [OPTIONS]

... point, line and area commands ...

endscrap [<id>]

Context: none, survey

Arguments:

• <id> . scrap identifier

33

Options:

• projection <specification> . specifies the drawing projection.

Each projection is identified by a type and optionally by an index

in the form type[:index]. The index can be any keyword. The

following projection types are supported:

1. none . no projection, used for cross sections or maps that are

independent of survey data (e.g. digitization of old maps where

no centreline data are available). No index is allowed for this

projection.

2. plan . basic plan projection (default).

3. elevation . orthogonal projection (a.k.a. projected profile)

which optionally takes a view direction as an argument

(e.g. [elevation 10] or [elevation 10 deg]).

4. extended . extended elevation (a.k.a. extended profile).

• scale <specification> . is used to pre-scale (convert

coordinates from pixels to meters) the scrap data. If scrap

projection is none, this is the only transformation that is done

with coordinates. The <specification> has four forms:

1. <number> . <number> meters per drawing unit.

2. [<number> <length units>] . <number> <length units>

per drawing unit.

3. [<num1> <num2> <length units>] . <num1> drawing units

corresponds to <num2> <length units> in reality.

4. [<num1> ... <num8> [<length units>]] . this is the

most general format, where you specify, in order, the x and y

coordinates of two points in the scrap and two points in reality.

34

Optionally, you can also specify units for the coordinates of the

‘points in reality’. This form allows you to apply both scaling and

rotation to the scrap.

• cs <coordinate system> . assumes that (calibrated) local scrap

coordinates are given in specified coordinate system. It is useful

for absolute placing of imported sketches where no survey stations

are specified.6

• stations <list of station names> . stations you want to plot

to the scrap, but which are not used for scrap transformation.

You don’t have to specify (draw) them with the point station

command.

• sketch <filename> <x> <y> . underlying sketch bitmap

specification (lower left corner coordinates).

• walls <on/off/auto> . specify if the scrap should be used in 3D

model reconstruction

• flip (none)/horizontal/vertical . flips the scrap after scale

transformation

• station-names <prefix> <suffix> . adds given prefix/suffix to

all survey stations in the current scrap. Saves some typing.

• author <date> <person> . author of the data and its creation

date

• copyright <date> <string> . copyright date and name

• title <string> . description of the object

6 If there are some survey stations in the scrap, the cs specification is ignored.

35

‘point’

Description: Point is a command for drawing a point map symbol.

Syntax: point <x> <y> <type> [OPTIONS]

Context: scrap

Arguments:

• <x> and <y> are the drawing coordinates of an object.

• <type> determines the type of an object. The following types are

supported:

special objects: dimensions7, section8, station9;

labels: altitude10, date11, height12, label, passage-height13,

remark, station-name14;

7 Use -value option to specify passage dimensions above/below centerline
plane used while creating 3D model.

8 section is an anchor for placing the cross-section at this point. This symbol
has no visual representation. The cross section must be in the separate
scrap with ‘none’ projection specified. You can specify it through the
-scrap option.

9 Survey station. For each scrap (with the exception of scraps in ‘none’
projection) at least one station with station reference (-name option) has to
be specified.

10 General altitude label. All altitudes are exported as a difference against grid
Z origin (which is 0 by default). To display altitude on the passage wall, use
altitude option for any line point of the passage wall

11 Set date’s value with the -value option
12 Height of formations inside of the passage (like pit etc.); see below for

details.
13 Height of the passage; see below for details.
14 If no text is specified, the name of the nearest station is used.

36

symbolic passage fills:15 bedrock, blocks, clay, debris, guano,

ice, mudcrack, mud, pebbles, raft, sand, snow, water;

speleothems: anastomosis, aragonite, cave-pearl, clay-tree,

crystal, curtains, curtain, disc-pillar, disc-stalactite,

disc-stalagmite, disc-pillars, disc-stalactites,

disc-stalagmites, disk, flowstone, flute, gypsum-flower,

gypsum, helictites, helictite, karren, moonmilk, pendant,

pillar-with-curtains, pillars-with-curtains, pillar,

popcorn, raft-cone, rimstone-dam, rimstone-pool,

scallop, soda-straw, stalactite-stalagmite,

stalactites-stalagmites, stalactite, stalactites,

stalagmite, stalagmites, volcano, wall-calcite;

equipment: anchor, bridge, camp, fixed-ladder, gate,

handrail, masonry, nameplate, no-equipment, no-wheelchair,

rope-ladder, rope, steps, traverse, via-ferrata, walkway,

wheelchair;

passage ends: breakdown-choke, clay-choke, continuation,

entrance, flowstone-choke, low-end, narrow-end;

others: air-draught16, altar, archeo-excavation,

archeo-material, audio, bat, bones, danger, dig,

electric-light, ex-voto, extra17, gradient, human-bones,

ice-pillar, ice-stalactite, ice-stalagmite,

map-connection18, paleo-material, photo, root,

15 Unlike other point symbols, these are clipped by the scrap border. See the
chapter How the map is put together.

16 Number of ticks is set according to -scale option
17 Additional morphing point. See -dist and -value options.
18 Virtual point, used to indicate connection between shifted maps (extended

elevation, map offset).

37

seed-germination, sink, spring19, tree-trunk, u20,

vegetable-debris, water-drip, water-flow.

Options:

• subtype <keyword> . determines the object’s subtype. The

following subtypes for given types are supported:

station:21 temporary (default), painted, natural, fixed;

air-draught: winter, summer, undefined (default);

water-flow: permanent (default), intermittent, paleo.

The subtype may be specified also directly in <type> specification

using ‘:’ as a separator.22

Any subtype specification can be used with user defined type

(u). In this case you need also to define corresponding metapost

symbol (see the chapter New map symbols).

• orientation/orient <number> . defines the orientation of the

symbol. If not specified, it’s oriented to north. 0 ≤ number < 360.

• align . alignment of the symbol or text. The following values are

accepted: center, c, top, t, bottom, b, left, l, right, r, top-left, tl,

top-right, tr, bottom-left, bl, bottom-right, br.

• scale . symbol scale, can be: tiny (xs), small (s), normal (m),

large (l), huge (xl) or a numeric value. Normal is default. Named

sizes scale by
√

2, so that xs ≡ 0.5, s ≡ 0.707, m ≡ 1.0, l ≡ 1.414

and xl ≡ 2.0.

19 Always use spring and sink symbols with a water-flow arrow.
20 For user defined point symbols.
21 if station subtype is not specified, Therion reads it from centreline, if it’s

specified there
22 E.g. station:fixed

38

• place <bottom/default/top> . changes displaying order in the

map.

• clip <on/off> . specify whether a symbol is clipped by the

scrap border. You cannot specify this option for the following

symbols: station, station-name, label, remark, date, altitude,

height, passage-height.

• visibility <on/off> . displays/hides the symbol.

• context <point/line/area> <symbol-type> . (to be used with

symbol-hide and symbol-show layout options) symbol will be

hidden/shown according to rules for specified <symbol-type>.23

• id <ext_keyword> . ID of the symbol.

Type-specific options:

• dist <distance> . if the point type is extra, specifies the

distance to the nearest station (or station specified using -from

option. If not specified, appropriate value from LRUD data is

used.

• from <station> . if the point type is extra, specifies reference

station.

• name <reference> . if the point type is station, this option gives

the reference to the real survey station.

• extend [prev[ious] <station>] . if the point type is station

and scrap projection is extended elevation, you can adjust the

extension of the centreline using this option.

23 Example: if you specify -context point air-draught to a label which
displays the observation date, the symbol-hide point air-draught

command would hide both air-draught arrow and the corresponding label.

39

• scrap <reference> . if the point type is section, this is a

reference to a cross-section scrap.

• explored <length> . if the point type is continuation, you can

specify length of passages explored but not surveyed yet. This

value is afterwards displayed in survey/cave statistics.

• text . text of the label, remark or continuation. It may contain

following formatting keywords:24

 . line break

<center>/<centre>, <left>, <right> . line alignment for

multi-line labels. Ignored if there is no
 tag.

<thsp> . thin space

<rm>, <it>, <bf>, <ss>, <si> . font switches

<rtl> and </rtl> . marks beginning and end of a right-to-left

written text

<lang:XX> . creates multilingual label (see string type for

detailed description)

<size:N> . specify the font size in points; N should be an integer

between 1 and 127.

<size:N%> . specify the font size as a percentage of the native

font size of the given label; N should be between 1 and 999.25

24 For SVG output, only
, <thsp>, <it>, <bf>, <rm> and <lang:XX>

keywords are taken into account; all others are silently ignored.
25 For practical reasons, the values are currently used in the increments of 10,

so both 46 and 53 are interpreted as 50 % size.

40

<size:S> . specify the font size using predefined scales; S can be

one of xs, s, m, l, xl.

• value . value of height, passage-height, altitude, dimensions or

date

height: according to the sign of the value (positive, negative

or unsigned), this type of symbol represents chimney height,

pit depth or step height in general. The numeric value can be

optionally followed by ‘?’, if the value is presumed and units can

be added (e.g. -value [40? ft]).

passage-height: the following four forms of value are supported:

+<number> (the height of the ceiling), -<number> (the depth of

the floor or water depth), <number> (the distance between floor

and ceiling) and [+<number> -<number>] (the distance to ceiling

and distance to floor).

altitude: the value specified is the altitude difference from the

nearest station. The value will be set to 0 if defined as ‘-’, ‘.’,

‘nan’, ‘NAN’ or ‘NaN’. If the altitude value is prefixed by ‘fix’ (e.g.

-value [fix 1300]), this value is used as an absolute altitude.

The value can optionally be followed by length units.

dimensions: -value [<above> <below> [<units>]] specifies

passage dimensions above/below centerline plane used in 3D

model.

date: -value <date> sets the date for the date point.

‘line’

Description: Line is a command for drawing a line symbol on the

map. Each line symbol is oriented and its visualization may depend

41

on its orientation (e.g. pitch edge ticks). The general rule is that the

free space is on the left, rock on the right. Examples: the lower side

of a pitch, higher side of a chimney and interior of a passage are on

the left side of pitch, chimney or wall symbols, respectively.

Syntax: line <type> [OPTIONS]

[OPTIONS]

...

[LINE DATA]

...

[OPTIONS]

...

[LINE DATA]

...

endline

Context: scrap

Arguments:

• <type> is a keyword that determines the type of line. The

following types are supported:

passages: wall, contour, slope26, floor-step, pit, pitch

(synonym of pit), ceiling-step, chimney, overhang,

ceiling-meander, floor-meander, low-ceiling, pit-chimney;

26 Slope line marks upper border of the sloping area. It’s necessary to specify
l-size in at least one point. Gradient lines length and orientation is an
average of specified l-sizes and orientations in the nearest points. If
there is no orientation specification, gradient marks are perpendicular to the
slope line.

42

passage fills: flowstone, moonmilk, rock-border27, rock-edge28,

water-flow, abyss-entrance, dripline, fault, gradient,

joint, rimstone-dam, rimstone-pool;

equipment: fixed-ladder, handrail, rope, rope-ladder, steps,

via-ferrata, walkway;

labels: label;

special: border, arrow, section29, survey30, map-connection31,

u32.

Command-like options:

Most of these options are accepted both as a line command

option and as a [LINE DATA] option despite representing a ’whole

line’ option. The last one appearing prevails. The exceptions are

adjust, altitude, l-size, mark, orientation, size and smooth

that are only accepted as a [LINE DATA] option.

27 Outer outline of large boulders. If the line is closed, it is filled with the
background colour.

28 Inner edges of large boulders.
29 Line showing cross-section position. If both control points (red dots) of a

Bézier curve (grey line) are given then the section line (blue) is drawn up to
the perpendicular projection (dotted) of the first control point and from
the projection (dotted) of the section control point. No section curve is
displayed.

30 Survey line is automatically drawn by Therion.
31 Used to indicate connection between maps (in offset, or the same points in

extended elevation).
32 For user defined line symbols.

43

The direction and gradient options are only accepted as a

[LINE DATA] command option when set to point. Otherwise

they are accepted as a line command option.

• subtype <keyword> . determines line subtype. The following

subtypes are supported for given types:

wall: invisible, bedrock (default), sand, clay, pebbles,

debris, blocks, ice, underlying, overlying, unsurveyed,

presumed, pit33, flowstone, moonmilk;

border: visible (default), invisible, temporary, presumed;

water-flow: permanent (default), conjectural, intermittent;

survey: cave (default), surface (default if centreline has surface

flag).

The subtype may be specified also directly in <type> specification

using ‘:’ as a separator.34

Any subtype specification can be used with user defined type

(u). In this case you need also to define corresponding metapost

symbol (see the chapter New map symbols).

• [LINE DATA] specify either the coordinates of a line segment <x>

<y>, or coordinates of a Bézier curve arc <c1x> <c1y> <c2x>

<c2y> <x> <y>, where c indicates the control point.

• close <on/off/auto> . determines whether a line is closed or

not

• mark <keyword> . is used to mark the point on the line (see join

command).

33 Usually open to surface.
34 E.g. border:invisible

44

• outline <in/out/none> . determines whether the line serves as

a border line for a scrap. Default value is ‘out’ for walls, ‘none’

for all other lines. Use -outline in for large pillars etc.

• reverse <on/off> . whether points are given in reverse order.

• smooth <on/off/auto> . whether the line is smooth at the given

point. Auto is default.

• adjust <horizontal/vertical> . shifts the line point to be

aligned horizontally/vertically with the previous point. It can’t be

set on the first point. The result is a horizontal/vertical line

segment. This option is not allowed in the plan projection.

• place <bottom/default/top> . changes displaying order in the

map.

• clip <on/off> . specify whether a symbol is clipped by the

scrap border.

• visibility <on/off> . displays/hides the symbol.

• context <point/line/area> <symbol-type> . (to be used with

symbol-hide and symbol-show layout options) symbol will be

hidden/shown according to rules for specified <symbol-type>.

Type-specific options:

• altitude <value> . can be specified only with the wall type.

This option creates an altitude label on the wall. All altitudes are

exported as a difference against grid Z origin (which is 0 by

default). If the value is specified, it gives the altitude difference of

the point on the wall relative to the nearest station. The value

will be set to 0 if defined as ”-”, ”.”, ”nan”, ”NAN” or ”NaN”.

The value can be prefixed by a keyword “fix”, then no nearest

station is taken into consideration; the absolute given value is

45

used instead. Units can follow the value. Examples: +4, [+4 m],

[fix 1510 m].

• anchors <on/off> . this option can be specified only with the

‘rope’ line type. Default is on.

• border <on/off> . this option can be specified only with the

‘slope’ symbol type. It switches on/off the border line of the slope.

