The Therion Book
Stacho Mudrak
Martin Budaj

Therion is copyrighted software. Distributed under the GNU
General Public License.

Copyright © 1999-2021 Stacho Mudrék, Martin Budaj
This book describes Therion 6.2.0 (2023-12-21).

Code contributions by Matéj Plch, Olly Betts, Marco Corui,
Viadimir Georgiev, Georg Pacher and Dimitrios Zachariadis.

We owe thanks to Martin Sluka, Ladislav Blazek, Martin Heller,
Wookey, Olly Betts and all users for their feedback, support and
suggestions.

Table of Contents

Introduction
Why Therion? .
Features R
Software requirements .
Installation R

Setting-up an environment
How does it work?

First run . .
Creating data files

Basics .

Data types

Coordinate systems .

Magnetic declination

Data format

‘encoding’

‘input’ .

‘survey’

‘centreline’

‘scrap’

‘point’ .

‘line’

‘area’

‘join’

‘equate’

‘map’

‘surface’

‘import’

‘grade’ .

‘revise’ .
Custom attributes
XTherion R

XTherion—text editor

XTherion—map editor

55
56
56
57
58
58

Additional tools

64

Keyboard and mouse ShOlt(‘llt§ in the Map edltOI 65

Thinking in Therion
How to enter a centreline
How to draw maps
How to create models
Therion in depth . .
How the map is put mgothor
Processing data
Configuration file
‘system’
‘encoding’
‘language’
‘es’ L. L.
‘sketch-warp’
‘input’
‘source’
‘select’
‘unselect’ .
‘maps’ .
‘maps-offset’ .
Jog’
‘text’
‘layout’
‘lookup’
‘setup3d’
‘sketch-colors’
‘export’
Running Therion .
XTherion—compiler
‘What do we get
Information files
Log file
XTherion
SQL export . Lo
Lists—caves, surveys, continuations
2D maps . .
Maps for prlntmg

68
69
70
71
71
72
75
75
75
75
76
76
76
7
7
s
79
79
79
80
80
80
92
94
94
94
98

. 101

102

. 102

102

. 103

103

. 105

106

. 106

Maps for GIS

Special-purpose maps
3D models

Loch .

Changing layout of PDF maps
Page layout in the atlas mode
Page layout in the map mode
Customizing text labels
New map symbols

Point symbols
Line symbols
Area symbols
Special symbols

Appendix

Compilation
Installing the dependenmea
Using CMake .
Legacy approach: using make
Hacker’s guide .
Environment variables
Initialization files .
Therion
XTherion .
Limitations
Example data .
History
Future .
General
2D maps .
3D models
XTherion .
Loch
Labyrinth

107

. 107

107

. 107

108

. 108

117

. 119

119

. 122

123

. 124

125
126
126

. 126

128

. 129

130

. 133

133

. 134

141

. 141

143

. 145

147

. 147

148

. 148

148

. 148

148

Introduction

Therion is a tool for cave surveying. Its purpose is to help

e archive survey data on a computer in a form as close to the
original notes and sketches as possible and retrieve them in a
flexible and efficient way;

e draw a nice up-to-date plan or elevation map;
e create a realistic 3D model of the cave.

It runs on Unix, Linux, MacOS X and Win32 operating systems.
Source code and Windows installer are available on the Therion web
page (https://therion.speleo.sk).

Therion is distributed under the GNU General Public License.

Why Therion?

In the 1990s we did a lot of caving and cave surveying. Some
computer programs existed which displayed survey shots and
stations after loop closure and error elimination. These were a
great help, especially for large and complicated cave systems. We
used the output of one of them—TJIKPR—as a background layer
with survey stations for hand-drawn maps. After finishing a huge
166-page Atlas of the Cave of Dead Bats in early 1997, we soon
had a problem: we found new passages connecting between known
passages and surveyed them. After processing in TJIKPR, the new
loops influenced the position of the old surveys; most survey stations
now had a slightly different position from before due to the changed

https://therion.speleo.sk
https://www.gnu.org/

error distribution. So we could either draw the whole Atlas again,
or accept that the location of some places was not accurate—in

the case of loops with a length of approximately 1km there were
sometimes errors of about 10 m—and try to distort the new passages
to fit to old ones.

These problems remained when we tried to draw maps using some
CAD programs in 1998 and 1999. It was always hard to add new
surveys without adapting the old ones to the newly calculated
positions of survey stations in the whole cave. We found no program
that was able to draw an up-to-date complex map (i.e. not just
survey shots with LRUD envelope), in which the old parts are
modified according to the most recent known coordinates of survey
stations.

In 1999 we began to think about creating our own program for map
drawing. We knew about programs which were perfectly suited

for particular sub-tasks. There was METAPOST, a high level
programming language for vector graphics description, Survex for
excellent processing of survey shots, and TEX for typesetting the
results. We only had to glue them together. By Xmas 1999 we
had a minimalistic version of Therion working for the first time.
This consisted only of about 32kB of Perl scripts and METAPOST
macros but served the purpose of showing that our ideas were
implementable.

During 2000-2001 we searched for the optimal format of the input
data, programming language, concept of interactive map editor and
internal algorithms with the help of Martin Sluka (Prague) and
Martin Heller (Ziirich). In 2002 we were able to introduce the first
really usable version of Therion, which met our requirements.

Features

Therion is a command-line application. It processes input files,
which are—including 2D maps—in text format, and creates files
with 2D maps or 3D model as the output.

The syntax of input files is described in detail in later chapters. You
may create these files in an arbitrary plain text editor like ed or wvi.
They contain instructions for Therion, e.g.

point 1303 1004 pillar

where point is a keyword for point symbol followed by its
coordinates and a symbol type specification.

Hand-editing of such files is not easy—especially when you draw
maps, you need to think in spatial (Cartesian coordinate) terms.
Thus there is a special GUI for Therion called XTherion. XTherion
works as an advanced text editor, map editor (where maps are drawn
fully interactively) and compiler (which runs Therion on the data).

It may look quite complicated, but this approach has a lot of
advantages:

e There is strict separation of data and visualization. The data files
specify only where the objects are, not what they look like. The
visual representation is added by METAPQOST in later phases
of data processing. (It’s a very similar concept to XML data
representation.)

This makes it possible to change map symbols used without
changing the input data, or merge more maps created by different

people in different styles into one map with unified map symbols
set.

2D maps are adapted for particular output scale (level of
abstraction, non-linear scaling of symbols and texts)

e All data is relative to survey station positions. If the coordinates
of survey stations are changed in the process of loop closure, then
all relevant data is moved correspondingly, so the map is always
up-to-date.

e Therion is not dependent on particular operating system,
character encoding or input files editor; input files will remain

human readable

e It’s possible to add new output formats

e 3D model is generated from 2D maps to get a realistic 3D model
without entering too much data

e although the support for WYSIWYG is limited, you get what you
want

Software requirements

“A program should do one thing, and do it well.” (Ken Thompson)
Therefore we use some valuable external programs, which are related
to the problems of typesetting and data visualization. Therion can
then do its task much better than if it were a standalone application
in which you could calibrate your printer or scanner and, with one
click, send e-mail with your data.

Therion needs:

e PROJ library.

o TEX distribution. Necessary only if you want to create 2D maps
in PDF or SVG format.

e Tcl/Tk with BWidget and optionally tkImg extension. It is only
required for XTherion.

e LCDF Typetools if you want to use easy setup for custom fonts in
PDF maps

o convert and identify utilities from ImageMagick distribution, if
you want to use warping of survey sketches.

e ghostscript if you want to create calibrated images from
georeferenced PDF maps.

Windows installer includes all required packages with the exception
of ghostscript. Read the Appendiz if you want to compile Therion
yourself.

For displaying maps and models you may use any of the following
programs:

e any PDF or SVG viewer displaying 2D maps;

e any GIS supporting DXF or shapefile formats for analyzing the
maps;

e appropriate 3D viewer for models exported in other than default
format;

e any SQL database client to process the exported database.

Installation

Installation from sources (therion-5.*%.tar.gz package):

The source code is a primary Therion distribution. It needs to be
compiled and installed according to the instructions in the Appendix.

Installation on Windows:

Run the setup program and follow the instructions. It installs all
the required dependencies and creates shortcuts to XTherion and
Therion Book.

Setting-up an environment

Therion reads settings from the initialization file. Default settings
should work fine for users using just latin characters', standard TEX
and METAPOST.