• direction <begin/end/both/none/point> . can be used only

with the section type. It indicates where to put a direction arrow

on the section line. None is default. The point option must be

used inside [LINE DATA]. The others can (and should) be used as

a line option.

• gradient <none/center/point> . can be used only with the

contour type and indicates where to put a gradient mark on the

contour line. If there is no gradient specification, behaviour is

symbol-set dependent (e.g. no tick in UIS, tick in the middle in

SKBB). The point option must be used inside [LINE DATA]. The

others can (and should) be used as a line option.

• head <begin/end/both/none> . can be used only with the arrow

type and indicates where to put an arrow head. End is default.

• l-size <number> . Size of the line (to the left). Only valid on

and required for slope type.

• orientation/orient <number> . orientation of the symbols on

the line. Can be used only with slope type. If not specified, it’s

perpendicular to the line on its left side. 0 ≤ number < 360.

• rebelays <on/off> . this option can be specified only with the

‘rope’ line type. Default is on.

46

• scale . scale affects only the text on label lines, can be: tiny

(xs), small (s), normal (m), large (l), huge (xl) or a numeric value.

Normal is default. Named sizes scale by
√

2, so that xs ≡ 0.5,

s ≡ 0.707, m ≡ 1.0, l ≡ 1.414 and xl ≡ 2.0. Absolute font sizes

(in points) can be assigned to named sizes using fonts-setup in

the layout configuration section.

• size <number> . synonym of l-size

• text <string> . valid only for label lines.

• height <value> . height of pit or wall:pit; available in

METAPOST as a numeric variable ATTR__height.

Options:

• id <ext_keyword> . ID of the symbol.

‘area’

Description: Area is specified by surrounding border lines. They

may be of any type, but must be listed in order and each pair of

consecutive lines must intersect. In order to be sure that lines

intersect even after scrap transformation you may e.g. continue a

lake border 1 cm behind a passage wall—these overlaps will be

automatically clipped by scrap border. You may use invisible border

to achieve this inside of the passage. When defined by more than

one line, the actual area will be the intersection of the areas defined

by each separate line.

Syntax: area <type>

place <bottom/default/top>

clip <on/off>

visibility <on/off>

47

... border line references ...

endarea

Context: scrap

Arguments:

• <type> is one of following: water, sump, sand, debris, blocks,

flowstone, moonmilk, snow, ice, clay, pebbles, bedrock35,

u36, mudcrack, pillar, pillar-with-curtains, pillars,

pillars-with-curtains, stalactite, stalactite-stalagmite,

stalagmite.

Command-like options:

All options can appear as command-like options or as area

options, i.e., on the same line as the area command. The last one

appearing prevails.

• the data lines consist of border line references (IDs)

• place <bottom/default/top> . changes displaying order in the

map.

• clip <on/off> . specify whether a symbol is clipped by the

scrap border.

• visibility <on/off> . displays/hides the symbol.

• context <point/line/area> <symbol-type> . (to be used with

symbol-hide and symbol-show layout options) symbol will be

hidden/shown according to rules for specified <symbol-type>.

Options:

• id <ext_keyword> . ID of the symbol.

35 An empty area which can be used to clean the background.
36 For user defined area symbols, may be followed by arbitrary subtype.

48

‘join’

Description: Join works in two modes: it joins either two scraps or

two or more points or lines in a map together.

When joining more than two points or lines, use one join command

for all of them, not a sequence of join commands for pairs.37

When joining scraps, only passage walls are joined. It’s a good idea

to place a scrap join in the passage which is as simple as possible,

otherwise you have to specify join for each pair of objects which

should be joined.38

When joining more than two scraps at the same scrap border, a

manual join must be performed where the connection points must

be entered in one join statement.39

Syntax: join <point1> <point2> ... <pointN> [OPTIONS]

Context: none, scrap, survey

Arguments:

• <pointX> can be an ID of a point or line symbol,

optionally followed by a line point mark <id>:<mark>

(e.g. podangl_l31@podangl:mark1). <mark> can be also ‘end’

(end of the line) or line point index (where 0 is the first point).

37 E.g. use join a b c, not join a b followed by join b c.
38 If you want some object which is clipped by a scrap boundary to continue to

a neighbouring scrap, use -clip off option for that object.
39 Like join origScrapLineWest:end upperScrapLineWest:0

lowerScrapLineWest:0 and another similar join command for the three
east wall lines.

49

A special case is when <point1> and <point2> are scrap

IDs—than the closest scrap ends are joined together.

Options:

• smooth <on/off> indicates whether two lines are to be connected

smoothly.

• count <N> (when used with scraps) . Therion will try to join

scraps which connect in N locations/passages.

‘equate’

Description: Sets the survey stations equivalence.

Syntax: equate <station list>

Context: none, survey

‘map’

Description: A map is a collection of either scraps or other maps of

the same projection type. It’s possible to include survey in the

map—this will display centreline in the map. Map object simplifies

the data management when selecting data for output. See the

chapter How the map is put together for more thorough explanation.

(Note: break only changes level of maps of scraps and has no

function when used with maps of maps, as they will cause a break

implicitely)

Syntax: map <id> [OPTIONS]

... scrap, survey or other map references ...

break

50

... next level scrap, survey or other map

references ...

preview <above/below> <other map id>

endmap

Context: none, survey

Arguments:

• <id> . scrap identifier

Command-like options:

• the data lines consist of scrap or map references. Note that you

can not mix them together.

• if you refer to map, you can specify offset at which this sub-map

will be displayed together with preview type of its original

position. Syntax is following:

<map reference> [<offset X> <offset Y> <units>]

<above/below/none>

• scraps following the break will be placed on another level (only

applies to maps consisting of scraps)

• preview <above/below> <other map id> will put the outline of

the other map in the specified preview position relative to the

current map.

Preview is displayed only if the map is in the map-level level as

specified by the select command.

Use the revise command if you want to add maps from higher

levels to the preview.

• colo[u]r <color> . set the map colour; this option overrides the

automatic choice when the layout specifies colour map-fg [map].

51

Options:

• projection/proj <plan/elevation/extended/none> . required

if the map contains survey.

• title <string> . description of the object

• survey <id> . associate a survey with map (e.g. all surveying

statistics from this survey will be used when this map is selected

for output).

‘surface’

Description: Surface (terrain) specification. It is possible to display

it in two ways: as a scanned topographical map (both in 2D map

and 3D model40) or surface grid – digital elevation model (in 3D

model only).

Syntax: surface [<name>]

cs <coordinate system>

bitmap <filename> <calibration>

grid-units <units>

grid <origin x> <origin y> <x spacing> <y spacing> <x

count> <y count>

grid-flip (none)/vertical/horizontal

[grid data]

endsurface

Context: none, survey

40 You need to enter elevation data in order to display the topographical map
in 3D model. Currently only JPEG maps are supported in 3D.

52

Command-like options:

• cs <coordinate system> . coordinate system for bitmap

calibration and grid origin specification

• bitmap <filename> <calibration> . scanned topographical

map.

calibration may have two forms:

1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y

variables are picture coordinates (pixels; lower-left corner is 0 0),

lower-case x/y variables are real coordinates. Optional units apply

to real coordinates (metres by default).

2. [X1 Y1 station1 X2 Y2 station2], where upper case X/Y

variables are picture coordinates and station1 and station2 are

survey stations names.

• grid-units <units> . units in which grid is specified. Metres by

default.

• grid <origin x> <origin y> <x spacing> <y spacing> <x

count> <y count>

<origin x> <origin y> . specify coordinates of the lower-left

(S-W) corner of the grid

<x spacing> <y spacing> . distance between grid nodes in W-E

and S-N directions

<x count> <y count> . number of nodes in the row and number

of rows which form the grid (see below).

• [grid data] . a stream of numbers giving the altitude a.s.l. in

grid nodes. It starts in the grid-origin and fills the grid in rows (in

the row from W to E; rows from S to N).

53

• grid-flip (none)/vertical/horizontal . useful if your grid

(exported from other program) needs to be flipped

‘import’

Description: Reads survey data in different formats (currently

processed centreline in *.3d, *.plt, *.xyz formats). Survey stations

may be referenced in scraps etc. When importing a Survex 3D

file, stations are inserted in the survey hierarchy if there exists an

identical hierarchy to that in 3D file.

Syntax: import <file-name> [OPTIONS]

Context: survey / all41

Options:

• filter <prefix> . if specified, only stations with given prefix

and shots between them will be imported. Prefix will be removed

from station names.

• surveys (create)/use/ignore . specifies how to import survey

structure (works only with .3d files).

create . split stations into subsurveys, if subsurveys do not exist,

create them

use . split stations into existing subsurveys

41 only with .3d files, where survey structure is specified

54

ignore . do not split stations into sub-surveys

• cs <coordinate system> . coordinate system for stations with

fixed coordinates

• calibrate [<x> <y> <z> <X> <Y> <Z>] . coordinates in the

imported file are shifted from lower-case coordinates to upper-case

coordinates.

‘grade’

Description: This command is used to store predefined precisions of

centreline data. Built in grades are: BCRA42 and UISv143.

See sd option description for centreline command to define your

own grades.

Syntax: : grade <id>

...

[<quantity list> <value> <units>]

...

endgrade

Context: all

42 see http://bcra.org.uk/surveying/; syntax is: BCRAn, where n may be 3

or 5
43 see http://www.uisic.uis-speleo.org/UISmappingGrades.pdf; syntax

is: UISv1 n, where n is -1 to 6 or X; whereas -1 to 2 are only declaratory
and X requires sd data in centerline)

55

http://bcra.org.uk/surveying/
http://www.uisic.uis-speleo.org/UISmappingGrades.pdf

‘revise’

Description: This command is used to set or change properties of an

already existing object.

Syntax: The syntax of this command for object created with “single

line” command is

revise id [-option1 value1 -option2 value2 ...]

For objects created with “multi line” commands is syntax following

revise id [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endrevise

Context: all

Arguments:

The id stands for object identifier (the id of an object you want to

revise must always be specified).

Custom attributes

Objects survey, centreline, scrap, point, line, area, map and surface

can contain user-defined attributes in a form -attr <name>

<value>. <name> may contain alphanumeric characters, <value> is

a string.

56

The custom attributes are used in map exports depending on the

output format:

• in shapefile export they are written directly to the associated dbf

file,

• in maps generated using METAPOST (PDF, SVG) the attributes

are written in the METAPOST source file as strings (named like

ATTR_<name>) and can be evaluated and used by the user to

define symbols in macros.

You can test presence of such a variable using if known

ATTR_<name>: ... fi.

XTherion

XTherion is a GUI (Graphical User Interface) for Therion. It helps

a lot with creating input data files. Currently it works in three main

modes: text editor, map editor and compiler.44

It is not necessary for Therion itself—you may edit input files in

your favourite text editor and run Therion from the command

line. XTherion is also not the only GUI which may be used with

Therion. It is possible to write a better one, which would be more

user friendly, more WYSIWYG, faster, more robust and easier to

use. Any volunteers?

This manual does not describe such familiar things as ‘if you want

to save a file, go to menu File and select Save, or press Ctrl-s’.

Browse the top menu for a minute to get the feeling of XTherion.

44 Here we’re concerned with creating data, so only the first two modes are
described in this section. For compiler features see the chapter Processing
data.

57

For each mode of operation, there is an additional right or left

menu. The submenus may be packed; you may unpack them by

clicking on the menu button. For most of the menus and buttons,

there is a short (translated) description in the status line, so it’s not

hard to guess the meaning of each one. The order of submenus on

the side may be customized by the user. Right-click on the menu

button and select in the menu which of the other menus it should be

swapped with.

XTherion—text editor

XTherion’s text editor offers some interesting features which may

help with creating text input files: support for Unicode encoding

and ability to open multiple files.45

To make entering data easy, it supports table formatting of

centreline data. There is a menu Data table for typing the data. It

may be customized to the user’s data order by pressing a Scan data

format button when the cursor is below the data order specification

(‘data’ option in the ‘centreline’ command).

XTherion—map editor

Map editor allows you to draw and edit maps fully interactively.

But don’t expect too much. XTherion is not a truly WYSIWYG

editor. It displays only the position, not the actual shape, of drawn

point or line symbols. Visually there is no difference between a

helictite and a text label—both are rendered as simple dots. The

45 File encoding is specified on the first line of the file. This line is hidden by
XTherion and may be accessed only indirectly using the right-hand menu.

58

type and other attributes of any object are specified only in the

Point control and Line control menus.

Exercise: Find two substantial reasons, why the map drawn in

XTherion can’t be identical with Therion output. (If you answer

this, you’ll know, why XTherion will never be a true WYSIWYG

editor. Authors’ laziness is not the correct answer.)

Let’s begin by describing typical use of the map editor. First, you

have to decide which part of the cave (which scrap) you’ll draw.46

After creating a new file in the map editor, you may load one or

more images—scanned survey sketches from the cave47—as

a background for the drawing. Click on the Insert button in

Background images menu. Unfortunately, as a limitation of Tcl/Tk

language, only GIF, PNM and PPM (plus PNG and JPEG if you

installed tkImg extension) images are supported. Additionally

XTherion supports XVI (XTherion vector image) format, which

displays centreline and LRUD information on the background, and

PocketTopo data exported in Therion format (see below). All

opened images are placed in the upper-left corner of the working

area. Move them by double clicking and dragging with the right

mouse button or through a menu. For better performance on slower

computers, it’s possible to temporarily unload a currently unused

image from memory by unchecking its Visibility check-box. It’s

possible to open an existing file without loading background images

using Open XP menu.48

46 It’s possible to draw more than one scrap in each file, in which case all
inactive scraps are rendered yellow.

47 XTherion can’t scale nor rotate individual images, so use the same
orientation, scale and DPI for all images used in the same scrap.

48 Note: Therion doesn’t use background images in any way unless you assign
them to some scrap using -sketch option.

59

Hints: 1. What does loop closure do? 2. Why do we use MetaPost?

The size and zoom setting of the drawing area is adjusted in

the corresponding menu. Auto adjust calculates optimal size of

the working area according to the sizes and positions of loaded

background images.

After these preparation steps, you’re ready for drawing, or, more

precisely, for creating a map data file. It’s important to

remember, that you’re actually creating a text file which should

conform to the syntax described in the chapter Data format.

Actually, only a subset of the Therion commands are used in the

Map editor: multi-line scrap ... endscrap commands which

may contain point, line and area commands. (Cf. chapter Data

format). This corresponds with a section of hand-drawn maps,

which are built up from points, lines and filled areas.

So, the first step is defining the scrap by a scrap ... endscrap

multi-line command. In the File commands menu click on the

Action submenu and select Insert scrap. This changes the Action

button to Insert scrap if it had any other value. After pressing this

button a new scrap will be inserted in the beginning of the file. You

should see lines

scrap - scrap1

endscrap

end of file

in the preview window above the Insert scrap button. This window

is a simplified outline of the text file, which will be saved by

XTherion. Only the command (scrap, point, line, text—why

text see below) and its type (for point and line) or ID (for scrap)

are shown.