If you want to use your own fonts for latin or non-latin characters in
PDF maps, edit the initialization file. Instructions on how to do this
are in the Appendiz.

How does it work?

So, now it’s clear what Therion needs, let’s have a look at the way it
interacts with all these programs:

In the PDF map Therion renders most of the accented characters as a
combination of accent and a base character. Some obscure accents might be
omitted. Precomposed accented letters are included for Slovak and Czech
languages.

scanned sketches

XTherion .
Plain base

input data therion.mp

/ makempx — mpto
} - !

Therion === MetaPost

dvitomp «—— TEX

Plain format
info & log files
Plain format

maps, models, DB pdfTeX —

therion.tex

Loch & other viewers — PDF maps

DON’'T PANIC! When your system is set-up correctly the majority
of this is hidden from the user and all necessary programs are run
automatically by Therion.

For working with Therion it is enough to know that you have to
create input data (best done with XTherion), run Therion, and
display the output files (3D model, map, log file) in the appropriate
program.

For those who want to understand more about it, here is a brief
explanation of the above flowchart. Program names are in roman

font, data files in italics. Arrows show data flow between programs.
Temporary data files are not shown. The meaning of colours:

o black—Therion programs and macros (XTherion is written in
Tcl/Tk, so it needs this interpreter to run)

o red—TEX package

e green—input files created by the user and output files created by
Therion

Therion itself does the main task. It reads the input files,
interprets them, finds closed loops and distributes errors. Next it
transforms all other data (e.g. 2D maps) according to new stations
position. Therion exports data for 2D maps in METAPOST format.
METAPOST gives the actual shape to abstract map symbols
according to map symbol definitions; it creates a lot of PostScript
files with small fragments of the cave. These are read back and
converted to a PDF-like format, which forms input data for pdfTREX.
PAfTEX does all the typesetting and creates a PDF file of the cave
map.

Therion also exports 3D models (full or centreline) in various
formats.

Centreline may be exported for further processing in any SQL
database.

First run
After explaining the basic principles of Therion it’s a good idea to
try it on the example data.
e Download the sample data from Therion web page and unpack it

somewhere on your computer’s hard drive.

e Run XTherion (under Unix and MacOS X by typing ‘xtherion’ in
the command line, under Windows there is a shortcut in the Start
menu).

e Open the file ‘thconfig’ from the sample data directory in the
‘Compiler’ window of XTherion

e Press ‘F'9’” or ‘compile’ in the menu to run Therion on the
data—you’ll get some messages from Therion, METAPOST and
TeX.

e PDF maps and 3D models are created in the data directory.

Additionally, you may open survey data files (*.th) in the ‘Text
editor’ window and map data files (*.th2) in the ‘Map editor’
window of XTherion. Although the data format may look confusing
at first, it will be explained in the following chapters.

Creating data files

Basics

The input files for Therion are in text format. There are a few rules
about how such a file should look:

e There are two kinds of commands. One-line commands and
multi-line commands.

e A one-line command is terminated by an end of line character.
The syntax of these is

command argl ... argN [-optionl valuel -option2 value2

]

where argl ... argN are obligatory arguments, and pairs -option
value are options, which you may freely omit. Which arguments
and options are available depends on the particular command. An
example may be

point 643.5 505.0 gradient -orientation 144.7

with three obligatory arguments and one optional option/value
pair. Sometimes options have no or multiple values.

e Multi-line commands begin similarly to one line commands, but
continue on subsequent lines until explicit command termination.
These lines may contain either data or options, which are applied
to subsequent data. If a data line starts with a word reserved for
an option, you have to insert ‘!’ in front of it. The syntax is

command argl ... argN [-optionl valuel -option2 value2

]

optionX valueX
data

endcommand
Again, for better illustration, a real example follows:

line wall -id walltobereferenced
1174.0 744.5
1194.0 756.5 1192.5 757.5 1176.0 791.0
smooth off
1205.5 788.0 1195.5 832.5 1173.5 879.0
endline

This command line has one obligatory argument, a line type
(passage wall in this case), followed by one option. The next two
lines contain data (coordinates of Bézier curves to be drawn). The
next line (“smooth off”) specifies an option which applies to
subsequent data (i.e. not for the whole line, unlike the option -id
in the first line) and the last line contains some more data.

if the value of an option or argument contains spaces, you
should enclose this value in " " or []. If you want to put a
double-quote " into text in " " you need to insert it twice. Quotes
are used for strings; brackets for numerical values and keywords.

each line ending with a backslash (\) is considered to continue on
the next line, as if there was neither line-break nor backlash.

everything that follows #, until the end of line—even inside a
command—is considered to be a comment, and is ignored.

e multiline comments inside comment ... endcomment block are
allowed in data and configuration files

Data types
Therion uses following data types:

e keyword > a sequence of A-Z, a-z, 0-9 and _-/ characters (not
starting with =7).

o ext_keyword > keyword that can also contain +*.,’ characters,
but not on the first position.

e date > a date (or a time interval) specification in the format
YYYY[.MM[.DD[@HH[:MM[:SS[.SS11111] [-
YYYY[.MM[.DD[@HH[:MM[:SS[.S811111]11 or ‘-’ to leave a date
unspecified.

e person > a person’s first name and surname separated by
whitespace characters. Use ‘/’ to separate first name and surname
if there are more names.

e string > a sequence of any characters. Strings may contain special
tag <lang:XX> to separate translations. In multilingual strings
only the text between <lang:XX> (where XX is the language
selected in initialization or configuration file) and the next
<lang:YY> tag is displayed on the output. If no match is found,
everything before any occurrence of <lang:ZZ> tag is displayed.

units > length units supported: meter(s|, centimeter[s], inchles],
feet[s], yard[s] (also m, cm, in, ft, yd). Angle units supported:
degree[s], minute]s] (also deg, min), grad[s|, mil[s], percent|age]
(clino only). A degree value may be entered in decimal notation

(z.y) or in a special notation for degrees, minutes and seconds
(deg[:min]:sec]]).

Coordinate systems

Therion supports coordinate transformations in geodetic coordinate
systems. You can specify cs option in centreline, surface,
import and layout objects and then enter XY data in given system.
You can also specify output cs in configuration file.

If you do not specify any cs in your dataset, it is assumed you are
working in local coordinate system, and no conversions are done. If
you specify cs anywhere in the data, you have to specify it for all
location data (fix, origin in layout etc.).

cs applies to all subsequent location data until other cs is specified
or until the end of the current object, whichever comes first.

Following coordinate systems are supported:

e UTM1 — UTM60 > Universal Transverse Mercator in northern
hemisphere and given zone, WGS84 datum. Equivalent to
EPSG:32601-EPSG:32660.

o UTM1N — UTM60ON > same as UTM1 — UTM60

e UTM1S — UTM60S > UTM in southern hemisphere, WGS84 datum.
Equivalent to EPSG:32701-EPSG:32760.

e lat-long, long-lat i latitude (N positive, S negative) and
longitude (E positive, W negative) in given order in degrees
(deg[:min[:sec]] allowed), WGS84 datum. Not supported on
output. Equivalent to EPSG:4326.

e EPSG: <number> > Most of EPSG coordinate systems.
Almost every coordinate system used worldwide has its own
EPSG number. To find the number of your system, see
https://epsg.org.

e ESRI:<number> > Similar to EPSG, but ESRI standard.

e ETRS > European Terrestrial Reference System 1989 (ETRS89);
long-lat order, not supported on output. Equivalent to
EPSG:4258.

e ETRS28 — ETRS37 > ETRS89 zones in UTM projection; east-north
order. Equivalent to EPSG:25828-EPSG:25837.

e JTSK, 1JTSK > Czechoslovak S-JTSK system used since 1920s with
south and west axis (JTSK) and its modified version with axis
pointing east and north and negative numbers (iJTSK). JTSK is
not supported on output (iJTSK is).

e JTSK03, 1JTSK03 > new S-JTSK realisation introduced in Slovakia
in 2011.

e 0SGB:<H, N, 0, S or T><A-Z except I> > British Ordnance
Survey National Grid.

e S-MERC 1> the spherical Mercator projection, as used by various
online mapping sites. Equivalent to EPSG:3857.

Magnetic declination

Therion contains built-in IGRF? Earth geomagnetic field model valid
for period 1900-2025. It is automatically used if the cave is located
in space with a fix station using any of the supported geodetic

?See https://www.ngdc.noaa.gov/IAGA/vmod/

https://epsg.org
https://www.ngdc.noaa.gov/IAGA/vmod/

coordinate systems and in time with the centerlines date command.
The computed declination is listed in the LOG file for information.

If the user specified a declination in the centerline, that value
takes precedence over the automatic calculation.

Data format

The syntax of input files is explained in the description of individual
commands. Studying the example files distributed with Therion will
help you understand. See also an example in the Appendiz.

Each of the following sections describes one Therion command using
the following structure:

Description: notes concerning this command.
Syntaz: schematic syntax description.

Context: specifies the context in which is this command allowed.
The survey context means that the command must be enclosed
by survey ... endsurvey pair. The scrap context means that
the command must be enclosed within scrap ... endscrap pair.
Context all means that the command may be used anywhere.

Arguments: a list of the obligatory arguments with explanations.
Options: a list of the available options.

Command-like options: options for multi-line commands, which can
be specified among the data lines.

‘encoding’

Description: sets the encoding of input file. This allows the use of
non-ASCII characters in input files.

Syntax: encoding <encoding-name>
Context: It should be the very first command in the file.
Arguments:

e <encoding-name> > to see a list of all the supported encoding
names, run Therion with --print-encodings option. ‘UTF-8’
(Unicode) and ‘ASCII’ (7bit) encodings are always supported.

‘input’
Description: inserts the contents of a file in place of the command.
Default extension is ‘.th’ and may be omitted. For greatest

portability use relative paths and Unix slashes ‘/’, not Windows
backslashes ‘\’, as directory separators.

Syntaz: input <file-name>
Context: all
Arguments:

e <file-name>

‘survey’

Description: Survey is the main data structure. Surveys may be
nested—this allows a hierarchical structure to be built. Usually
some level of this hierarchical structure survey represents caves,
higher levels karst arcas and lower levels e.g. passages.

Each survey has its own namespace specified by its <id> argument.
Objects (like survey stations or scraps; see below) which belong to a
subsurvey of the current survey are referenced as

<object-id>@<subsurvey-id>,
or, if there are more nesting levels
<object-id>@<subsubsurvey-id>.<subsurvey-id>.?

This means, that object identifiers must be unique only in the scope
of one survey. For instance, survey stations names can be the same
if they are in different surveys. This allows stations to be numbered
from 0 in each survey or the joining of two caves into one cave
system without renaming survey stations.

Syntaz: survey <id> [OPTIONS]
other therion objects
endsurvey [<id>]

Contezt: none, survey
Arguments:

e <id> > survey identifier

3 Note: it’s not possible to reference any object from the higher-level surveys.

Options:

e namespace <on/off> b specify whether survey creates namespace
(on by default)

e declination <specification> > set the default declination
for all data objects in this survey (which can be overridden by
declination definitions in subsurveys). The <specification> has
three forms:

1. [1 an empty string. This will reset the declination definition.

2. [<value> <units>] will set a single value (also for undated
surveys).

3. [<datel> <valuel> [<date2> <value2> ...] <units>]
will set declination for several dates. Then the declination of each
shot will be set according to the date specification of the data
object. If you want to explicitly set the declination for undated
survey data, use ‘-’ instead of date.

If no declination is specified and some geodetic coordinate system
is defined, the declination is automatically computed using
built-in geomagnetic model.

N.B.: The declination is positive when the magnetic north is east
of true north.

e person-rename <old name> <new name> > rename a person
whose name has been changed

title <string> > description of the object

e entrance <station-name> > specifies the main entrance to the
cave represented by this survey. If not specified and there is
exactly one station marked entrance in this survey, it is considered

to represent a cave also. This information is used for cave-list
export.

‘centreline’

Description: Survey data (centreline) specification. The syntax is
borrowed from Survex with minor modifications; the Survex manual
may be useful as an additional reference for the user. A synonym
term ‘centerline’ may be used.

Syntaz: centreline [OPTIONS]

date <date>

team <person> [<roles>]

explo-date <date>

explo-team <person>

instrument <quantity list> <description>

calibrate <quantity list> <zero error>
[<scale>]

units <quantity list> [<factor>] <units>

sd <quantity list> <value> <units>

grade <grade list>

declination <value> <units>

grid-angle <value> <units>

infer <what> <on/off>

mark <type>

flags <shot flags>

station <station> <comment> [<flags>]

cs <coordinate system>

fix <station> [<x> <y> <z> [<std x> <std y>
<std z>]]

equate <station list>
data <style> <readings order>
break

group

endgroup

walls <auto/on/off>

vthreshold <number> <units>

extend <spec> [<station> [<station>]]
station-names <prefix> <suffix>

[SURVEY DATA]

endcentreline
Contest: none, survey
Options:
e id <ext_keyword> b id of the object

e author <date> <person> > author of the data and its creation
date

e copyright <date> <string> i copyright date and name
e title <string> b description of the object
Command-like options:

e date <date> b survey date. If multiple dates are specified, a time
interval is created.

e explo-date <date> > discovery date. If multiple dates are
specified, a time interval is created.

e team <person> [<roles>] b a survey team member. The first
argument is his/her name, the others describe the roles of the

person in the team (optional—currently not used). The following
role keywords are supported: station, [back]length, [back]tape,
[back|compass, [back]bearing, [back]clino, [back]gradient, counter,
depth, station, position, notes, pictures, pics, instruments (insts),
assistant (dog).

explo-team <person> b a discovery team member.

instrument <quantity list> <description> b description of
the instrument that was used to survey the given quantities (same
keywords as team person’s role)

infer <what> <on/off> > ‘infer plumbs on’ tells the program
to interpret gradients £90° as UP/DOWN (this means no clino
corrections are applied). ‘infer equates on’ will case program
to interpret shots with 0 length as equate commands (which
means that no tape corrections are applied)

declination <value> <units> b sets the declination for
subsequent shots

true bearing = measured bearing + declination.

The declination is positive when the magnetic north is east of true
north. If no declination is specified, or the declination is reset (=),
then a valid declination specification is searched for in all surveys
the data object is in. See declination option of survey command.

grid-angle <value> <units> > specifies the magnetic grid angle
(declination against grid north).
sd <quantity list> <value> <units> > sets the standard

deviation for the given measurements. The Quantity list can
contain the following keywords: length, tape, bearing, compass,

gradient, clino, counter, depth, x, y, z, position, easting, dx,
northing, dy, altitude, dz.

e grade <grade list> b sets standard deviations according to the
survey grade specification (see grade command). All previously
specified standard deviations or grades are lost. If you want to
change an SD, use the sd option after this command. If multiple
grades are specified, only the last one applies. You can specify
grades only for position or only for surveys. If you want to
combine them, you must use them in one grade line.

e units <quantity list> [<factor>] <units> > set the units
for given measurements (same quantities as for sd).

e calibrate <quantity list> <zero error> [<scale>]
> set the instrument calibration. The measured
value is calculated using the following formula:
measured value = (read value — zero error) x scale. The
supported quantities are the same as sd.

e break > can be used with interleaved data to separate two
traverses

e mark [<station list>] <type> > set the type of named
stations. <type> is one of: fixed, painted and temporary (default).
If there is no station list, all subsequent stations are marked.

e flags <shot flags> i set flags for following shots. The
supported flags are: surface (for surface measurements),
duplicate (for duplicated surveys), splay (for short side legs
that are hidden in maps and models by default). These are
excluded from length calculations.

All shots having one of the stations named either ‘.’ or ‘-’ are
splay shots by default (see also data command).

If flag is set to approx[imate], it is included to total length
calculations, but also displayed separately in survey statistics. It
should be used for shots, that were not surveyed properly and
need to be resurveyed.

Also “not” is allowed before a flag.

station <station> <comment> [<flags>] > set the station
comment and its flags. If "" is specified as a comment, it is
ignored.

Supported flags: entrance, continuation,

air-draught [:winter/summer], sink, spring, doline, dig,
arch, overhang. Also not is allowed before a flag, to remove
previously added flag.