60

The full contents of any command are displayed in the Command

preview menu.

For modifying previously-created commands, there are additional

menus—e.g. Scrap control for the scrap command. Here you can

change the ID (very important!) and other options. For details see

chapter Data format.

Now it’s possible to insert some point symbols. As with scrap

insertion, go to the File commands menu, click on the Action

submenu and select Insert point; than press newly renamed Insert

point button. A shortcut for all this is Ctrl-p. Than click on

the desired spot in the working area and you’ll see a blue dot

representing a point symbol. Its attributes can be adjusted in the

Point control menu. You’ll stay in ‘insert’ mode—each click on the

working area adds a new point symbol. Take care not to click twice

on the same place—you would insert two point symbols in the same

place! To escape from ‘insert’ to ‘select’ mode, press Esc key on the

keyboard or Select button in the File commands menu.

What will be the order of commands in the output file? Exactly the

same as in the outline in the File commands menu. Newly created

point, line and text objects are added before the currently marked

line in the outline. It is possible to change the order by selecting a

line and pressing Move down, Move up or Move to buttons in the

File commands menu. This way you can also move objects between

scraps.

Drawing lines is similar to drawing in other vector editing

programs, which work with Bézier curves. (Guess how to enter the

line insertion mode, other than using the shortcut Ctrl-l.) Click

where the first point should be, then drag the mouse with pressed

left button and release it where the first control point should be.

61

Then click somewhere else (this point will be the second point

of the curve) and drag the mouse (adjusting the second control

point of the previous arc and the first control point of the next one

simultaneously.) If this explanation sounds too obscure, you can

get some practise working in some of the standard vector editors

with comprehensive documentation. The line will be finished after

escaping from the insertion mode. Beginning and orientation of the

line is marked by a small orange tick to the left at the first point.

For line symbols, there are two control menus: Line control and Line

point control. First one sets attributes for the whole curve, like type

or name. The check-box reverse is important: Therion requires

oriented curves and it is not unusual that you begin to draw from

the wrong end. The Line point control menu enables you to adjust

the attributes of any selected point on the line, such as the curve

being smooth at this point (which is on by default), or the presence

of neighbouring control points (‘<<’ and ‘>>’ check-boxes).

Areas are specified by their surrounding lines. Click on Insert area

and then click on the lines surrounding the desired area. They are

automatically inserted in the Area control and named (if not already

named). An alternate way is to insert them as a text49 command,

the contents of which (entered in the Text editor menu of the Map

editor) is usual area ... endarea multi-line command (see the

chapter Data format.)

49 CAUTION! The command text is not a Therion command! It’s only a
nickname for a block of arbitrary text in XTherion. In the file saved by
XTherion, there’ll only be whatever you type into the Text editor or see in
the Command preview. It may be an area definition or whatever you want,
such as a comment beginning with a ‘#’ character.

62

If you draw some scraps with none projection, it’s necessary to

calibrate the drawing area. The scale can be defined only one way

in XTherion—using coordinates of two points (specified both in the

picture coordinate system and in the ‘real’ coordinate system).

After selecting a scrap (click on its header in the File commands

menu) two small red squares connected by a red arrow will appear

(by default, they’ll be in the lower corners of drawing area). You

have to drag them to points with known coordinates—usually

intersections of mm grid lines on the scanned drawing. If you can

not see these points, you can either

• press Scale button in the Scraps menu and click on two different

places on the image where the endpoints of calibration arrow

should be, or

• move the mouse pointer to the desired position, read pointer

coordinates from the status bar and enter these coordinates into

picture scale points boxes in the Scraps control. After filling

X1,Y1 and X2,Y2 coordinate pairs the calibration arrow will be

moved correspondingly.

Then you have to enter real coordinates of these points (X1, Y1, X2,

Y2).

In the selection mode you can select existing line or point objects

and set their attributes in the corresponding menus, move them, or

delete them (Ctrl-d or Action button in File commands menu after

setting Action to Delete).

There is a Search and select menu which makes it easy to switch

between objects and visualize things you can’t see at the first look

at the picture. For example, if you enter expression ‘station’ and

press Show All, all stations on the picture will become red.

63

XTherion doesn’t do any syntax checking; it only writes drawn

objects with their attributes to a text file. Any errors are detected

only when you process these files with Therion.

TIP: Entering symbols of the same type at once saves you a lot

of time because you need not to change the symbol type and fill

options for each new symbol. Options box preserves the old value

and it’s enough to change a few characters.50 It is a good idea to

start with drawing all survey stations (don’t forget to give them

names according to the real names in the centreline command), than

all passage walls followed by all other point symbols, lines and areas.

Finally, draw cross-sections.

Additional tools

Help/Calibrate bitmap produces OziExplorer-compatible MAP

file based on georeferencig data included in a PDF map.51

If the map in PDF format has been converted to raster using an

external program, the converter uses raster image and pdf map with

the same base name located in the same directory to calculate the

calibration data.

If the PDF file is used directly, you have to set the DPI and output

format before automatic conversion52 to a raster format.

50 In the case of survey stations, XTherion automatically increases the station
number for the next symbol inserted.

51 Calibration information for nine distinct points is present if the centreline
contains station(s) fixed using geodetic coordinate system(s).

52 ghostscript and convert should be installed on your system. Note, that
Windows installation does not include ghostscript.

64

PocketTopo data exported in Therion format53 from PocketTopo

application can be imported in the text editor as well as in the map

editor (File → Import → PocketTopo therion export and Background

Images → Insert → PocketTopo therion export). The same file is

used for both imports. Importing the sketch does not create scrap

data directly. The drawing is just displayed on the background like

scanned bitmaps and should be digitized manually.

Keyboard and mouse shortcuts in the Map editor

General

• Ctrl+Z . undo

• Ctrl+Y . redo

• F9 . compile current project

• to select an object in the listbox using the keyboard: switch using

‘Tab’ into the desired listbox; move with the underlined cursor to

the desired object; press ‘Space’

• PageUp/PageDown . scroll up/down in the side panel

• Shift+PageUp/PageDown . scroll up/down in the file commands

window

Drawing area and background images

• RightClick . scroll the drawing area

• Double RightClick on the image . move the image

53 This is a special text format which needs to be imported using XTherion
and can not be processed by Therion directly.

65

Inserting a scrap

• Ctrl+R . insert scrap

Inserting a line

• Crtl+L . insert a new line and enter an ‘insert line point’ mode

• LeftClick . insert a line point (without control points)

• Ctrl+LeftClick . insert a line point very close to the existing

point (normally it’s inserted right above closest existing point)

• LeftClick + drag . insert line point (with control points)

• hold Ctrl while dragging . fix the distance of the previous control

point

• LeftClick + drag on the control point . move its position

• RightClick on one of the previous points . select the previous

point while in insert mode (useful if you want to change also the

direction of the previous control point)

• Esc or LeftClick on the last point . end the line insertion

• LeftClick on the first line point . close the line and end the line

insertion

Editing a line

• LeftClick + drag . move the line point

• Ctrl+LeftClick + drag . move the line point close to the existing

point (normally it is moved right above the closest existing point)

• LeftClick on control point + drag . move the control point

66

Adding a line point

• select the point before which you want to insert points; insert

required points; press Esc or left-click on the point you selected at

the beginning

Deleting a line point

• select the point you want to delete; press Edit line → Delete point

in the Line control panel

Splitting a line

• select the point at which you want to split the line; press Edit line

→ Split line in the Line control panel

Inserting a point

• Ctrl+P . switch to ‘insert point’ mode

• LeftClick . insert point at a given position

• Ctrl+LeftClick . insert point very close to the existing point

(normally it will be inserted right above the closest point)

• Esc . escape from the ‘inset point’ mode

Editing a point

• LeftClick + drag . move the point

• Ctrl+LeftClick + drag . move the point close to the existing

point (normally it is moved right above the closest existing point)

• LeftClick + drag on the point arrow . change point orientation or

size (according to the given switches in the Point control panel)

67

Inserting an area

• press Ctrl+A or File commands → Insert → area to switch to the

‘insert area border’ mode

• RightClick on the lines, that surround the desired area

• Esc to finish the area border lines insertion

Editing an area

• select the area you want to edit

• press ‘Insert’ in the Area control to insert other border lines at the

current cursor position

• press ‘Insert ID’ to insert a border with a given ID at the current

cursor position

• press ‘Delete’ to remove the selected area border line

Selecting an existing object

• LeftClick . select the object at the top

• RightClick . select the object right below the top object (useful

when several points lie above each other)

Thinking in Therion

Although everything (well, almost everything) about Therion input

files has been explained, this chapter offers some additional hints

and tips.

68

How to enter a centreline

The basic building block is the centreline command. If the cave is

larger than a few meters it’s a good idea to split the data into more

files and separate the centreline data from the map data.

We usually use one *.th file containing a centreline per survey trip.

It’s handy to start with an empty template file as shown below,

where dots will be replaced with appropriate texts.

encoding ISO8859-1

survey ... -title "..."

centreline

team "..."

team "..."

date ...

units clino compass grad

data normal from to compass clino length

...

endcentreline

endsurvey

To create a unique namespace the centreline command is enclosed

in survey ... endsurvey command. It’s useful when the survey has

the same name as the file which contains it.54 The points will then

be referenced using the @ character—see the survey command

description.

For really large caves it’s possible to build a hierarchical structure of

directories. In such a case we create one special file called INDEX.th

54 E.g. survey entrance in the file entrance.th.

69

which includes all other *.th files from a given directory and

contains equate commands to define connections between surveys.

How to draw maps

The most important thing is to devise a division of the cave into

scraps. Scrap is the basic building block of the map. It’s almost

always a bad idea to try to fit each scrap to corresponding *.th

file with a centreline from one survey trip. The reason is that the

connections between scraps should be as simple as possible. Scraps

in general are independent on the centreline hierarchy so try to

forget the survey hierarchy when drawing maps and choose the best

scrap joins.

We usually insert maps in the last-but-one level in survey

hierarchy.55 Each scrap may than contain arbitrary parts of any

survey in the last level of the hierarchy. For example, there is a

survey main which contains surveys a, b, c and d. Surveys a – d

contain centreline data from four survey trips and each of them is in

a separate file. There is a map main_map which contains scraps s1

and s2. If the main_map is located in the main survey, scrap s1 may

cover part of the centreline from survey a, complete survey b and

part of c; s2 will cover part of the a and c surveys and a complete d

survey. The survey stations names will be referenced using the @

symbol (e.g. 1@a) in the scraps.56

55 Remember that surveys create namespaces, so you may reference only the
objects in the given survey and all subsurveys.

56 If you include maps in the top-level survey, you may reference any
survey station in any scrap, which is very flexible. On the other
hand you then have to use longer names in station references, like
3@dno.katakomby.jmn.dumbier.

70

Scraps are usually stored in *.th2 files. Each file may contain more

scraps. To keep the data well organized, there are some naming

conventions: in the file foo.th2 all scraps are named foo_si, where

i is 1, 2 an so on. Cross-sections are named foo_ci, lines foo_li

etc. This helps a lot with large cave systems: if some scrap is

referenced, you immediately know in which file it has been defined.

Similar to *.th files, there may be one file INDEX.th2 per directory

which includes all the *.th2 files, and defines scrap joins and maps.

When drawing scraps you should check if the outline is properly

defined: all lines creating the outer border should have -outline

out option; all lines surrounding inner pillars -outline in option.

Scrap outlines can’t intersect themselves—otherwise the inner side

of the scrap can’t be determined. There are two simple tests that

the scrap outline is correct:

• there is no METAPOST warning “scrap outline intersects

itself”

• when you set a passage fill to any color (color map-fg <number>

option in layout), you may see what Therion considers to be

inside the scrap.

How to create models

The model is created from scrap outlines. The height and depth of

the passage are computed from passage-height and dimensions

point map symbols.

Therion in depth

71

How the map is put together

This chapter explains how -clip, -place, -visibility and

-context options of point, line and area commands work exactly.

It also gives an explanation of color, transparency, symbol-hide

and symbol-show options of the layout command.

While exporting the map, Therion has to determine three attributes

for each point, line or area symbol: visibility, clipping and ordering.

(1) Symbol is visible if all of the following is true:

• it has the -visibility option set on (all symbols by default),

• it hasn’t been hidden by the -symbol-hide option in the layout,

• if its -context option is set, the corresponding symbol hasn’t

been hidden by the -symbol-hide option in the layout.

Only the visible symbols are exported.

(2) Some symbols are clipped by the scrap outline. These are by

default all of the following:

• point symbols: symbolic passage fills (bedrock. . . guano),

• line symbols: all line symbols which don’t have the -outline

option set with the exception of section, arrow, label, gradient

and water-flow

• area symbols: all.

The default setting may be changed using the -clip option, if this

is allowed for a particular symbol. All other symbols are not clipped

by the scrap boundary.

72

(3) Ordering: Each symbol belongs to one of the following groups

which are drawn consecutively:

• bottom . all symbols with the -place bottom option set

• default-bottom . all area symbols by default

• default . symbols which don’t belong to any other group

• default-top . ceiling-step and chimney by default

• top . all symbols with -place top option set

Ordering of symbols inside each group follows the order of

commands in the input file57: symbols which come first are drawn

last (i.e. they are displayed at the top of each group).

Now we are ready to describe how the map (or atlas chapter) is

constructed:

• map area is filled with color map-bg

• surface bitmaps are displayed if surface is set bottom

• FOR each scrap: outline is filled white

• grid is displayed if grid is set bottom

• preview below58 is filled with color preview-below

• FOR each level59:

BEGIN of transparency

FOR each scrap: outline is filled with color map-fg

57 Or File commands menu in XTherion.
58 As specified using the preview option in the map command.
59 Level is a collection of scraps not separated by a break in the map command.

73

FOR each scrap: area symbols are filled and clipped to scrap

boundary

END of transparency

BEGIN of clipping by text labels (for all labels in this and upper

levels)

FOR each scrap:

draw all symbols to be clipped (with the exception of line

survey)

ordered from bottom to top

draw line survey symbols

clip to scrap boundary

FOR each scrap:

draw all symbols not to be clipped (with the exception of

point station

and all labels) ordered from bottom to top

draw point station symbols

END of clipping by text labels

FOR each scrap: draw all (point and line) labels (including

wall-altitude)

• preview above is drawn with color preview-above

• surface bitmaps are displayed if surface is set top

• grid is displayed if grid is set top

74

Processing data

Besides data files, which contain survey data, Therion uses a

configuration file, which contains instructions on how the data

should be presented.