You can also specify custom attributes to the station using attr
flag followed by attribute name and value. Example:
station 4 "pit to explore" continuation attr code "V"

If there is a passage, that was explored, but not surveyed

yet, estimated explored length of this passage can be added

to the station with continuation flag. Just add explored
<explored-length> to the station flags. Explored lengths are a
part of survey/cave statistics, displayed separately. Example:
station 40 "ugly crollway" continuation explored 100m

cs <coordinate system> > coordinate system for stations with
fixed coordinates

fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] >
fix station coordinates (with specified errors—only the units
transformation, not calibration, is applied to them).

equate <station list> > set points that are equivalent

e data <style> <readings order> i> set data style (normal,
topofil, diving, cartesian, cylpolar, dimensions, nosurvey) and
readings order. Reading is one of the following keywords: station,
from, to, [back]tape/[back]length, [back]compass/[back]|bearing,
[back]clino/[back]gradient, depth, fromdepth, todepth,
depthchange, counter, fromcount, tocount, northing, easting,
altitude, up/ceiling*, down/floor, left, right, ignore, ignoreall.

See Survex manual for details.

For interleaved data both newline and direction keywords are
supported. If backward and forward compass or clino reading are
given, the average of them is computed.

If one of the shot stations is named either ‘.’ or ‘-’, the shot has
splay attribute set. Dot should be used for shots ending on
features inside passage, dash for shots ending on passage walls,
floor or ceiling. Although Therion makes no distinction between
them yet, it should be used to improve 3D modeling in the future.

e group

e endgroup > group/endgroup pair enables the user to make
temporary changes in almost any setting (calibrate, units, sd,
data, flags...)

e walls <auto/on/off> > turn on/off passage shape generation

from LRUD data for subsequent shots. If set auto, passage is
generated only if there is no scrap referencing given centreline.

vthreshold <number> <units> > threshold for interpreting
LRUD readings as left-right-front-back reading perpendicular to
the shot.

4 dimension may be specified as a pair [<from> <to>], meaning the size at
the beginning and end of the shot

If passeges are horizontal (inclination < vthreshold), LR is
perpendicular to the shot and UD is vertical.

If passages are more or less vertical (inclination >
vthreshold), even UD becomes perpendicular to the shot —
otherwise passages would not look very good. In the case of
vertical shots, UD is interpreted as north-south dimension from
the station to allow tube-like modelling of verticals.

extend <spec> [<station> [<station>]] > control how the
centerline is extended. <spec> is one of the following

normal/reverse > extend given and following stations to the
same/reverse direction as previous station. If two stations are
given—direction is applied only to given shot.

left/right > same as above, but direction is specified explicitly.

vertical > do not move station (shot) in X direction, use only Z
component of the shot

start b specify starting station (shot)

ignore > ignore specified station (shot), continue extended
elevation with other station (shot) if possible

hide > do not show specified station (shot) in extended elevation
If no stations are specified, <spec> is valid for following shots
specified.

station-names <prefix> <suffix> b adds given prefix/suffix to
all survey stations in the current centreline. Saves some typing.

‘scrap’

Description: Scrap is a piece of 2D map, which doesn’t contain
overlapping passages (i.e. all the passages may be drawn on the
paper without overlapping). For small and simple caves, the whole
cave may belong to one scrap. In complicated systems, a scrap

is usually one chamber or one passage. Ideally, a scrap contains
about 100 m of the cave.® Each scrap is processed separately by
METAPQOST; scraps which are too large may exceed METAPOST's
memory and cause errors.

Scrap consists of point, line and area map symbols. See chapter How
the map is put together for explanation how and in which order are
they displayed.

Scrap border consists of lines with the —outline out or -outline
in options (passage walls have —outline out by default). These
lines shouldn’t intersect—otherwise Therion (METAPOST) can’t
determine the interior of the scrap and METAPOST issues a warning
message “scrap outline intersects itself”.

Each scrap has its own local cartesian coordinate system, which
usually corresponds with the millimeter paper (if you measure the
coordinates of map symbols by hand) or pixels of the scanned image

5 If necessary, scraps may be much smaller—just to display a few meters of the
cave. When deciding about scrap size please take into account the following:
Using small scraps may take more time for cartographer to optimize scrap
joins. On the other hand smaller scraps will probably be less distorted by
map warping algorithms than larger scraps. Using too large scraps may
exhaust METAPOST’s memory if passage fills are frequently used and the
map editor in XTherion is much less responsive when editing huge scraps.

(if you use XTherion). Therion does the transformation from this
local coordinate system to the real coordinates using the positions of
survey stations, which are specified both in the scrap as point map
symbols and in centreline data. If the scrap doesn’t contain at least
two survey stations with the -name reference, you have to use the
-scale option for calibrating the scrap. (This is usual for cross
sections.)

The transformation consists of the following steps:

e Linear transformation (shifting, scaling and rotation) which ‘best’
fits stations drawn in the scrap to real ones. ‘Best’ means that the
sum of squared distances between corresponding stations before
and after transformation is minimal. The result is displayed red if
debug option of the layout command is set on.

e Non-linear transformation of the scrap which (1) moves survey

stations to their correct position, (2) is continuous. Displayed
blue in the debug mode.

e Non-linear transformation of the scrap which (1) moves
joined points together, (2) doesn’t move survey stations, (3)
is continuous. Finally the position of curves’ control points is
adjusted to preserve smoothness. The result is final map.

Syntaz: scrap <id> [OPTIONS]
. point, line and area commands
endscrap [<id>]

Context: none, survey
Arguments:

e <id> 1> scrap identifier

Options:

e projection <specification> b specifies the drawing projection.
Each projection is identified by a type and optionally by an index
in the form type[:index]. The index can be any keyword. The
following projection types are supported:

1. none > no projection, used for cross sections or maps that are
independent of survey data (e.g. digitization of old maps where
no centreline data are available). No index is allowed for this
projection.

2. plan 1> basic plan projection (default).

3. elevation > orthogonal projection (a.k.a. projected profile)
which optionally takes a view direction as an argument
(e.g. [elevation 10] or [elevation 10 deg]).

4. extended > extended elevation (a.k.a. extended profile).

e scale <specification> > is used to pre-scale (convert
coordinates from pixels to meters) the scrap data. If scrap
projection is none, this is the only transformation that is done
with coordinates. The <specification> has four forms:

1. <number> > <number> meters per drawing unit.

2. [<number> <length units>] > <number> <length units>
per drawing unit.

3. [<num1> <num2> <length units>] > <numl> drawing units

corresponds to <num2> <length units> in reality.

4. [<numl> ... <num8> [<length units>]] > this is the
most general format, where you specify, in order, the x and y
coordinates of two points in the scrap and two points in reality.

Optionally, you can also specify units for the coordinates of the
‘points in reality’. This form allows you to apply both scaling and
rotation to the scrap.

cs <coordinate system> > assumes that (calibrated) local scrap
coordinates are given in specified coordinate system. It is useful
for absolute placing of imported sketches where no survey stations
are specified.®

stations <list of station names> > stations you want to plot
to the scrap, but which are not used for scrap transformation.
You don’t have to specify (draw) them with the point station
command.

sketch <filename> <x> <y> b underlying sketch bitmap
specification (lower left corner coordinates).

walls <on/off/auto> b specify if the scrap should be used in 3D
model reconstruction

flip (none)/horizontal/vertical > flips the scrap after scale
transformation

station-names <prefix> <suffix> b adds given prefix/suffix to
all survey stations in the current scrap. Saves some typing.

author <date> <person> > author of the data and its creation
date

copyright <date> <string> b copyright date and name

title <string> > description of the object

S If there are some survey stations in the scrap, the cs specification is ignored.

‘point’
Description: Point is a command for drawing a point map symbol.
Syntaz: point <x> <y> <type> [OPTIONS]
Context: scrap
Arguments:
e <x> and <y> are the drawing coordinates of an object.
e <type> determines the type of an object. The following types are
supported:
special objects: dimensions”, section®, station’;
labels: altitude'’, date!', height'? label, passage-height'?,

remark, station-name't;

7 Use -value option to specify passage dimensions above/below centerline
plane used while creating 3D model.

8 section is an anchor for placing the cross-section at this point. This symbol
has no visual representation. The cross section must be in the separate
scrap with ‘none’ projection specified. You can specify it through the
-scrap option.

9 Survey station. For each scrap (with the exception of scraps in ‘none’
projection) at least one station with station reference (-name option) has to
be specified.

10 General altitude label. All altitudes are exported as a difference against grid
Z origin (which is 0 by default). To display altitude on the passage wall, use
altitude option for any line point of the passage wall

11 Set date’s value with the -value option

2 Height of formations inside of the passage (like pit etc.); see below for
details.

13 Height of the passage; see below for details.

M If no text is specified, the name of the nearest station is used.

symbolic passage fills:'"* bedrock, blocks, clay, debris, guano,
ice, mudcrack, mud, pebbles, raft, sand, snow, water;

speleothems: anastomosis, aragonite, cave-pearl, clay-tree,
crystal, curtains, curtain, disc-pillar, disc-stalactite,
disc-stalagmite, disc-pillars, disc-stalactites,
disc-stalagmites, disk, flowstone, flute, gypsum-flower,
gypsum, helictites, helictite, karren, moonmilk, pendant,
pillar-with-curtains, pillars-with-curtains, pillar,
popcorn, raft-cone, rimstone-dam, rimstone-pool,

scallop, soda-straw, stalactite-stalagmite,
stalactites-stalagmites, stalactite, stalactites,
stalagmite, stalagmites, volcano, wall-calcite;

equipment: anchor, bridge, camp, fixed-ladder, gate,
handrail, masonry, nameplate, no-equipment, no-wheelchair,
rope-ladder, rope, steps, traverse, via-ferrata, walkway,

wheelchair;

passage ends: breakdown-choke, clay-choke, continuation,
entrance, flowstone-choke, low-end, narrow-end;

others: air-draught', altar, archeo-excavation,
archeo-material, audio, bat, bones, danger, dig,
electric-light, ex-voto, extral!”, gradient, human-bones,
ice-pillar, ice-stalactite, ice-stalagmite,
map-connection'®, paleo-material, photo, root,

15 Unlike other point symbols, these are clipped by the scrap border. See the
chapter How the map is put together.

16 Number of ticks is set according to -scale option

7 Additional morphing point. See -dist and -value options.

8 Virtual point, used to indicate connection between shifted maps (extended
elevation, map offset).

seed-germination, sink, spring'’, tree-trunk, u®,
vegetable-debris, water-drip, water-flow.

Options:

e subtype <keyword> > determines the object’s subtype. The
following subtypes for given types are supported:
station:*' temporary (default), painted, natural, fixed;
air-draught: winter, summer, undefined (default);
water-flow: permanent (default), intermittent, paleo.

The subtype may be specified also directly in <type> specification

(]

using ‘:’ as a separator.?

Any subtype specification can be used with user defined type
(u). In this case you need also to define corresponding metapost
symbol (see the chapter New map symbols).

e orientation/orient <number> I> defines the orientation of the
symbol. If not specified, it’s oriented to north. 0 < number < 360.

e align b alignment of the symbol or text. The following values are
accepted: center, c, top, t, bottom, b, left, I, right, r, top-left, tl,
top-right, tr, bottom-left, bl, bottom-right, br.

e scale > symbol scale, can be: tiny (xs), small (s), normal (m),
large (1), huge (x1) or a numeric value. Normal is default. Named
sizes scale by /2, so that zs = 0.5, s = 0.707, m = 1.0, | = 1.414
and zl = 2.0.

19 Always use spring and sink symbols with a water-flow arrow.

20 For user defined point symbols.

2Lif station subtype is not specified, Therion reads it from centreline, if it’s
specified there

22F.g. station:fixed

e place <bottom/default/top> b changes displaying order in the
map.

e clip <on/off> b specify whether a symbol is clipped by the
scrap border. You cannot specify this option for the following
symbols: station, station-name, label, remark, date, altitude,
height, passage-height.

e visibility <on/off> i displays/hides the symbol.

e context <point/line/area> <symbol-type> > (to be used with
symbol-hide and symbol-show layout options) symbol will be
hidden/shown according to rules for specified <symbol-type>.?

e id <ext_keyword> i ID of the symbol.
Type-specific options:

e dist <distance> > if the point type is extra, specifies the
distance to the nearest station (or station specified using -from
option. If not specified, appropriate value from LRUD data is
used.

e from <station> 1> if the point type is extra, specifies reference
station.

e name <reference> b if the point type is station, this option gives
the reference to the real survey station.

extend [prev[ious] <station>] i if the point type is station
and scrap projection is extended elevation, you can adjust the
extension of the centreline using this option.

23 Example: if you specify -context point air-draught to a label which
displays the observation date, the symbol-hide point air-draught
command would hide both air-draught arrow and the corresponding label.

scrap <reference> b if the point type is section, this is a
reference to a cross-section scrap.

explored <length> > if the point type is continuation, you can
specify length of passages explored but not surveyed yet. This
value is afterwards displayed in survey/cave statistics.

text > text of the label, remark or continuation. It may contain
following formatting keywords:?*

 1> line break

<center>/<centre>, <left>, <right> i line alignment for
multi-line labels. Ignored if there is no
 tag.

<thsp> > thin space
<rm>, <it>, <bf>, <ss>, <si> > font switches

<rtl> and </rtl> > marks beginning and end of a right-to-left
written text

<lang:XX> > creates multilingual label (see string type for
detailed description)

<size:N> 1> specify the font size in points; N should be an integer
between 1 and 127.

<size:N> > specify the font size as a percentage of the native
font size of the given label; N should be between 1 and 999.%

24 For SVG output, only
, <thsp>, <it>, <bf>, <rm> and <lang:XX>
keywords are taken into account; all others are silently ignored.

25 For practical reasons, the values are currently used in the increments of 10,
so both 46 and 53 are interpreted as 50 % size.

<size:S> > specify the font size using predefined scales; S can be
one of xs, s, m, 1, x1.

value > value of height, passage-height, altitude, dimensions or
date

height: according to the sign of the value (positive, negative

or unsigned), this type of symbol represents chimney height,

pit depth or step height in general. The numeric value can be
optionally followed by ‘?’, if the value is presumed and units can
be added (e.g. -value [407 ft]).

passage-height: the following four forms of value are supported:
+<number> (the height of the ceiling), ~<number> (the depth of
the floor or water depth), <number> (the distance between floor
and ceiling) and [+<number> -<number>] (the distance to ceiling
and distance to floor).

altitude: the value specified is the altitude difference from the
nearest station. The value will be set to 0 if defined as ‘-’, *.”7,
‘nan’, ‘NAN’ or ‘NaN’. If the altitude value is prefixed by ‘fix’ (e.g.
-value [fix 1300]), this value is used as an absolute altitude.
The value can optionally be followed by length units.

dimensions: -value [<above> <below> [<units>]] specifies
passage dimensions above/below centerline plane used in 3D
model.

date: -value <date> sets the date for the date point.

‘line’
Description: Line is a command for drawing a line symbol on the
map. Each line symbol is oriented and its visualization may depend

on its orientation (e.g. pitch edge ticks). The general rule is that the
free space is on the left, rock on the right. Examples: the lower side
of a pitch, higher side of a chimney and interior of a passage are on
the left side of pitch, chimney or wall symbols, respectively.

Syntaz: line <type> [OPTIONS]
[OPTIONS]

[LINE DATA]
[OPTIONS]
[LINE DATA]

endline
Context: scrap
Arguments:

e <type> is a keyword that determines the type of line. The
following types are supported:

passages: wall, contour, slope®®, floor-step, pit, pitch
(synonym of pit), ceiling-step, chimney, overhang,
ceiling-meander, floor-meander, low-ceiling, pit-chimney;

26 Slope line marks upper border of the sloping area. It’s necessary to specify
1-size in at least one point. Gradient lines length and orientation is an
average of specified 1-sizes and orientations in the nearest points. If
there is no orientation specification, gradient marks are perpendicular to the
slope line.

passage fills: flowstone, moonmilk, rock-border?, rock-edge®,
water-flow, abyss-entrance, dripline, fault, gradient,
joint, rimstone-dam, rimstone-pool;

equipment: fixed-ladder, handrail, rope, rope-ladder, steps,
via-ferrata, walkway;

labels: label;

special: border, arrow, section® survey® map-connection®,

u®?,

Command-like options:

Most of these options are accepted both as a 1ine command
option and as a [LINE DATA] option despite representing a 'whole
line’ option. The last one appearing prevails. The exceptions are
adjust, altitude, 1-size, mark, orientation, size and smooth
that are only accepted as a [LINE DATA] option.

2T Quter outline of large boulders. If the line is closed, it is filled with the
background colour.

28 Inner edges of large boulders.

29 Line showing cross-section position. If both control points (red dots) of a
Bézier curve (grey line) are given then the section line (blue) is drawn up to
the perpendicular projection (dotted) of the first control point and from
the projection (dotted) of the section control point. No section curve is
displayed.