Configuration file

The configuration filename can be given as an argument to therion.

By default Therion searches for file named thconfig in the current

working directory. It is read like any other therion file (i.e. one

command per line; empty lines or lines starting with ‘#’ are ignored;

lines ended with a backslash continue on the next line.) A list of

currently supported commands follow.

‘system’

Allows to execute system commands during therion compilation.60

Normally Therion waits until the subprocess is finished. If you want

to continue compilation without break, use <command> & syntax on

Linux and start <command> syntax on Windows.

‘encoding’

Works like the encoding command in data files—specifies character

sets.
60 E.g. to open or refresh external PDF viewer.

75

‘language’

Syntax:

• language <xx_[YY]>

Sets the output language for translatable texts.

‘cs’

Syntax:

• cs <coordinate system>

Outside of layout command specifies the coordinate system for

output. It is not possible to specify more coordinate systems for

different outputs (the last occurrence of cs is used for all output

files).

If no cs is defined in the configuration file, the first cs therion

encounters in the data files is used as an output cs.

Inside the layout specifies coordinate system for subsequent

location data (origin, grid-origin).

‘sketch-warp’

Syntax:

• sketch-warp <algorithm>

Specifies which scrap warping (morphing) algorithm to use. Possible

algorithms are line—the default; plaquette—invented by Marco

Corvi.

76

‘input’

Works like input command in data files—includes other files.

‘source’

Description: Specifies which source (data) files Therion should read.

You can specify several files here; one per line. You can also specify

them using the -s command line option (see below).

It is also possible to type (some small snippets of) code directly in

configuration file using the multi-line syntax.

Syntax:

source <file-name>

or

source

. . . therion commands. . .

endsource

Arguments:

• <file-name>

‘select’

Description: selects objects (surveys and maps) for export. By

default, all survey objects are selected. If there is no map selected,

all scraps belonging to selected surveys are selected by default for

map export.

77

If there are no scraps or maps in the data, centerline from all

surveys is exported in the map.

When exporting maps in different projections, you need to select

them for each projection separately.

select does not only affect subsequent <export> commands but

instead also <export> commands preceding the select command in

the configuration file.

Syntax: select <object> [OPTIONS]

Arguments:

• <object> . any survey or map, identified by its ID.

Options:

• recursive <on/off> . valid only when a survey is selected. If set

on (by default) all subsurveys of the given survey are recursively

selected/unselected.

• map-level <number> . valid only when a map is selected.

Determines the level at which map expansion for atlas export is

stopped. By default 0 is used; if ‘basic’ is specified, expansion is

done up to the basic maps. Note: Map previews are displayed

only as specified in maps in the current map-level.

• chapter-level <number> . valid only when a map is selected.

Determines the level at which chapter expansion for atlas

export is stopped. By default 0 is used, if ‘-’ or ‘.’ is specified,

no chapter is exported for this map. If title-pages option in

layout is on, each chapter starts with a title page.

78

‘unselect’

Description: Unselects objects from export.

Syntax: unselect <object> [OPTIONS]

Arguments:

The same as the select command.

Options:

The same as the select command.

‘maps’

Description: Turns processing of maps on (default) or off. If you

turn if off, all scraps from selected surveys will be used in the

output, no map definitions are taken into account. Usefull for

debugging map definitions.

Syntax: maps <on/off>

‘maps-offset’

Description: Turns drawing maps in offset on (default) or off. If you

turn if off, all cave passages will be displayed in detail in their actual

position. All offset specifications will be completely ignored.

Syntax: maps-offset <on/off>

79

‘log’

Description: Turn on logging of various info. Currently only

extended elevation processing log is supported.

Syntax: log extend

‘text’

Description: Specifies translation of any default therion text in

output.

Syntax: text <language ID> <therion text> <my text>

Arguments:

• <language ID> . standard ISO language identifier (e.g. en or

en_GB)

• <therion text> . therion text to translate. For list of therion

texts and available translations, see thlang/texts.txt file.

‘layout’

Description: Specifies layout for 2D maps. Settings which apply to

atlas mode are marked ‘A’; map mode ‘M’.

Syntax: layout <id> [OPTIONS]

copy <source layout id>

cs <coordinate system>

north <true/grid>

scale <picture length> <real length>

80

base-scale <picture length> <real length>

units <metric/imperial>

rotate <number>

symbol-set <symbol-set>

symbol-assign <point/line/area/group/special>

<symbol-type> \

<symbol-

set>

symbol-hide <point/line/area/group/special>

<symbol-type>

symbol-show <point/line/area/group/special>

<symbol-type>

symbol-colour <point/line/area/group/special>

<symbol-type> <colour>

min-symbol-scale <scale>

fonts-setup <tinysize> <smallsize> <normalsize>

<largesize> <hugesize>

size <width> <height> <units>

overlap <value> <units>

page-setup <dimensions> <units>

page-numbers <on/off>

exclude-pages <on/off> <list>

title-pages <on/off>

nav-factor <factor>

nav-size <x-size> <y-size>

transparency <on/off>

opacity <value>

surface <top/bottom/off>

surface-opacity <value>

sketches <on/off>

81

layers <on/off>

grid <off/top/bottom>

grid-origin <x> <y> <x> <units>

grid-size <x> <y> <z> <units>

grid-coords <off/border/all>

origin <x> <y> <z> <units>

origin-label <x-label> <y-label>

own-pages <number>

page-grid <on/off>

legend <on/off/all>

legend-columns <number>

legend-width <n> <units>

colour-legend <smooth/discrete/off/on>

map-comment <string>

map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center>

map-header-bg <on/off>

map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center>

<filename>

statistics <explo/topo/carto/copyright

all/off/number>

<explo/topo-length on/hide/off>

<carto/copyright-count on/hide/off>

scale-bar <length> <units>

survey-level <N/all>

language <xx[_YY]>

colo[u]r-model <cmyk/rgb/grayscale>

colo[u]r <item> <colour>

smooth-shading <off/quick>

debug <on/all/first/second/scrap-names/station-

names/off>

82

doc-author <string>

doc-keywords <string>

doc-subject <string>

doc-title <string>

code <metapost/tex-map/tex-atlas>

endcode

endlayout

Arguments:

<id> . layout identifier (to be used in the export command)

Command-like options:

• copy <source layout id> . set properties here that are not

modified based on the given source layout.

map presentation-related:

• scale <picture length> <real length> . set scale of output

map or map atlas (M, A; default: 1 200)

• base-scale <picture length> <real length> . if set, Therion

will optically scale the map by a (scale/base-scale) factor.

This has the same effect as if the map printed in base-scale

would be photo-reduced to the scale. (M, A)

• rotate <value> . rotates the map (M, A; default: 0)

• units <metric/imperial> . set output units (M, A; default:

metric)

• symbol-set <symbol-set> . use symbol-set for all map

symbols, if available. Be aware, that symbol set name is case

sensitive. (M, A)

Therion uses following predefined symbol sets:

83

UIS (International Union of Speleology)

ASF (Australian Speleological Federation)

AUT (Austrian Speleological Association)

BCRA (British Cave Research Association)

NSS (National Speleological Society/USA)

NZSS (New Zealand Symbol Set)

SBE (Brazilian Speleological Society -Sociedade Brasileira de

Espeleologia)

SKBB (Speleoklub Banská Bystrica)

• symbol-assign <point/line/area/group/special> <symbol-type>

<symbol-set> . display a particular symbol in the given symbol-set.

This option overrides symbol-set option.

If the symbol has a subtype, <symbol-type> argument may have

one of the following forms: type:subtype or simply type, which

assigns new symbol set to all subtypes of a given symbol.

Following symbols may not be used with this option: point section

(which isn’t rendered at all) and all point and line labels (label,

remark, altitude, height, passage-height, station-name, date). See

the chapter Changing layout/Customizing text labels for details

how to change labels’ appearance. (M, A)

Group may be one of the following: all, centerline, sections, water,

speleothems, passage-fills, ice, sediments, equipment.

There are two special symbols: north-arrow, scale-bar.

• symbol-hide <point/line/area/group/special>

<symbol-type> . don’t display particular symbol or group of

symbols.

84

You may use group cave-centerline, group

surface-centerline, point cave-station, point

surface-station and group text in symbol-hide and

symbol-show commands.

Use flag:<entrance/continuation/sink/spring/doline/dig>

as a <symbol-type> to hide stations with particular flags (e.g.

symbol-hide point flag:entrance).

May be combined with symbol-show.(M, A)

• symbol-show <point/line/area/group/special>

<symbol-type> . display particular symbol or group of symbols.

May be combined with symbol-hide. (M, A)

• symbol-colo[u]r <point/line/area/group/special>

<symbol-type> <colour> . change colour of particular symbol or

group of symbols.61 (M, A)

• min-symbol-scale <scale> . define minimal <scale>, from

which points and lines are displayed on the map. E.g. for

min-symbol-scale M, no points or lines scaled S and XS will

be shown on the map. <scale> has the same format, as scale

option for points and lines.

• fonts-setup <tinysize> <smallsize> <normalsize>

<largesize> <hugesize> . specify size of the text in points.

<normalsize> applies to point label, <smallsize> applies to

remark and all other point labels. Each of them may apply to line

label according to its -scale option.

61 Note: colour change currently applies to pattern fills only if (1) output
format is PDF and (2) METAPOST version is at least 1.000

85

The defaults are 8 10 12 16 24 for scales upto 1:100; 7 8 10 14

20 for scales upto 1:200; 6 7 8 10 14 for scales upto 1:500 and 5

6 7 8 10 for scales smaller than 1:500.

page layout related:

• size <width> <height> <units> . set map size in the atlas

mode. If not specified, it will be calculated from page-setup and

overlap. In map mode applies iff page-grid is on (M, A; default:

18 22.2 cm)

• overlap <value> <units> . set overlap size in paper units in the

atlas mode or map margin in the map mode (M, A; default: 1 cm)

• page-setup <dimensions> <units> . set page dimensions in

this order: paper-width, paper-height, page-width, page-height,

left-margin and top-margin. If not specified, it will be computed

from size and overlap (A; default: 21 29.7 20 28.7 0.5 0.5

cm)

• page-numbers <on/off> . turn on/off page numbering (A;

default: true)

• exclude-pages <on/off> <list> . exclude specified pages from

cave atlas. The list may contain page numbers separated by a

comma or dash (for intervals) e.g. 2,4-7,9,23 means, that pages

2, 4, 5, 6, 7, 9 and 23 should be omitted. Only the map pages

should be counted. (Set own-pages 0 and title-pages off

to get the correct page numbers to be excluded.) Changes of

own-pages or title-pages options don’t affect page excluding.

(A)

• title-pages <on/off> . turn on/off title pages before each atlas

chapter (A; default: off)

86

• nav-factor <factor> . set atlas navigator zoom factor (A;

default: 30)

• nav-size <x-size> <y-size> . set number of atlas pages in

both directions of navigator (A; default: 2 2)

• transparency <on/off> . set transparency for the passages

(underlying passages are also visible) (M, A; default: on)

• opacity <value> . set opacity value (used if transparency is

on). Value range is 0–100. (M, A; default: 70)

• surface-opacity <value> . set the surface bitmap opacity (used

if transparency is on). Value range is 0–100. (M, A; default: 70)

• surface <top/bottom/off> . set the position of the surface

bitmap above/below the map. (M, A; default: off)

• sketches <on/off> . turn on/off displaying of morphed sketch

bitmaps. (M, A; default: off)

• layers <on/off> . enable/disable PDF 1.5 layers (M, A; default:

on)

• grid <off/bottom/top> . enable/disable grid (optionally

coordinates’ values may be also displayed) (M, A; default: off)

• cs <coordinate system> . coordinate system for origin and

grid-origin

• north <true/grid> . specify default orientation of the map. By

default, true (astronomical) north is used. It is ignored when used

with local coordinate system.

• grid-origin <x> <y> <x> <units> . set coordinates of grid

origin (M, A)

87

• grid-size <x> <y> <z> <units> . set grid size in real units (M,

A; default is equal to scalebar size)

• grid-coords <off/border/all> . specify where to label grid

with coordinates. (M, A; default: off)

• origin <x> <y> <z> <units> . set origin of atlas pages (M, A)

• origin-label <x-label> <y-label> . set label for atlas page

which has the lower left corner at the given origin coordinates.

May be either a number or a string.62 (M, A; default: 0 0)

• own-pages <number> . set number of own pages added before

the first page of automatically generated pages in atlas mode

(currently required for correct page numbering) (A; default: 0)

• page-grid <on/off> . show pages key plan (M; default: off)

map legend related:

• map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center> .

print map header at location specified by <x> <y>. Predefined

map header contains some basic information about cave: name,

scale, north arrow, list of surveyors etc. It is fully customizable

(see the chapter Changing layout for details). <x> is easting

(left-right on page). <y> is northing (up/down page). Ranges for

<x> and <y> are -100–200. Lower-left corner of the map is 0 0,

upper-right corner is 100 100. The header is aligned with the

specified corner or side to this anchor point. (M; default: 0 100

nw)

62 String labels form the following sequence, either in lower or upper case: A,
B, ..., Z, AA, AB, ...

88

• map-header-bg <on/off> . when on, background of map header

is filled with background color (e.g. to hide map grid). (M;

default: off)

• map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center>

<filename> . include image63 specified by <filename> into map

at location specified by <x> <y>. For coordinates and alignment

details, see map-header specification.

• legend-width <n> <units> . legend width (M, A; default: 14

cm)

• legend <on/off/all> . display list of used map symbols in the

map header. If set to all, all symbols from the current symbol set

are displayed. (M, A; default: off)

• colo[u]r-legend <smooth/discrete/off/on> . set type of

map-fg colours legend when map-fg is set to altitude, scrap or

map. For compatibility reasons, on is equivalent to smooth. (M,

A; default: smooth if applicable)

• legend-columns <number> . adjusts the number of legend

columns (M, A; default: 2)

• map-comment <string> . optional comment displayed at the map

header (M)

• statistics <explo/topo/carto/copyright all/off/number>

or

• statistics <explo/topo-length on/hide/off> . display

some basic statistics; if set to off, team members are sorted

63 Note that you can include PDF too, which may be used to combine plan
and extended elevation into one nice looking PDF file.

89

alphabetically; otherwise according to their contribution to

exploration and surveying (M, A; default: hide)

• statistics <carto/copyright-count on/hide/off> . display

number of scraps for given author/copyright string; if set to off,

items are sorted alphabetically; otherwise by number of scraps

(M, A; default: hide)

• scale-bar <length> <units> . set the length of the scale-bar

(M, A)

• language <xx[_YY]> . set output language. Available languages

are listed on the copyright page. See the Appendix if you want to

add or customize translations. (M, A)

• colo[u]r-model <cmyk/rgb/grayscale> . select the output

colour model (M, A; default: cmyk).

The CMYK colour model is intended for printing. Black overprint

is used for the best appearance of black lines and texts. The hue

of other colours may vary depending on the type or settings of the

RIP or printer driver.

The RGB colour model is intended for screen or multimedia

projector presentation. If used for printing, the result will depend

on the colour management settings and also on particular colour,

as not all RGB colours can be represented on printer.

The grayscale colour model is meant for printing on B&W

printers.

If input colours (lookup, colour in the layout) do not match the

output colour model (e.g. only RGB is defined in the lookup and

CMYK selected as the colour-model), they will be converted to

the output model.

90

• colo[u]r-profile <cmyk/rgb/grayscale> <filename> . assign

an ICC profile to colours specified in the given colour model. ICC

profiles are applied only to drawings, not to embedded raster

images like sketches and surface bitmaps. (M, A)

• colo[u]r <item> <colour> . customize colour for special

map items (map-fg, map-bg, preview-above, preview-below,

labels). Colour range is 0–100 for grayscale, [0–100 0–100 0–100]

triplet for RGB colours and [0–100 0–100 0–100 0–100] quadruplet

for CMYK colours.64 RGB colours can be specified in hexadecimal

format (e.g. ffeeaa).

For map-fg, you can use altitude, scrap or map as colours. In

this case the map is coloured according to altitude, scraps or

maps.

For map-bg, you can use transparent to omit page background

completely.

For labels, you can switch colour on/off. If on, labels are

coloured using the colour of associated scrap.

• smooth-shading <off/quick> . set the mode of smooth scrap

backgroud shading. By default, altitude and depth colour is

interpolated across the scrap the quick way. Some issues are

present if transparent symbol colours are used.65 More precise

modes should be added in the future. If off, scrap is filled with

single colour.

64 Note, that not all colour combinations are valid; e.g. no printer will
print CMYK [100 100 100 100]. The maximum ink coverage or limit
(C + M + Y + K) may be around 240 or 300, depending on the printer.

65 Coloured scrap background is visible underneath the semitransparent areas,
although only lower-scrap-drawings should be visible.

91

• debug <on/all/first/second/scrap-names/station-

names/off> . draw scrap in different stages of transformation

in different colours to see how Therion distorts map data. See

the description of scrap command for details. The points with

distance changed most during transformation are displayed

orange. If scrap-names is specified, scrap names are shown for

each scrap, station-names displays name of each survey station.

• survey-level <N/all> . N is the number of survey levels

displayed next to the station name (M, A; default: 0).

PDF related:

• doc-author <string> . set document author (M, A)

• doc-keywords <string> . set document keywords (M, A)

• doc-subject <string> . set document subject (M, A)

• doc-title <string> . set document title (M, A)

customization:

• code <metapost/tex-map/tex-atlas> . Add/redefine TEX and

METAPOST macros here. This allows user to configure various

things (like user defined symbols, map and atlas layout at one

place &c.) See the chapter Changing layout for details.

• endcode . should end the TeX and METAPOST sections

‘lookup’

Description: Allows to define lookup maps. They are used for

defining custom coloring of maps.66

66 see colour command.

92

Syntax: lookup <type>[:<index>] [-title "custom title

text"]

<parameter(s)> [colour] ["text in legend"]

...

endlookup

Arguments:

• <type> . May be altitude, explo-date, topo-date, map or

scrap.

• <index> . the index is a user defined string that allows to

distinguish different lookup maps for the same type.

• <parameter> . the thing, you want to set the color for, e.g. an

altitude with type altitude. May be distinct values or (if

appropriate) bands.

• [colour] . grayscale value, RGB triplet, CMYK quadruplet or a

combination of eight values (RGB, grayscale, CMYK). Use empty

brackets ([]) if you want Therion to use its default colour palette

together with a text label.

• [text in legend] . some optional text to show in the legend.

Example: Banded altitudes. It should generate red-blue scale with

desired values.

lookup altitude -title "Altitude legend"

700 [100 0 0] "700 m a.s.l."

680

660

640

620

600 [0 0 100] "below 600 m"

endlookup

93

Example: Using banded altitude specification (with index banded).

Notice that if the text is omitted, then the default will display the

range, ie 1600 m - 1500 m

lookup altitude:banded

[1500 1600] [] # <- displays "1600 m -

1500 m"

[1800 1900] [] "cave floor 2"

endlookup

‘setup3d’

Syntax:

• setup3d <value>

Temporary hack to set sampling distance in meters when generating

piecewise linear 3d model from passage walls made of Bézier curves.

‘sketch-colors’

Syntax:

• sketch-colors <number-of-colors>

This option can be used to reduce size of sketch bitmap images in

maps.

‘export’

Description: Exports selected surveys or maps.

94

Syntax:

• export <type> [OPTIONS]

Arguments:

• <type> . The following export types are supported:

model . 3D model of the cave

map . one page 2D map

atlas . 2D atlas in more pages

cave-list . summary table of caves

survey-list . summary table of surveys

continuation-list . list of possible continuations

database . SQL database with centreline

Options:

common:

• encoding/enc <encoding> . set output encoding

• output/o <file> . set output file name. If no file name is given

the prefix “cave.” is used with an extension corresponding to

output format.

If the output filename is given and no output format is specified,

the format is determined from the filename extension.

model:

• format/fmt <format> . set model output format. Currently the

following output formats are supported: loch (native format;

default), compass (plt file), survex (3d file), dxf, esri (3d

shapefiles), vrml, 3dmf and kml (Google Earth).

95

• enable <walls/[cave/surface-]centerline/splay-

shots/surface/all> and

• disable <walls/[cave/surface-]centerline/splay-

shots/surface/all> .

selects which features to export, if the format supports it. Surface

is currently exported in therion format only.

• wall-source <maps/centerline/all/splays> . set source data

for passage wall modeling.

map/atlas:

• format/fmt <format> . set map format. Currently pdf, svg,

xhtml67, survex, dxf, esri68, kml (Google Earth), xvi69 and

bbox70 for map; pdf for atlas are supported.

• projection <id> . unique identifier that specifies the map

projection type. (See the scrap command for details.)

If there is no map defined, all scraps in the given projection are

exported.

If there are no scraps with the specified projection then Therion

will display centreline from selected surveys.

• layout <id> . use predefined map or atlas layout.

67 SVG embedded in XHTML file which contains also legend
68 ESRI shapefiles. Multiple files are written to a directory with the specified

filename.
69 Xtherion vector image. XVI images may be used in xtherion to draw

in-scale maps. Scale (100 DPI image resolution is assumed) and grid-size
from layout are used in export.

70 Text file containing geographic coordinates of lower-left and upper-right
corners of the map area.

96

• layout-xxx . where xxx stands for other layout options. Using

this you can change some layout properties directly within the

export command.

• encoding/enc <encoding> . set output encoding

common for lists:

• format/fmt <format> . set continuation output format.

Currently the following output formats are supported: html

(default), txt, kml71 and dbf.

continuation-list:

• attributes <(on)/off> . set whether to export user defined

attributes in continuation list table.

• filter <(on)/off> . set whether continuations without

comment/text should be filtered out.

cave-list:

• location <on/(off)> . set whether to export coordinates of

cave entrances in the table.

• surveys (on)/off . exports raw list of caves when set off.

Otherwise survey structure with aggregated statistics is also

displayed.

database:

• format/fmt <format> . currently sql and csv

• encoding/enc <encoding> . set output encoding

File formats summary:

71 For cave-list and continuation-list.

97

export type available formats

model loch, dxf, esri, compass, survex, vrml, 3dmf, kml

map pdf, svg, xhtml, dxf, esri, survex, xvi, kml, bbox

atlas pdf

database sql, csv

lists html, txt, kml, dbf

Running Therion

Now, after mastering data and configuration files, we’re ready to run

Therion. Usually this is done from the command line in the data

directory by typing

therion

The full syntax is

therion [-q] [-L] [-l <log-file>]

[-s <source-file>] [-p <search-path>]

[-b/--bezier]

[-d] [-x] [--use-extern-libs] [<cfg-file>]

or

therion [-h/--help]

[-v/--version]

[--print-encodings]

[--print-environment]

[--print-init-file]

[--print-library-src]

[--print-symbols]

[--print-tex-encodings]

[--print-xtherion-src]

98

[--reproducible-output]

[--generate-output-crc]

[--verify-output-crc]

Arguments:

<cfg-file> Therion takes only one optional argument: the name

of a configuration file. If no name is specified thconfig in the

current directory is used. If there is no thconfig file (e.g. current

directory is not a data directory), Therion exits with an error

message.

Options:

• -d . Turn on debugging mode. The current implementation

creates a temporary directory named thTMPDIR (in your system

temporary directory) and does not delete any temporary files.

• -h, --help . Display short help.

• -L . Do not create a log-file. Normally therion writes all the

messages into a therion.log file in the current directory.

• -l <log-file> . Change the name of the log file.

• -p <search-path> . This option is used to set the search path

(or list of colon-separated paths) which therion uses to find its

source files (if it doesn’t find them in the working directory).

• -q . Run therion in quiet mode. It will print only warning and

error messages to STDERR.

• --print-encodings . Print a list of all supported input

encodings.

• --print-tex-encodings . Print a list of all supported encodings

for PDF output.

99

• --print-init-file . Print a default initialization file. For more

details see the Initialization section in the Appendix.

• --print-environment . Print environment settings for therion.

• --print-symbols . Print a list of all therion supported map

symbols in symbols.xhtml file.

• --reproducible-output . Create reproducible PDF and SVG

files. No volatile information is included (e.g. creation date or

software version is omitted from the metadata). TEX variables

\thversion and \currentdate are set to predefined constatnts.

This option enforces the use of Therion loop closure.

To get the same output files on different platforms, it’s necessary

to install the same set of basic fonts used by Therion72 and use

reasonably recent TEX distribution on all platforms.

• --generate-output-crc . Generate a ‘.crc’ file with CRC32

checksum for each output file. Implies --reproducible-output.

• --verify-output-crc . Verify that the output file has not been

changed. Generate reproducible output, calculate CRC32

checksum and check it against one saved in ‘.crc’ file.

• -s <source-file> . Set the name of the source file.

• --use-extern-libs . Don’t copy TEX and METAPOST macros

to working directory. TEX and METAPOST should search for

them on their own. Use with caution.

• -v, --version . Display version information.

• -x . Generate file ‘.xtherion.dat’ with additional information for

XTherion.

72 CM, CS and/or CMCYR font families; the ‘.pfb’ font files have to be exactly
the same on all platforms as they are embedded into PDF files.

100

XTherion—compiler

XTherion makes it easier to run Therion especially on systems

without a command line prompt. Compiler window is the default

window of XTherion. To run Therion it’s enough to open a

configuration file and press ‘F9’ or ‘Compile’ button.

XTherion displays messages from Therion in the lower part of the

screen. Each error message is highlighted and is hyperlinked to the

source file where the error occurred.

After a first run there are activated additional menus Survey

structure and Map structure. User may comfortably select a survey

or map for export by double clicking on some of the items in the

tree. Simple click in the Survey structure tree displays some basic

information about the survey in the Survey info menu.

101

What do we get

Information files

Log file

Besides the messages from Therion and other programs used, the

log file contains information about computed values of magnetic

declination and meridian convergence, loop errors, scrap distortions

and transformations beetwen coordinate reference systems chosen by

the Proj library.

Absolute loop error is
√

∆x2 + ∆y2 + ∆z2, where ∆x is the

difference between the identical start and end points of the loop

before the error distribution measured along the x coordinate axis;

similarly for y and z. Percentage loop error is calculated as absolute

error / loop length. Average error is the simple arithmetic average of

all loop errors.

Scrap distortion is calculated using the distortion measure defined

for all pairs of points (point symbols, points and control points of

line symbols) in the scrap. The measure is calculated as |da−db|
db

,

where db is the distance of points before warping and da is the

distance of points after warping. The maximal and average scrap

distortions are calculated as a maximum or average of such measures

applied to all pairs of points.

102

XTherion

Therion provides some basic facts about each survey (length,

vertical range, N–S range, E–W range, number of shots and

stations) if -x option is given. This information is displayed in

XTherion, Compiler window, Survey info menu, when some survey

from the Survey structure menu is selected.

SQL export

SQL export makes it easy to get very detailed and subtle

information about the centreline. It is a text file starting with a

tables declaration (where ‘?’ stands in the following listing for a

maximal value required by the column data)

create table SURVEY (ID integer, PARENT_ID integer,

NAME varchar(?), FULL_NAME varchar(?), TITLE

varchar(?));

create table CENTRELINE (ID integer, SURVEY_ID integer,

TITLE varchar(?), TOPO_DATE date, EXPLO_DATE date,

LENGTH real, SURFACE_LENGTH real, DUPLICATE_LENGTH

real);

create table PERSON (ID integer, NAME varchar(?), SURNAME

varchar(?));

create table EXPLO (PERSON_ID integer, CENTRELINE_ID

integer);

create table TOPO (PERSON_ID integer, CENTRELINE_ID

integer);

create table STATION (ID integer, NAME varchar(?),

103

SURVEY_ID integer, X real, Y real, Z real);

create table STATION_FLAG (STATION_ID integer, FLAG

char(3));

create table SHOT (ID integer, FROM_ID integer, TO_ID

integer,

CENTRELINE_ID integer, LENGTH real, BEARING real,

GRADIENT real,

ADJ_LENGTH real, ADJ_BEARING real, ADJ_GRADIENT real,

ERR_LENGTH real, ERR_BEARING real, ERR_GRADIENT real);

create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));

which is followed by a mass of SQL insert commands. This file may

be loaded into any SQL database (after some database-dependent

initialization, which may include running an SQL server and

connecting to it, creating a database and connecting to it. A good

idea is to start a transaction before loading this file, if the database

doesn’t start a transaction automatically.) It’s important to set-up

database encoding to match the one specified in Therion export

database command.

Table and column names are self-explanatory; for undefined or

non-existing values NULL is used. FLAG in SHOT_FLAG table is dpl or

srf for duplicated or surface shots; in STATION_FLAG table ent, con,

fix, spr, sin, dol, dig, air, ove, arc for stations with entrance,

continuation, fixed, spring, sink, doline, dig, air-draught, overhang

or arch attributes, respectively.