30 Survey line is automatically drawn by Therion.

31 Used to indicate connection between maps (in offset, or the same points in
extended elevation).

32 For user defined line symbols.

The direction and gradient options are only accepted as a
[LINE DATA] command option when set to point. Otherwise
they are accepted as a 1ine command option.

e subtype <keyword> b determines line subtype. The following
subtypes are supported for given types:

wall: invisible, bedrock (default), sand, clay, pebbles,
debris, blocks, ice, underlying, overlying, unsurveyed,
presumed, pit**, flowstone, moonmilk;

border: visible (default), invisible, temporary, presumed;
water-flow: permanent (default), conjectural, intermittent;

survey: cave (default), surface (default if centreline has surface

flag).
The subtype may be specified also directly in <type> specification

(]

using ‘:’ as a separator.®*

Any subtype specification can be used with user defined type
(u). In this case you need also to define corresponding metapost
symbol (see the chapter New map symbols).

e [LINE DATA] specify either the coordinates of a line segment <x>
<y>, or coordinates of a Bézier curve arc <clx> <cly> <c2x>
<c2y> <x> <y>, where c indicates the control point.

e close <on/off/auto> > determines whether a line is closed or
not

e mark <keyword> > is used to mark the point on the line (see join
command).

33 Usually open to surface.
34 E.g. border:invisible

e outline <in/out/none> > determines whether the line serves as
a border line for a scrap. Default value is ‘out’ for walls, ‘none’
for all other lines. Use -outline in for large pillars etc.

e reverse <on/off> > whether points are given in reverse order.

e smooth <on/off/auto> > whether the line is smooth at the given
point. Auto is default.

e adjust <horizontal/vertical> b shifts the line point to be
aligned horizontally /vertically with the previous point. It can’t be
set on the first point. The result is a horizontal/vertical line
segment. This option is not allowed in the plan projection.

e place <bottom/default/top> > changes displaying order in the
map.

e clip <on/off> b specify whether a symbol is clipped by the
scrap border.

e visibility <on/off> > displays/hides the symbol.

e context <point/line/area> <symbol-type> > (to be used with
symbol-hide and symbol-show layout options) symbol will be
hidden/shown according to rules for specified <symbol-type>.

Type-specific options:

e altitude <value> > can be specified only with the wall type.
This option creates an altitude label on the wall. All altitudes are
exported as a difference against grid Z origin (which is 0 by
default). If the value is specified, it gives the altitude difference of
the point on the wall relative to the nearest station. The value
will be set to 0 if defined as ”-”, ”.”, "nan”, "NAN” or "NaN”".
The value can be prefixed by a keyword “fix”, then no nearest
station is taken into consideration; the absolute given value is

used instead. Units can follow the value. Examples: +4, [+4 m],
[fix 1510 m].

e anchors <on/off> > this option can be specified only with the
‘rope’ line type. Default is on.

border <on/off> 1> this option can be specified only with the
‘slope’ symbol type. It switches on/off the border line of the slope.

e direction <begin/end/both/none/point> > can be used only
with the section type. It indicates where to put a direction arrow
on the section line. None is default. The point option must be
used inside [LINE DATA]. The others can (and should) be used as
a line option.

e gradient <none/center/point> > can be used only with the
contour type and indicates where to put a gradient mark on the
contour line. If there is no gradient specification, behaviour is
symbol-set dependent (e.g. no tick in UIS, tick in the middle in
SKBB). The point option must be used inside [LINE DATA]. The
others can (and should) be used as a line option.

e head <begin/end/both/none> > can be used only with the arrow
type and indicates where to put an arrow head. End is default.

e 1-size <number> > Size of the line (to the left). Only valid on
and required for slope type.

e orientation/orient <number> > orientation of the symbols on
the line. Can be used only with slope type. If not specified, it’s
perpendicular to the line on its left side. 0 < number < 360.

e rebelays <on/off> 1> this option can be specified only with the
‘rope’ line type. Default is on.

e scale > scale affects only the text on label lines, can be: tiny
(xs), small (s), normal (m), large (1), huge (x1) or a numeric value.
Normal is default. Named sizes scale by v/2, so that s = 0.5,

s =0.707, m = 1.0, | = 1.414 and xl = 2.0. Absolute font sizes
(in points) can be assigned to named sizes using fonts-setup in
the layout configuration section.

e size <number> > synonym of l-size
e text <string> > valid only for label lines.

e height <value> > height of pit or wall:pit; available in
METAPOST as a numeric variable ATTR__height.

Options:

e id <ext_keyword> > ID of the symbol.

‘area’

Description: Area is specified by surrounding border lines. They
may be of any type, but must be listed in order and each pair of
consecutive lines must intersect. In order to be sure that lines
intersect even after scrap transformation you may e.g. continue a
lake border 1cm behind a passage wall—these overlaps will be
automatically clipped by scrap border. You may use invisible border
to achieve this inside of the passage. When defined by more than
one line, the actual area will be the intersection of the areas defined
by each separate line.

Syntax: area <type>
place <bottom/default/top>
clip <on/off>
visibility <on/off>

. border line references
endarea

Context: scrap
Arguments:

e <type> is one of following: water, sump, sand, debris, blocks,
flowstone, moonmilk, snow, ice, clay, pebbles, bedrock®,
u*®, mudcrack, pillar, pillar-with-curtains, pillars,
pillars-with-curtains, stalactite, stalactite-stalagmite,

stalagmite.
Command-like options:

All options can appear as command-like options or as area
options, i.e., on the same line as the area command. The last one
appearing prevails.

e the data lines consist of border line references (IDs)

e place <bottom/default/top> > changes displaying order in the
map.

e clip <on/off> b specify whether a symbol is clipped by the
scrap border.

e visibility <on/off> > displays/hides the symbol.

e context <point/line/area> <symbol-type> > (to be used with
symbol-hide and symbol-show layout options) symbol will be
hidden/shown according to rules for specified <symbol-type>.

Options:
e id <ext_keyword> > ID of the symbol.

35 An empty area which can be used to clean the background.
36 For user defined area symbols, may be followed by arbitrary subtype.

‘join’
Description: Join works in two modes: it joins either two scraps or
two or more points or lines in a map together.

When joining more than two points or lines, use one join command
for all of them, not a sequence of join commands for pairs.*”

When joining scraps, only passage walls are joined. It’s a good idea
to place a scrap join in the passage which is as simple as possible,
otherwise you have to specify join for each pair of objects which
should be joined.?®

When joining more than two scraps at the same scrap border, a
manual join must be performed where the connection points must
be entered in one join statement.

Syntaz: join <pointl> <point2> ... <pointN> [OPTIONS]
Context: none, scrap, survey
Arguments:

e <pointX> can be an ID of a point or line symbol,
optionally followed by a line point mark <id>:<mark>
(e.g. podangl_131@podangl:markl). <mark> can be also ‘end’
(end of the line) or line point index (where 0 is the first point).

3TE.g. use join a b c, not join a b followed by join b c.

381 you want some object which is clipped by a scrap boundary to continue to
a neighbouring scrap, use -clip off option for that object.

39 Like join origScrapLineWest:end upperScrapLineWest:0
lowerScrapLineWest:0 and another similar join command for the three
east wall lines.

A special case is when <point1> and <point2> are scrap
IDs—than the closest scrap ends are joined together.

Options:

e smooth <on/off> indicates whether two lines are to be connected

smoothly.

e count <N> (when used with scraps) > Therion will try to join
scraps which connect in N locations/passages.

‘equate’
Description: Sets the survey stations equivalence.
Syntax: equate <station list>

Contezt: none, survey

map

Description: A map is a collection of either scraps or other maps of
the same projection type. It’s possible to include survey in the
map—this will display centreline in the map. Map object simplifies
the data management when selecting data for output. See the
chapter How the map is put together for more thorough explanation.

(Note: break only changes level of maps of scraps and has no
function when used with maps of maps, as they will cause a break
implicitely)
Syntaz: map <id> [OPTIONS]
. scrap, survey or other map references ...
break

. next level scrap, survey or other map
references ...
preview <above/below> <other map id>
endmap

Context: none, survey
Arguments:

e <id> > scrap identifier
Command-like options:

e the data lines consist of scrap or map references. Note that you
can not mix them together.

e if you refer to map, you can specify offset at which this sub-map
will be displayed together with preview type of its original
position. Syntax is following:
<map reference> [<offset X> <offset Y> <units>]
<above/below/none>

e scraps following the break will be placed on another level (only
applies to maps consisting of scraps)

e preview <above/below> <other map id> will put the outline of
the other map in the specified preview position relative to the
current map.