Examples of simple queries follow:

List of survey team members with information about how much each

of them has surveyed:

104

select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME

from CENTRELINE, TOPO, PERSON

where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID

= PERSON_ID

group by NAME, SURNAME order by 1 desc, 4 asc;

Which parts of the cave were surveyed in the year 1998?

select TITLE from SURVEY where ID in

(select SURVEY_ID from CENTRELINE

where TOPO_DATE between ’1998-01-01’ and ’1998-12-31’);

How long are the passages lying between 1500 and 1550 m a.s.l.?

select sum(LENGTH) from SHOT, STATION S1, STATION S2

where (S1.Z+S2.Z)/2 between 1500 and 1550 and

SHOT.FROM_ID = S1.ID and SHOT.TO_ID = S2.ID;

Lists—caves, surveys, continuations

Using export continuation-list you get an overview of all points

in the centreline and scraps marked73 as a possible continuation.

export cave-list gives you a tabular information about surveyed

caves (you need to specify entrance flags in your data) including

length, depth and entrance(s) location.

Detailed information about each sub-survey gives export

survey-list command. The length includes shots with

approximate flags, but not explored, duplicate or surface.

73 Using station attribute for centreline points and point continuation in
scraps.

105

2D maps

Maps for printing

Maps are produced in PDF and SVG formats, which may be viewed

or printed in a wide variety of viewers. Be sure to uncheck Fit page

to paper or similar option if you want to print in the exact scale.

In atlas mode some additional information is put on each page: page

number, map name, and page label.

The numbers of neighbouring pages in N, S, E and W directions, as

well as in upper and lower levels are especially useful. There are also

hyperlinks at the border of the map if the cave continues on the

next page and on the appropriate cells of the Navigator.

PDF files are highly optimized—scraps are stored in XObject forms

only once in the document and then referenced on appropriate pages.

Therion uses advanced PDF features like transparency and layers.

Created PDF files may be optionally post-processed in applications

like pdfTEX or Adobe Acrobat—it’s possible to extract or change

some pages, add comments or encryption, etc.

If the map was produced using georeferenced data then it also

contains georeferencing information. This can be extracted

by XTherion to produce georeferenced raster images (see

XTherion/Additional tools for details).

106

Maps for GIS

Maps produced in DXF, ESRI or KML formats may be further

processed in appropriate software. These maps do not contain

visualized map symbols

Special-purpose maps

Map in XVI format contains centreline with LRUD information (and

optionally morphed sketches) and can be imported in XTherion to

serve as a background for digitization.

Map in Survex format is intended for a quick preview in Aven.

3D models

Therion may export 3D models in various formats besides its native

format. These may be loaded in appropriate viewing, editing or

raytracing programs to be printed or further processed. If the

format doesn’t support arbitrary passage shape definition, only the

centreline is included.

Loch

Loch is a 3D model viewer included in the Therion distribution. It

supports e.g. high-resolution rendering to file and stereo view using

3D-glasses.

107

Changing layout of PDF maps

This chapter is extremely useful if you’re not satisfied with the

predefined layout of map symbols and maps provided, and want to

adapt them to your needs. However, you need to know how to write

plain TEX and METAPOST macros to do this.

Page layout in the atlas mode

The layout command allows basic page setup in the atlas mode.

This is done through its options such as page-setup or overlap.

But there are no options which would specify the position of map,

navigator and other elements inside the area defined by page-width

and page-height dimensions; e.g., why is the navigator below the

map and not on its right or left side?

There are many possible arrangements for a page. Rather than

offer even more options for the layout command, Therion uses

the TEX language to describe other page layouts. This approach

has the advantage that the user has direct access to the advanced

typesetting engine without making the language of Therion overly

complex.

Therion uses pdfTEX with the plain format for typesetting. So you

should be familiar with the plain TEX if you wish to define new

layouts.

108

The ultimate reference for plain TEX is

Knuth, D. E.: The TEXbook, Reading, Massachusetts,

Addison-Wesley 11984

For pdfTEX’s extensions there is a short manual

Thành, H. T.—Rahtz, S.—Hagen, H.: The pdfTEX user manual,

available at

http://www.pdftex.org

The TEX macros are used inside the code tex-atlas part of the

layout command (see the chapter Processing data for details). The

basic one predefined by Therion is the

\dopage

macro. The idea is simple: for each page Therion defines TEX

variables (count, token, and box registers) which contain the page

elements (map, navigator, page name etc.). At the end of each page

macro \dopage is invoked. This defines the position of each element

on the page. By redefining this macro you’ll get the desired page

layout. Without this redefinition you’ll get a standard layout.

Here is the list of variables defined for each page:

Boxes:

• \mapbox . The box containing the map. Its width (height) is

set according to the size and overlap options of the layout

command to

size_width + 2*overlap or

size_height + 2*overlap, respectively

• \navbox . The box containing the navigator, with dimensions

109

http://www.pdftex.org

size_width * (2*nav_size_x+1) / nav_factor or

size_height * (2*nav_size_y+1) / nav_factor, respectively

Both \mapbox and \navbox also contain hyperlinks.

Count registers:

• \pointerE, \pointerW, \pointerN, \pointerS contain the

page number of the neighbouring pages in the E, W, N and S

directions. If there is no such page its page number is set to 0.

• \pagenum current page number

Token registers:

• \pointerU, \pointerD contain information about pages

above and below the current page. It consists of one or more

concatenated records. Each record has a special format

page-name|page-number|destination||

If there are no such pages, the value is set to notdef.

See the description of the \processpointeritem macro below for

how to extract and use this information.

• \pagename . the name of the current map according to the

options of the map command.

• \pagelabel . the page label as specified by origin and

origin-label options of the layout command.

The following variables are set at the beginning of the document:

• \hsize, \vsize . TEX page dimensions, set according to

page-width and page-height parameters of the page-setup

option of the layout command. They determine our playground

when defining the page layout using the \dopage macro.

110

• \ifpagenumbering . This conditional is set true or false

according to the page-numbers option of the layout command.

There are also some predefined macros which help with the

processing of \pointer* variables:

• \showpointer with one of the \pointerE, \pointerW, \pointerN

or \pointerS as an argument displays the value of the argument.

If the value is 0 it doesn’t display anything. This is useful because

the zero value (no neighbouring page) shouldn’t be displayed.

• \showpointerlist with one of the \pointerU or \pointerD

as an argument presents the content of this argument. (Which

contains \pointerU or \pointerD, see above.) For each record it

calls the macro \processpointeritem, which is responsible for

data formatting.

Macro \showpointerlist should be used without redefinition in

the place where you want to display the content of its argument;

for custom data formatting redefine \processpointeritem macro.

• \processpointeritem has three arguments (page-name,

page-number, destination) and visualizes these data. The

arguments are delimited as follows

\def\processpointeritem#1|#2|#3\endarg{...}

An example definition may be

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{\pdfstartlink attr {/Border [0 0 0]}%

goto name {#3} #2 (#1)\pdfendlink}%

}

(note how to use the destination argument), or much simpler (if

we don’t need hyperlink features):

111

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{#2 (#1)}%

}

For font management there are macros

• \size[#1] for size changes,

• \cmykcolor[#1 #2 #3 #4], \[rgb]color[#1 #2 #3] and

\graycolor[#1] for text colour changes (the values should be in

the range 0–100),

• \black which selects the black color in the appropriate colour

model, and

• \rm, \it, \bf, \ss, \si for type face switching.

See below for a list of predefined texts which may be used in the

atlas.

There is also a \framed macro which takes a box as an argument

and displays the box framed. The frame style can be customized by

redefining the \linestyle macro which defaults to 1 J 1 j 1.5 w.

Now we’re ready to define the \dopage macro. You may choose

which of the predefined elements to use. A very simple example

would be

layout my_layout

scale 1 200

page-setup 29.7 21 27.7 19 1 1 cm

size 26.7 18 cm

overlap 0.5 cm

code tex-atlas

\def\dopage{\box\mapbox}

\insertmaps

112

endlayout

which defines the landscape A4 layout without the navigator nor

any texts. There is only a map on the page.

Note the \insertmaps macro. Map pages are inserted at its

position. This is not done automatically because you may wish to

insert some other pages before the first map page.

More advanced is the default definition of the \dopage macro:

\def\dopage{%

\vbox{\centerline{\framed{\mapbox}}

\bigskip

\line{%

\vbox to \ht\navbox{

\hbox{\size[20]\the\pagelabel

\ifpagenumbering\space(\the\pagenum)\fi

\space\size[16]\the\pagename}

\ifpagenumbering

\medskip

\hbox{\qquad\qquad

\vtop{%

\hbox to 0pt{\hss\showpointer\pointerN\hss}

\hbox to 0pt{\llap{\showpointer\pointerW\hskip0.7em}%

\raise1pt\hbox to

0pt{\hss\updownarrow\hss}%

\raise1pt\hbox to

0pt{\hss\leftrightarrow\hss}%

\rlap{\hskip0.7em\showpointer\pointerE}}

\hbox to 0pt{\hss\showpointer\pointerS\hss}

}\qquad\qquad

\vtop{

113

\def\arr{\uparrow}

\showpointerlist\pointerU

\def\arr{\downarrow}

\showpointerlist\pointerD

}

}

\fi

\vss

\scalebar

}\hss

\box\navbox

}

}

}

Using other plain TEX macros or TEX primitives it’s possible to

add other features, e.g. a different layout for odd and even pages;

headers and footers; or adding a logo to each page.

In addition to the map pages, the atlas contains additional items:

title page, basic facts about the cave, legend with used map symbols

etc.

Therion automatically generates a list of used map symbols and lists

of people who have discovered, surveyed and drawn the selected part

of the cave. Following token registers may be used (according to the

user’s requirements before or after the \insertmaps macro):

• \explotitle, \topotitle, \cartotitle . translated titles

• \exploteam, \topoteam, \cartoteam . participating members

(according to team, explo-team options for centreline and

author option of scraps)

114

• \explodate, \topodate, \cartodate . corresponding dates

• \comment . is set according to map-comment option of the layout

command

• \copyrights . is set according to copyright options for surveys

and other objects

• \cavename . name of the exported map; set according to -title

option of the exported map

• \cavelength, \cavedepth . approximate length and depth of the

displayed map

• \cavelengthtitle, \cavedepthtitle . translated labels

• \cavemaxz, \caveminz . altitude max/min value

• \thversion . current therion version

• \currentdate . current date

• \outcscode, \outcsname . output coordinate system code and

name

• \northdir . ‘true’ or ‘grid’

• \magdecl . magnetic declination in degrees

• \gridconv . grid meridian convergence in degrees

There is a macro \atlastitlepages which combines most of the

token registers mentioned above to get simple preformatted atlas

introductory pages.

For legend displaying there are

• \iflegend . conditional; true iff legend option of the layout

command was set to on or all values

115

• \legendtitle . token register containing translated legend title

• \insertlegend . macro for inserting legend symbols pictures

with translated descriptions in the specified number of columns

(according to legend-columns layout option)

• \formattedlegend . combines all three above commands to get

preformatted legend with header and symbols typeset in two74

columns if legend option is set on

North arrow, altitude bar and scale bar may be displayed using

• \ifnortharrow . conditional; true if map projection is plan and

symbol north-arrow is not hidden in layout

• \ifscalebar . conditional; true if the scale bar is not hidden

• \ifaltitudebar . conditional; true if the altitude bar is not

hidden

• \northarrow . macro containing PDF form with the north arrow

• \scalebar . macro containing PDF form with the scale bar

• \altitudebar . macro containing PDF form with the altitude bar

There is a general-purpose macro for typesetting in multiple

columns75:

• \begmulti <i>, \endmulti . text between these macros is

typeset in <i> columns

An example of how to create an atlas with lists of surveyors etc.

followed by map pages and with legend at the end:

74 Default; adjust the legend-columns layout option to get more or less of
them.

75 Not to be used with map legend, where multiple columns are to be adjusted
by legend-columns layout option

116

code tex-atlas

\atlastitlepages

\insertmaps

\formattedlegend

To use a relative path when including another TEX file use the

\inputrel macro instead of \input.

Page layout in the map mode

In the map mode it’s possible to use a lot of predefined variables

which are described in the previous chapter:

\cavename, \comment, \copyrights, \explotitle, \topotitle,

\cartotitle, \exploteam, \topoteam, \cartoteam,

\explodate, \topodate, \cartodate, \cavelength, \cavedepth,

\cavelengthtitle, \cavedepthtitle, \cavemaxz, \caveminz,

\thversion, \currentdate, \outcscode, \outcsname, \northdir,

\magdecl, \gridconv, \ifnortharrow, \ifscalebar, \northarrow,

\scalebar, \iflegend, \legendtitle, \insertlegend, \begmulti

<i>, \endmulti, \formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to

define \maplayout macro in the code tex-map section of the layout

command. It should contain one or more \legendbox invocations.

The \legendbox macro has four parameters: coordinates ranging

0–100, alignment specification (N, E, S, W, NE, SE, SW, NW or C)

and the content to be displayed. To show the content of variables

marked as count registers or token registers in the previous chapter,

you need to prefix them with \the.

A simple example is

117

\def\maplayout{

\legendbox{0}{100}{NW}{\northarrow}

\legendbox{100}{100}{W}{\the\thversion}

}

which displays north arrow in the upper-left corner of the map sheet

and the version of Therion in the upper-right corner.

The fourth parameter may also be a \loadpicture macro, which

includes a picture in PDF, JPEG or PNG format. Although it

accepts a relative or absolute path, in some cases76 you need to

convert a relative path to absolute and save it for further use:

\savepath{mypath1}{../data/picture.png}

\def\maplayout{

\legendbox{100}{80}{NW}{\loadpicture{mypath1}}

}

For the user’s convenience, there is \legendcontent token register.

It contains preformatted cave name, north arrow, scale bar,

explo/topo/carto teams, comment, copyrights and legend. (The

\legendcontent is also used in the default map layout definition:

\def\maplayout{\legendbox{0}{100}{NW}{\the\legendcontent}}).

The width of the above text may be adjusted by \legendwidth

dimen register (its default value is set by legend-width layout

option). The colour and size of texts in the preformatted legend can

be easily changed using \legendtextcolor, \legendtextsize,

\legendtextsectionsize and \legendtextheadersize token

registers, e.g. for large blue text:

76 If you combine multiple layouts stored in different directories.

118

code tex-map

\legendwidth=20cm

\legendtextcolor={\cmykcolor[0 30 50 50]}

\legendtextsize={\size[20]}

\legendtextheadersize={\size[60]}

It is possible to display the whole map framed by setting the

\framethickness dimen register to a positive value, e.g. 0.5mm.

Customizing text labels

Starting with the release 5.4.1 you can use fonts-setup layout

option instead of the METAPOST macro fonts_setup().

New map symbols

Therion’s layout command makes it easy to switch among various

predefined map symbol sets. If there is no such symbol or symbol

set you want, it’s possible to design new map symbols.

However, this requires knowledge of the METAPOST language,

which is used for map visualization. It’s described in

Hobby, J. D.: A User’s Manual for MetaPost, available at

https://www.tug.org/docs/metapost/mpman.pdf

The user may also benefit from comprehensive reference to the

METAFONT language, which is quite similar to METAPOST:

Knuth, D. E.: The METAFONTbook, Reading, Massachusetts,

Addison-Wesley 11986

119

https://www.tug.org/docs/metapost/mpman.pdf

New symbols may be defined in the code metapost section of

the layout command. This makes it easy to add new symbols

at the run-time. It is also possible to add symbols permanently

by compiling them into Therion executable (see the Appendix for

instructions on how to do this).

Each symbol has to have a unique name, which consists of the

following items:

• one of the letters ‘p’, ‘l’, ‘a’, ‘s’ for point, line, area or special

symbols, respectively;

• underscore character;

• symbol type as listed in the chapter Data format with all dashes

removed;

• if the symbol has a subtype, add an underscore character and

subtype;

• underscore character;

• symbol set identifier in uppercase

Example: standard name for a point ‘water-flow’ symbol with a

‘permanent’ subtype in the ‘MY’ set is p_waterflow_permanent_MY.

Standard name for user-defined symbol types should not include

symbol set identifier, e.g. p_u_bat.

Each new symbol has to be registered by a macro call

initsymbol("<standard-name>");

unless it’s compiled into Therion executable.

There are four predefined pens PenA (thickest) . . . PenD (thinnest),

which should be used for all drawings. For drawing and filling use

120

thdraw and thfill commands instead of METAPOST’s draw and

fill.

The following variables are also available:77

• boolean ATTR__shotflag_splay, ATTR__shotflag_duplicate,

ATTR__shotflag_approx . set for line survey

• boolean ATTR__stationflag_splay . set true for endstations of

splay shots

• boolean ATTR__scrap_centerline . set true for scraps created

from centreline

• boolean ATTR__elevation . true for (extended) elevation, false

for plan projection

• numeric ATTR__height . height of a pit or wall:pit

• string ATTR__id . contains current object ID

• string ATTR__survey . contains current survey name

• string ATTR__scrap . contains current scrap name

• picture ATTR__text . contains typeset text e.g. for point

continuation

• string NorthDir . ‘true’ or ‘grid’

• numeric MagDecl . magnetic declination in degrees

• numeric GridConv . grid meridian convergence in degrees

If you need to include some METAPOST definitions from a

file specified by a relative path, you need to use the macro

inputrel("relative/path.mp").

77 If names clash with Therion commands (like color), you can add an
exclamation mark ‘!’ to prevent Therion parsing the line: ! color

myNewColorDef;

121

Point symbols

Point symbols are defined as macros using def ... enddef;

commands. The majority of point symbol definitions have four

arguments: position (pair), rotation (numeric), scale (numeric)

and alignment (pair). Exceptions are section which has no visual

representation; all labels, which require special treatment as

described in the previous chapter, and station which takes only one

argument: position (pair).

All point symbols are drawn in local coordinates with the length unit

u. Recommended ranges are 〈−0.5u, 0.5u〉 in both axes. The symbol

should be centered at the coordinates’ origin. For the final map,

all drawings are transformed as specified in the T transformation

variable, so it’s necessary to set this variable before drawing.

This is usually done in two steps (assume that the four arguments

are P, R, S, A):

• set the U pair variable to
(

width

2
, height

2

)
of the symbol for

the correct alignment. The alignment argument A is a pair

representing ratios
(

shiftx
Ux

)
and

(
shifty
Uy

)
.

(Hence aligned A means shifted (xpart A * xpart U, ypart

A * ypart U).)

• set the T transformation variable

T:=identity aligned A rotated R scaled S shifted P;

For drawing and filling use thdraw and thfill commands instead of

METAPOST’s draw and fill. These automatically take care of T

transformation.

An example definition may be

122

def p_entrance_UIS (expr P,R,S,A)=

U:=(.2u,.5u);

T:=identity aligned A rotated R scaled S shifted P;

thfill (-.2u,-.5u)--(0,.5u)--(.2u,-.5u)--cycle;

enddef;

initsymbol("p_entrance_UIS");

Line symbols

Line symbols differ from point symbols in respect that there is no

local coordinate system. Each line symbol gets the path in absolute

coordinates as the first argument. Therefore it’s necessary to set T

variable to identity before drawing.

The following symbols take additional arguments:

• arrow . numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3

both ends

• contour . text: list of points which get the tick or one of −1,

−2 or −3 to mark undefined tick, tick in the middle or no tick,

respectively

• section . text: list of points which get the orientation arrow or −1

to indicate no arrows

• slope . numeric: 0 no border, 1 border; text: list of

(point,direction,length) triplets

Usage example:

123

def l_wall_bedrock_UIS (expr P) =

T:=identity;

pickup PenA;

thdraw P;

enddef;

initsymbol("l_wall_bedrock_UIS");

Area symbols

Areas are similar to lines: they take only one argument – path in

absolute coordinates.

You may fill them in three ways:

• fill a uniform or randomised grid in a temporary picture (having

dimensions bbox path) with some point symbols; clip it according

to the path and add to the currentpicture

• fill path with a solid colour

• fill path with a predefined pattern using a withpattern keyword.

Patterns are defined using the same user interface (except the

patterncolor macro) as described in the article

Bolek, P.: “METAPOST and patterns,” TUGboat,

3, XIX (1998), pp. 276–283, available online at

https://www.tug.org/TUGboat/Articles/tb19-

3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without

setting of T variable in the pattern definitions. In PDF output, all

patterns are uncolored—this means that any colour information

specified in the pattern definition is ignored and the colour is

124

https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf
https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

assigned later, when the pattern is used (using symbol-colour

layout option).

An example of how to define and use patterns:

beginpattern(pattern_water_UIS);

draw origin--10up withpen pensquare scaled (0.02u);

patternxstep(.18u);

patterntransform(identity rotated 45);

endpattern;

def a_water_UIS (expr p) =

T:=identity;

thclean p;

thfill p withpattern pattern_water_UIS;

enddef;

initsymbol("a_water_UIS");

Special symbols

There are currently two special symbols: scale bar and north arrow.

Both are experimental and subject to change.

125

Appendix

Compilation

Installing the dependencies

If you want to compile Therion from source code and run it, you

need (first three are required only during compilation):

• GNU C/C++ compiler or Clang

• GNU make or CMake

• Perl

• Python 3

• PROJ library (https://proj.org/). Supported versions are: v4:

4.9.3; v5: 5.1.0 and newer; v6: 6.2.1 and newer; 7.0.1 and newer.

• fmt (https://github.com/fmtlib/fmt).

• Tcl/Tk 8.4.3 and newer (https://www.tcl.tk) with BWidget

widget set

(https://sourceforge.net/projects/tcllib/) and optionally

tkImg extension

(https://sourceforge.net/projects/tkimg/).

• TEX distribution with at least TEX with Plain format, recent

pdfTEX, and METAPOST (https://www.tug.org).

126

https://proj.org/
https://github.com/fmtlib/fmt
https://www.tcl.tk
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tkimg/
https://www.tug.org

• LCDF Typetools package (https://www.lcdf.org/type/)

• ImageMagick distribution with convert and identify utilities, if

you want to use warping of survey sketches.

• ghostscript if you want to create calibrated images from

georeferenced PDF maps.

To compile Loch, you need

• freetype 2 and newer; pkg-config freetype2 must work

• wxWidgets 3 and newer; wx-config must work

• VTK 7.0 and newer

• libjpeg, libpng, zlib

All programs (with the exception of BWidget and tkImg

package) are usually included in Linux, Unix or MacOS X

distributions. For Windows consider using MinGW and MSYS2

(https://www.msys2.org/). It’s a distribution of GNU utilities

with GNU make and GCC. (BTW, why not to use precompiled

Windows version?)

Installing dependencies to compile Therion on Ubuntu 22.04:

sudo apt install bwidget catch2 cmake gcc ghostscript

imagemagick lcdf-typetools libfmt-dev libfreetype6-dev

libjpeg-dev libpng-dev libproj-dev libtk-img-dev

libvtk7-dev libwxgtk3.0-gtk3-dev tcl-dev texlive-binaries

texlive-metapost zlib1g-dev.

Installing dependencies in Fedora 37:

127

https://www.lcdf.org/type/
https://www.msys2.org/

sudo dnf install brotli-devel bwidget catch2-devel cmake

fmt-devel g++ jbigkit-devel krb5-devel libidn2-devel

libjpeg-turbo-devel libnghttp2 libnghttp2-devel libpsl-

devel libssh-devel libwebp-devel openldap-devel proj-devel

texlive-metapost texlive-pdftex-quiet texlive-scheme-basic

tkimg vtk-devel wxGTK-devel

Check also therion/.github/workflows/ for complete

configurations for Ubuntu, Mac OS X and Windows.

Using CMake

Unpack the source distribution therion-6.*.tar.gz and create a

separate directory for the build, e.g.:

• cd therion && mkdir build && cd build

• cmake [parameters] ..

• make -j4

CMake parameters

Here is a selection of parameters which can be used with cmake:

• -G <generator> . specify the generator, e.g. -G Ninja to use

Ninja build system instead of make, or -G "MSYS Makefiles" to

build using make under MSYS2

• -DUSE_BUNDLED_SHAPELIB=OFF . use the system Shapelib library

• -DUSE_BUNDLED_CATCH2=ON . use the bundled version of Catch2

library

• -DECM_ENABLE_SANITIZERS=<option> . use runtime sanitizers,

relevant options:

128

address – detects invalid memory accesses, use-after-free, double

free, memory leaks, useful for debugging

undefined – detects undefined behavior, for example use of

uninitialized values

• -DCMAKE_BUILD_TYPE=<option> . build type, relevant options:

Debug – compile with debug symbols and asserts

Release – compile with optimizations

RelWithDebInfo – compile with debug symbols and

optimizations, useful for profiling and debugging

• -DTHBOOK_FORMAT=<option> . set the output size of the Therion

book (most of the images are omitted in smaller sizes); relevant

options:

0 – A4 portrait

1 – small screen portrait (some lines and images don’t fit)

2 – small screen landscape

3 – ebook reader optimized

The following cmake components can be used to selectively install a

part of the package: th-runtime, loch-runtime, th-docs, loch-docs.

Legacy approach: using make

• unpack the source distribution therion-6.*.tar.gz

• cd therion

• make config-macosx or make config-win32, if you use

MacOS X or Windows, respectively

129

• make

• sudo make install

Make parameters

Therion’s makefile may take some optional parameters.

• config-linux, config-macosx, config-win32 . configure

Therion for a specific platform. Linux is a default.

• config-release, config-oxygen, config-ozone . set

optimization level for C++ compiler (none, -O2 and -O3)

• config-debug . useful before debugging the program

• install . install Therion

• clean . delete all temporary files

Hacker’s guide

Cross-compilation for Windows

Therion supports compilation of Win32/Win64 executables in Linux

using MXE cross compiler (http://mxe.cc).

• install the following static/win32 packages

(i686-w64-mingw32.static-*) or static/win64 packages

(x86-64-w64-mingw32.static-*) to the directory /usr/lib/mxe/:

binutils, bzip2, expat, freetype-bootstrap, gcc, gettext, glib,

harfbuzz, jpeg, libiconv, libpng, proj, tiff, vtk, wxwidgets, xz, zlib.

• modify PATH: export PATH=/usr/lib/mxe/usr/bin:$PATH

• use CMake or the legacy approach (cd therion && make

config-win32cross && make) to build Therion

130

http://mxe.cc

See therion/.github/workflows/ for detailed examples of building

Therion on multiple platforms.

Adding new translations

Therion supports translation of map labels. Suppose you want to

add a new language xx.

• run ‘perl process.pl export xx’ in the ‘thlang’ Therion source

subdirectory. This creates a file texts_xx.txt. This file is UTF-8

encoded.

• edit the texts_xx.txt file. Add your translations at lines

beginning with ‘xx:’.

• run make update

• compile Therion

Adding new encodings

Although UTF-8 Unicode encoding covers all characters which

Therion is able to process, it may be inconvenient to use it. In that

case it’s possible to add support for any 8-bit encoding for text

input files. Copy a translation file to the thchencdata directory;

add its name to ‘ifiles’ hash in the beginning of the Perl script

generate.pl; run it and recompile Therion.

The translation file should contain two hexadecimal values of a

character (first one in the 8-bit encoding, second one in Unicode) in

each line. Possible comments follow the ‘#’ character.

Adding new TEX encodings

It’s easy to add new encodings for 2D map output.78 Copy an

appropriate encoding mapping file with an *.enc extension to the

78 This section applies to old-style font selection using tex-fonts command in
the initialization file and is obsolete when using pdf-fonts command.

131

texenc/encodings, run the Perl script mktexenc.pl located in the

texenc directory and compile Therion.

Therion uses the same encoding files as afm2tfm program from the

TEX distribution, which has the same format as an encoding vector

in a PostScript font. You may find more details in the chapter

6.3.1.5 Encoding file format in the documentation to Dvips program.

Generating new TEX and METAPOST headers

Therion uses TEX and METAPOST for 2D map visualization and

typesetting. Predefined macros are compiled into the Therion

executable and are copied to the working directory just before

running METAPOST and TEX (unless the --use-extern-libs

option is used). Layout command makes it possible to modify some

macros in the configuration file at the run-time.

However, it’s possible to make permanent changes to the macro

files. After modifying the files in the mpost and tex directories it’s

necessary to run Perl scripts genmpost.pl and gentex.pl, which

generate C++ header files, and compile Therion executable again.

Updating the geomagnetic model

Therion uses the IGRF model to calculate the magnetic

declination. Download the model in a txt format from

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html and save it in

the geomag/ directory (e.g. igrfXYcoeffs.txt). Run ./igrf2c.py

igrfXYcoeffs.txt which creates thgeomagdata.h in the Therion

source directory and recompile Therion.

To test the model, extract the file sample_out_IGRFXY.txt, which

is included in the Geomag distribution available on the same web

page. Put it into the geomag/test/ directory, run ./build.sh

132

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

sample_out_IGRFXY.txt and check the lines with an exclamation

mark in the output.

Environment variables

Therion reads following environment variables:

• THERION . [not required] search path for (x)therion.ini file(s)

• HOME (HOMEDRIVE + HOMEPATH on WinXP) . [not required, but

usually present on your system] search path for (x)therion.ini

file(s)

• TEMP, TMP . system temporary directory, where Therion stores

temporary files (in a directory named thPID, where PID is a

process ID), unless tmp-path is specified in the initialization file.

Consult the documentation of your OS how to set them.

Initialization files

Therion’s and XTherion’s system dependent settings are specified in

the file therion.ini or xtherion.ini, respectively. They are searched

for in the following directories:

• on UNIX: ., $THERION, $HOME/.therion, /etc, /usr/etc,

/usr/local/etc

• on Windows: ., $THERION, $HOME\.therion,

<Therion-installation-directory>, C:\WINDOWS, C:\WINNT,

C:\Program Files\Therion

133

Therion

If no file is found Therion uses its default settings. If you want to

list them, use --print-init-file option. The initialization file is

read like any other therion file. (Empty lines or lines starting with

‘#’ are ignored; lines ending with a backslash continue on next line.)