Preview is displayed only if the map is in the map-level level as
specified by the select command.

Use the revise command if you want to add maps from higher
levels to the preview.

e colo[ulr <color> 1> set the map colour; this option overrides the
automatic choice when the layout specifies colour map-fg [map].

Options:

e projection/proj <plan/elevation/extended/none> > required
if the map contains survey.

e title <string> > description of the object

e survey <id> b associate a survey with map (e.g. all surveying
statistics from this survey will be used when this map is selected
for output).

‘surface’

Description: Surface (terrain) specification. It is possible to display
it in two ways: as a scanned topographical map (both in 2D map
and 3D model*) or surface grid — digital elevation model (in 3D
model only).

Syntaz: surface [<name>]

cs <coordinate system>

bitmap <filename> <calibration>

grid-units <units>

grid <origin x> <origin y> <x spacing> <y spacing> <x
count> <y count>

grid-flip (none)/vertical/horizontal

[grid datal
endsurface

Context: none, survey

40 You need to enter elevation data in order to display the topographical map
in 3D model. Currently only JPEG maps are supported in 3D.

Command-like options:

e cs <coordinate system> > coordinate system for bitmap
calibration and grid origin specification

bitmap <filename> <calibration> > scanned topographical
map.

calibration may have two forms:

1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y
variables are picture coordinates (pixels; lower-left corner is 0 0),
lower-case x/y variables are real coordinates. Optional units apply
to real coordinates (metres by default).

2. [X1 Y1 stationl X2 Y2 station2], where upper case X/Y
variables are picture coordinates and stationl and station2 are
survey stations names.

e grid-units <units> > units in which grid is specified. Metres by
default.

e grid <origin x> <origin y> <x spacing> <y spacing> <x
count> <y count>
<origin x> <origin y> i specify coordinates of the lower-left
(S-W) corner of the grid
<x spacing> <y spacing> i distance between grid nodes in W-E
and S-N directions

<x count> <y count> > number of nodes in the row and number
of rows which form the grid (see below).

e [grid datal > a stream of numbers giving the altitude a.s.l. in
grid nodes. It starts in the grid-origin and fills the grid in rows (in
the row from W to E; rows from S to N).

e grid-flip (none)/vertical/horizontal > useful if your grid
(exported from other program) needs to be flipped

‘import’

Description: Reads survey data in different formats (currently
processed centreline in *.3d, *.plt, *.xyz formats). Survey stations
may be referenced in scraps etc. When importing a Survex 3D
file, stations are inserted in the survey hierarchy if there exists an
identical hierarchy to that in 3D file.

Syntax: import <file-name> [OPTIONS]
Context: survey / all*t
Options:

e filter <prefix> b if specified, only stations with given prefix
and shots between them will be imported. Prefix will be removed
from station names.

e surveys (create)/use/ignore > specifies how to import survey
structure (works only with .3d files).

create > split stations into subsurveys, if subsurveys do not exist,
create them

use > split stations into existing subsurveys

4L only with .3d files, where survey structure is specified

ignore > do not split stations into sub-surveys

e cs <coordinate system> > coordinate system for stations with
fixed coordinates

e calibrate [<x> <y> <z> <X> <Y> <Z>] b coordinates in the
imported file are shifted from lower-case coordinates to upper-case

coordinates.

‘grade’

Description: This command is used to store predefined precisions of
centreline data. Built in grades are: BCRA*? and UISv1*3.

See sd option description for centreline command to define your

own grades.

Syntaz: : grade <id>
[<quantity list> <value> <units>]

endgrade

Context: all

42see http://bera.org.uk/surveying/; syntax is: BCRAn, where n may be 3
or 5

43 see http://wuw.uisic.uis-speleo.org/UISmappingGrades.pdf; syntax
is: UISvi_n, where n is -1 to 6 or X; whereas -1 to 2 are only declaratory
and X requires sd data in centerline)

http://bcra.org.uk/surveying/
http://www.uisic.uis-speleo.org/UISmappingGrades.pdf

‘revise’

Description: This command is used to set or change properties of an
already existing object.

Syntaz: The syntax of this command for object created with “single
line” command is

revise id [-optionl valuel -option2 value2 ...]
For objects created with “multi line” commands is syntax following

revise id [-optionl valuel -option2 value2 ...]

optionX valueX
data

endrevise
Context: all
Arguments:

The id stands for object identifier (the id of an object you want to
revise must always be specified).

Custom attributes

Objects survey, centreline, scrap, point, line, area, map and surface
can contain user-defined attributes in a form -attr <name>
<value>. <name> may contain alphanumeric characters, <value> is
a string.

The custom attributes are used in map exports depending on the
output format:

e in shapefile export they are written directly to the associated dbf
file,

e in maps generated using METAPOST (PDF, SVG) the attributes
are written in the METAPOST source file as strings (named like
ATTR_<name>) and can be evaluated and used by the user to
define symbols in macros.

You can test presence of such a variable using if known
ATTR_<name>: ... fi.

XTherion

XTherion is a GUI (Graphical User Interface) for Therion. It helps
a lot with creating input data files. Currently it works in three main
modes: text editor, map editor and compiler.**

It is not necessary for Therion itself—you may edit input files in
your favourite text editor and run Therion from the command
line. XTherion is also not the only GUI which may be used with
Therion. It is possible to write a better one, which would be more
user friendly, more WYSIWYG, faster, more robust and easier to
use. Any volunteers?

This manual does not describe such familiar things as ‘if you want
to save a file, go to menu File and select Save, or press Ctrl-s’.
Browse the top menu for a minute to get the feeling of XTherion.

4 Here we're concerned with creating data, so only the first two modes are
described in this section. For compiler features see the chapter Processing
data.

For each mode of operation, there is an additional right or left
menu. The submenus may be packed; you may unpack them by
clicking on the menu button. For most of the menus and buttons,
there is a short (translated) description in the status line, so it’s not
hard to guess the meaning of each one. The order of submenus on
the side may be customized by the user. Right-click on the menu
button and select in the menu which of the other menus it should be
swapped with.

XTherion—text editor

XTherion’s text editor offers some interesting features which may
help with creating text input files: support for Unicode encoding
and ability to open multiple files.*®

To make entering data easy, it supports table formatting of
centreline data. There is a menu Data table for typing the data. It
may be customized to the user’s data order by pressing a Scan data
format button when the cursor is below the data order specification
(‘data’ option in the ‘centreline’ command).

XTherion—map editor

Map editor allows you to draw and edit maps fully interactively.
But don’t expect too much. XTherion is not a truly WYSIWYG
editor. It displays only the position, not the actual shape, of drawn
point or line symbols. Visually there is no difference between a
helictite and a text label—both are rendered as simple dots. The

45 File encoding is specified on the first line of the file. This line is hidden by
XTherion and may be accessed only indirectly using the right-hand menu.

type and other attributes of any object are specified only in the
Point control and Line control menus.

N\Ezercise: Find two substantial reasons, why the map drawn in
XTherion can’t be identical with Therion output. (If you answer
this, you’ll know, why XTherion will never be a true WYSIWYG
editor. Authors’ laziness is not the correct answer.)

Let’s begin by describing typical use of the map editor. First, you
have to decide which part of the cave (which scrap) you'll draw.*t

After creating a new file in the map editor, you may load one or
more images—scanned survey sketches from the cave!’—as

a background for the drawing. Click on the Insert button in
Background images menu. Unfortunately, as a limitation of Tecl/Tk
language, only GIF, PNM and PPM (plus PNG and JPEG if you
installed tkImg extension) images are supported. Additionally
XTherion supports XVI (XTherion vector image) format, which
displays centreline and LRUD information on the background, and
PocketTopo data exported in Therion format (see below). All
opened images are placed in the upper-left corner of the working
area. Move them by double clicking and dragging with the right
mouse button or through a menu. For better performance on slower
computers, it’s possible to temporarily unload a currently unused
image from memory by unchecking its Visibility check-box. It’s
possible to open an existing file without loading background images
using Open XP menu.*®

46 Tt’s possible to draw more than one scrap in each file, in which case all
inactive scraps are rendered yellow.

47 XTherion can’t scale nor rotate individual images, so use the same
orientation, scale and DPI for all images used in the same scrap.

48 Note: Therion doesn’t use background images in any way unless you assign
them to some scrap using -sketch option.

Hints: 1. What does loop closure do? 2. Why do we use MetaPost?