Currently supported initialization commands follow.

• loop-closure <therion/survex>

By default, survex is used if present, otherwise therion.

• encoding-default <encoding-name>

Set the default output encoding (currently unused).

• encoding-sql <encoding-name>

Set the default output encoding for SQL export.

• language <xx[_YY]>

Default output language. See the copyright page for the list of

available languages.

• units <metric/imperial>

Set default units.

• mpost-path <file-path>

Set the full path to a METAPOST executable if Therion can’t find

it (“mpost” is the default).

• mpost-options <string>

Set METAPOST options.

134

• pdftex-path <file-path>

Set the full path to a pdfTEX executable if Therion can’t find it

(“pdftex” is the default).

• identify-path <file-path>

Set the full path to ImageMagick’s identify executable if Therion

can’t find it (“identify” is the default).

• convert-path <file-path>

Set the full path to ImageMagick’s convert executable if Therion

can’t find it (“convert” is the default).

• source-path <directory>

Path to data and configuration files. Used mostly for system-wide

grades and layout definitions.

• tmp-path <directory>

Path where temporary directory should be created.

• tmp-remove <OS command>

System command to delete files from the temporary directory.

• tex-env <on/off>

[Works on Windows only.] When set to off (default), Therion

temporarily clears all environment variables related to TEX.

Useful if there is other TEXdistribution installed on your system

which had set-up any environment variables, which could confuse

TEX and METAPOST programs supplied in Therion for Windows

distribution.

Set to on if you use other TEX distribution for maps processing.

• text <language ID> <therion text> <my text>

135

Using this option you can change any default therion text

translation in output. For list of therion texts and available

translations, see thlang/texts.txt file.

• cs-def <id> <proj4def>

Define a new coordinate system <id> using Proj4 syntax.

• cs-trans <cs1> <cs2> <proj-pipeline>

Define a transforamation pipeline between two coordinate

systems.79 Both cs1 and cs2 can be lists of aliases enclosed in

brackets.

Therion contains a built-in database of transformation pipelines.80

You can override any built-in definition either by redefining the

pipeline using cs-trans or make it ignored by using an empty

string in the cs-trans definition.

If the pipeline references transformations grids which are not

installed locally, Therion attempts to download them from

cdn.proj.org if proj-missing-grid option is set to download

(otherwise it prints an error message and stops).

This option is ignored if Therion is using PROJ v6 or older.

Example: cs-trans [jtsk epsg:5513] [etrs34

epsg:25834] "+proj=pipeline +step +inv +proj=krovak

+axis=wsu +lat_0=49.5 +lon_0=24.8333333333333

+alpha=30.2881397527778 +k=0.9999 +x_0=0

+y_0=0 +ellps=bessel +step +inv +proj=hgridshift

79 See https://proj.org/usage/transformation.html for details of
pipelines definition.

80 Mostly for JTSK to ETRS89 transformations. The definitions are in the
thcsdata.tcl file in the source code, proj transformations variable.

136

cdn.proj.org
https://proj.org/usage/transformation.html

+grids=sk_gku_JTSK03_to_JTSK.tif +step +proj=push +v_3

+step +proj=cart +ellps=bessel +step +proj=helmert

+x=485.021 +y=169.465 +z=483.839 +rx=-7.786342

+ry=-4.397554 +rz=-4.102655 +s=0 +conven-

tion=coordinate_frame +step +inv +proj=cart

+ellps=GRS80 +step +proj=pop +v_3 +step +proj=utm

+zone=34 +ellps=GRS80"

• proj-auto <on/off>

If set on, let PROJ v6+ decide which transformation between

coordinate systems is optimal.81 The selected transformations are

listed in the log file. It is recommended to specify coordinate

systems using the EPSG codes directly (e.g. EPSG:4258).

If set off or if Therion uses PROJ older than v6, the source

coordinates are first transformed to wgs-84, then from wgs-84 to

the target coordinate system. This might result in a suboptimal

precision.

The default setting is on.This option is ignored for those pairs of

coordinate systems which have a transformation pipeline defined

(see cs-trans).

• proj-missing-grid <ignore/warn/fail/cache/download>

Set missing transformation grids handling if proj-auto is on or a

custom transformation pipeline in cs-trans references such grids.

The grids are used to achieve a better transformation precision

between some coordinate systems.

81 In this case the function proj create crs to crs() is used. Otherwise
Therion calls proj create() function in the PROJ library.

137

For cs-trans pipelines, only download tries to download the grid;

all other options are equivalent to fail. If proj-auto is used to

find the best transformation, the following applies:

ignore silently lets Proj to choose other transformation which

doesn’t use the missing grid(s); this usually leads to decreased

transformation accuracy (say metres instead of centimetres).

See the log file for a list of the used transformations and their

precisions.

warn behaves like ignore, but prints warnings about missing

grids (the download links are usually displayed as well).82

fail stops after the first missing grid is detected and displays the

download link.

cache enables the network connectivity and lets Proj to download

the missing parts of grids from the Internet. The information is

stored in a local cache.83 As only parts of grids covering the

current area are downloaded, it’s potentially faster and less space

consuming then download. The downside is that the local cache is

not used by Proj if the network is disabled (in Therion you have

to use the cache mode to use the local cache).

download temporarily enables the network connectivity and lets

Proj to download the missing grids from the Internet. The grids

are used in subsequent runs (in any mode).

The default setting is download.The option proj-missing-grid

is ignored if proj-auto is off or Proj v5 or older is used. If Proj

v6 is used by Therion, the settings cache and download are

82 See https://proj.org/resource files.html for the instructions where to
put the downloaded grids.

83 See https://proj.org/usage/network.html

138

https://proj.org/resourceunhbox voidb@x kern .06em vbox {hrule width.3em}files.html
https://proj.org/usage/network.html

equivalent to fail, as the network connectivity is a feature of

Proj v7 and later.

• pdf-fonts <rm> <it> <bf> <ss> <si>

Set-up fonts to be used in PDF maps. The command has to be

followed by paths specifying where regular, italic, bold, sans-serif

and sans-serif oblique fonts are located in your system. TrueType

and OpenType fonts are supported.

Therion requires LCDF Typetools to be installed on your system

to use this command. Example:

pdf-fonts "/usr/share/fonts/Serif.ttf" \

"/usr/share/fonts/Serif-Italic.ttf" \

"/usr/share/fonts/Serif-Bold.ttf" \

"/usr/share/fonts/Sans.ttf" \

"/usr/share/fonts/Sans-Oblique.ttf"

• otf2pfb <on/off>

When set to on (default), OpenType fonts used in pdf-fonts

are converted to PFB fonts, if they are PostScript-based. Some

information is lost in the PFB format, but there is advantage

that pdfTEX can embed subset of PFB fonts (in contrast with

OpenType fonts which must be fully embedded).

• tex-fonts <encoding> <rm> <it> <bf> <ss> <si>

Original and more complicated way to set-up fonts for PDF

maps. You need to explicitly specify encoding (maximum 256

characters from the font that will be used). The list of currently

supported encodings gives the --print-tex-encodings command

line option. The same encoding must be used while generating

TEX metrics (*.tfm files) for those fonts (e.g. with the afm2tfm

139

program) and this encoding must be explicitly given also in the

pdfTEX’s map file. The only exception is the base set of Computer

Modern fonts, which use ‘raw’ encoding. This encoding doesn’t

need to be specified in the pdfTEX’s map file.

Encoding has to be followed by five font specifications for regular,

italic, bold, sans-serif and sans-serif oblique styles. Default setting

is tex-fonts raw cmr10 cmti10 cmbx10 cmss10 cmssi10

Example how to use other fonts (e.g. TrueType Palatino in xl2

(an encoding derived from ISO8859-2) encoding). Run:

ttf2afm -e xl2.enc -o palatino.afm palatino.ttf

afm2tfm palatino.afm -u -v vpalatino -T xl2.enc

vptovf vpalatino.vpl vpalatino.vf vpalatino.tfm

You get files vpalatino.vf, vpalatino.tfm and palatino.tfm.

Add the line

palatino <xl2.enc <palatino.ttf

to the pdfTEX’s map file. The same should be done for the italic

and bold faces and corresponding sans-serif and sans-serif-oblique

fonts. If you’re lazy try

tex-fonts xl2 palatino palatino palatino palatino

palatino

(We should use actually virtual font vpalatino instead of

palatino, which contains no kerning or ligatures, but pdfTEX

doesn’t support \pdfincludechars command on virtual fonts. To

be improved.)

If you want to add some unsupported encodings, read the chapter

Compilation / Hacker’s guide.

140

• tex-fonts-optional <encoding> <rm> <it> <bf> <ss> <si>

Similar to tex-fonts, but tests if the TEX fonts are installed in

the system. It does nothing if any of the specified fonts is not

present.

This setting is used by default for Czech/Slovak and cyrillic fonts

to avoid METAPOST errors on systems without these fonts

present.

As the test takes some time (pdfTeX instance is run), you might

disable the default behaviour completely by setting tex-fonts in

the INI file.

• tex-refs-registers <on/off>

Switch between using count registers and macros to store

references to graphical objects in TEX. Each approach has some

advantages, see the section Limitations.

XTherion

Initialization file for XTherion is actually a Tcl script evaluated

when XTherion starts. The file is commented; see the comments for

details.

Limitations

• scrap size .

METAPOST in the default (‘scaled’) mode: ≈ 2.8× 2.8 m in the

output scale

141

METAPOST in the ‘double’ mode:84 practically no limit85

• page size .

PDF map or atlas: ≈ 5× 5 m (pdfTEX limit)

SVG map: limits depend on the viewing application

• scraps count .

METAPOST in the scaled mode: 4(scraps + sections) < 4000

METAPOST in the ‘double’ mode: practically no limit

TEX limit in registers mode:86 2× pages + images + patterns +

6(scraps + sections) < 32 500 when using pdfTEX (or

approximately 65 000 when using LuaTEX87)

TEX limit in macro mode:88 limited only by memory available to

TEX89

84 To run METAPOST in the ‘double’ mode, set mpost-options

"-numbersystem=double" in the initialization file. It’s not recommended to
use arbitrary-precision modes ‘decimal’ and ‘binary’, as there are still bugs
in their implementation and they are much slower than the ‘double’ mode.
You need to use METAPOST newer than 2.00 to use this mode without
issues.

85 It’s high enough to be reached.
86 This is the default approach, in which the count registers are used to store

references to the graphic objects.
87 To use LuaTEX, set pdftex-path "luatex" in the initialization file.
88 Instead of using count registers, each reference is stored in a separate

macro. This mode is activated by setting tex-refs-registers off in the
initialization file.

89 Note, that you need to modify texmf.cnf configuration file in your TEX
distribution to change the limits.

142

Example data

Following simple example illustrates basic usage of Therion

commands:

encoding utf-8

survey main -title "Test cave"

survey first

centreline

units compass grad

data normal from to compass clino length

1 2 100 -5 10

endcentreline

endsurvey

survey second -declination [3 deg]

centreline

calibrate length 0 0.96

data normal from to compass length clino

1 2 0 10 +10

endcentreline

endsurvey

centreline

equate 2@first 1@second

endcentreline

143

scraps are usually in separate *.th2 files

scrap s1 -author 2004 "Therion team"

point 763 746 station -name 2@second

point 702 430 station -name 2@first

point 352 469 station -name 1@first

point 675 585 air-draught -orientation 240 -scale

large

line wall -close on

287 475

281 354 687 331 755 367

981 486 846 879 683 739

476 561 293 611 287 475

endline

endscrap

map m1 -title "Test map"

s1

endmap

endsurvey

Corresponding configuration file could be:

encoding utf-8

source test

layout l1

scale 1 100

144

layers off

endlayout

select m1@main

export model -fmt survex

export map -layout l1

If you save data file as ‘test.th’ and configuration file as ‘thconfig’

you may process them with Therion.

History

• 1999

Oct: first concrete ideas

Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map in PostScript format for

the first time (32 kB of Perl and 7 kB of METAPOST and

TEX source code). The map warping model was substantially

different from the current one (positions of features were

relative to a particular survey shot, not to positions of all

stations in a scrap). This version already included some

interesting features such as transformation functions which

allowed user specification of the input format for survey data,

or splitting large maps to multiple sheets.

Dec 30: the first web page (with data examples but without

source code)

145

• 2000

Jan: xthedit (Tcl/Tk), a graphical front-end for Therion

Feb 18: start of reprogramming (Perl)

Apr 1: the first hyperlinked PDF cave map / atlas

Aug: experiments with PDF, pdfTEX and METAPOST

• 2001

Nov: start of reimplementation from scratch: Therion (C++ with

some Perl scripts inherited from the previous version); notion

of a scrap; interactive 2D map editor ThEdit as a replacement

of xthedit (Delphi)

Dec: ThEdit exports simple map for the first time

• 2002

Mar: Therion 0.1 — Therion is able to process survey data

(centreline) of the Cave of Dead Bats. XTherion, text editor

designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 — Therion compiles simple map (consisting of

two scraps) for the first time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of

ThEdit)

Sep: Therion compiles first real and complex map of a cave.

XTherion extended to compiler.

• 2003

Mar: the first version of The Therion Book finished

Apr: Therion included in Debian GNU/Linux

146

Jun: all Perl scripts rewritten in C++, Therion is one executable

program now (although using Survex and TEX)

• 2004

Mar: Therion 0.3 — Therion exports 3D model created from 2D

maps. Loop closure algorithm included into Therion.

• 2006

Oct: Therion 0.4 — New 3D viewer (Loch).

• 2007

Feb: Therion 0.5 — Support for bitmap sketches morphing.

• 2016

Dec: GitHub repository.

• 2021

Jul: Therion 6.0.0 — Improved graphics (smooth colour

transitions, coulour management).

Future

Although Therion is already used for map production, there are a

lot of new features to be implemented:

General

• loop closure information in SQL

147

2D maps

• complete the predefined symbol sets

• generate registers for atlas

• use MPlib instead of METAPOST

3D models

• improve passage walls modeling

XTherion

• improve 2D editing capabilities

Loch

• colour schemes

• survey tree for selecting sub-surveys to display

• spatial filtering (e.g. clipping by planes)

• support for multiple surfaces

Labyrinth

• completely new GUI in the far future (see

https://labyrinth.speleo.sk)

148

https://labyrinth.speleo.sk

	Table of Contents
	Introduction
	Creating data files
	Processing data
	What do we get
	Changing layout of PDF maps
	Appendix