The size and zoom setting of the drawing area is adjusted in
the corresponding menu. Auto adjust calculates optimal size of
the working area according to the sizes and positions of loaded
background images.

After these preparation steps, you're ready for drawing, or, more
precisely, for creating a map data file. It’s important to
remember, that you're actually creating a text file which should
conform to the syntax described in the chapter Data format.
Actually, only a subset of the Therion commands are used in the
Map editor: multi-line scrap ... endscrap commands which
may contain point, line and area commands. (Cf. chapter Data
format). This corresponds with a section of hand-drawn maps,
which are built up from points, lines and filled areas.

So, the first step is defining the scrap by a scrap ... endscrap
multi-line command. In the File commands menu click on the
Action submenu and select Insert scrap. This changes the Action
button to Insert scrap if it had any other value. After pressing this
button a new scrap will be inserted in the beginning of the file. You
should see lines

scrap - scrapl
endscrap
end of file

in the preview window above the Insert scrap button. This window
is a simplified outline of the text file, which will be saved by
XTherion. Only the command (scrap, point, line, text—why
text see below) and its type (for point and line) or ID (for scrap)
are shown.

The full contents of any command are displayed in the Command
preview menu.

For modifying previously-created commands, there are additional
menus—e.g. Scrap control for the scrap command. Here you can
change the ID (very important!) and other options. For details see
chapter Data format.

Now it’s possible to insert some point symbols. As with scrap
insertion, go to the File commands menu, click on the Action
submenu and select Insert point; than press newly renamed Insert
point button. A shortcut for all this is Ctrl-p. Than click on

the desired spot in the working area and you’ll see a blue dot
representing a point symbol. Its attributes can be adjusted in the
Point control menu. You’ll stay in ‘insert’ mode—each click on the
working area adds a new point symbol. Take care not to click twice
on the same place—you would insert two point symbols in the same
place! To escape from ‘insert’ to ‘select’ mode, press Esc key on the
keyboard or Select button in the File commands menu.

What will be the order of commands in the output file? Exactly the
same as in the outline in the File commands menu. Newly created
point, line and text objects are added before the currently marked
line in the outline. It is possible to change the order by selecting a
line and pressing Move down, Move up or Move to buttons in the
File commands menu. This way you can also move objects between
scraps.

Drawing lines is similar to drawing in other vector editing
programs, which work with Bézier curves. (Guess how to enter the
line insertion mode, other than using the shortcut Ctrl-1.) Click
where the first point should be, then drag the mouse with pressed
left button and release it where the first control point should be.

Then click somewhere else (this point will be the second point

of the curve) and drag the mouse (adjusting the second control
point of the previous arc and the first control point of the next one
simultaneously.) If this explanation sounds too obscure, you can
get some practise working in some of the standard vector editors
with comprehensive documentation. The line will be finished after
escaping from the insertion mode. Beginning and orientation of the
line is marked by a small orange tick to the left at the first point.

For line symbols, there are two control menus: Line control and Line
point control. First one sets attributes for the whole curve, like type
or name. The check-box reverse is important: Therion requires
oriented curves and it is not unusual that you begin to draw from
the wrong end. The Line point control menu enables you to adjust
the attributes of any selected point on the line, such as the curve
being smooth at this point (which is on by default), or the presence
of neighbouring control points (‘<<’ and ‘>>’ check-boxes).

Areas are specified by their surrounding lines. Click on Insert area
and then click on the lines surrounding the desired area. They are
automatically inserted in the Area control and named (if not already
named). An alternate way is to insert them as a text* command,
the contents of which (entered in the Text editor menu of the Map
editor) is usual area ... endarea multi-line command (see the
chapter Data format.)

49 CAUTION! The command text is not a Therion command! It’s only a
nickname for a block of arbitrary text in XTherion. In the file saved by
XTherion, there’ll only be whatever you type into the Text editor or see in
the Command preview. It may be an area definition or whatever you want,
such as a comment beginning with a ‘#’ character.

If you draw some scraps with none projection, it’s necessary to
calibrate the drawing area. The scale can be defined only one way
in XTherion—using coordinates of two points (specified both in the
picture coordinate system and in the ‘real’ coordinate system).

After selecting a scrap (click on its header in the File commands
menu) two small red squares connected by a red arrow will appear
(by default, they’ll be in the lower corners of drawing area). You
have to drag them to points with known coordinates—usually
intersections of mm grid lines on the scanned drawing. If you can
not see these points, you can either

e press Scale button in the Scraps menu and click on two different
places on the image where the endpoints of calibration arrow
should be, or

e move the mouse pointer to the desired position, read pointer
coordinates from the status bar and enter these coordinates into
picture scale points boxes in the Scraps control. After filling
X1,Y1 and X2,Y2 coordinate pairs the calibration arrow will be
moved correspondingly.

Then you have to enter real coordinates of these points (X1, Y1, X2,
Y2).

In the selection mode you can select existing line or point objects
and set their attributes in the corresponding menus, move them, or
delete them (Ctrl-d or Action button in File commands menu after

setting Action to Delete).

There is a Search and select menu which makes it easy to switch
between objects and visualize things you can’t see at the first look
at the picture. For example, if you enter expression ‘station’ and
press Show All, all stations on the picture will become red.

XTherion doesn’t do any syntax checking; it only writes drawn
objects with their attributes to a text file. Any errors are detected
only when you process these files with Therion.

TIP: Entering symbols of the same type at once saves you a lot

of time because you need not to change the symbol type and fill
options for each new symbol. Options box preserves the old value
and it’s enough to change a few characters.®® It is a good idea to
start with drawing all survey stations (don’t forget to give them
names according to the real names in the centreline command), than
all passage walls followed by all other point symbols, lines and areas.
Finally, draw cross-sections.

Additional tools

Help/Calibrate bitmap produces OziExplorer-compatible MAP
file based on georeferencig data included in a PDF map.®!

If the map in PDF format has been converted to raster using an
external program, the converter uses raster image and pdf map with
the same base name located in the same directory to calculate the
calibration data.

If the PDF file is used directly, you have to set the DPI and output
format before automatic conversion® to a raster format.

50 In the case of survey stations, X Therion automatically increases the station

number for the next symbol inserted.

51 Calibration information for nine distinct points is present if the centreline
contains station(s) fixed using geodetic coordinate system(s).

52 ghostscript and convert should be installed on your system. Note, that
Windows installation does not include ghostscript.

PocketTopo data exported in Therion format® from PocketTopo
application can be imported in the text editor as well as in the map
editor (File — Import — PocketTopo therion export and Background
Images — Insert — PocketTopo therion export). The same file is
used for both imports. Importing the sketch does not create scrap
data directly. The drawing is just displayed on the background like
scanned bitmaps and should be digitized manually.

Keyboard and mouse shortcuts in the Map editor
General

e Ctrl+Z > undo

o Ctrl+Y > redo

e 'O > compile current project

e to select an object in the listbox using the keyboard: switch using
‘Tab’ into the desired listbox; move with the underlined cursor to
the desired object; press ‘Space’

e PageUp/PageDown > scroll up/down in the side panel

e Shift+PageUp/PageDown > scroll up/down in the file commands
window

Drawing area and background images
e RightClick > scroll the drawing area

e Double RightClick on the image > move the image

53 This is a special text format which needs to be imported using X Therion
and can not be processed by Therion directly.

Inserting a scrap

e Ctrl4+R © insert scrap

Inserting a line

e Crtl+L > insert a new line and enter an ‘insert line point’ mode
e LeftClick > insert a line point (without control points)

o Ctrl+LeftClick > insert a line point very close to the existing
point (normally it’s inserted right above closest existing point)

o LeftClick + drag > insert line point (with control points)

e hold Ctrl while dragging > fix the distance of the previous control
point

e LeftClick + drag on the control point > move its position

e RightClick on one of the previous points > select the previous
point while in insert mode (useful if you want to change also the
direction of the previous control point)

e Esc or LeftClick on the last point > end the line insertion

e LeftClick on the first line point > close the line and end the line
insertion

Editing a line
o LeftClick + drag > move the line point

o Ctrl+LeftClick 4+ drag > move the line point close to the existing
point (normally it is moved right above the closest existing point)

o LeftClick on control point + drag > move the control point

Adding a line point

e select the point before which you want to insert points; insert
required points; press Esc or left-click on the point you selected at
the beginning

Deleting a line point

e select the point you want to delete; press Edit line — Delete point
in the Line control panel

Splitting a line

e select the point at which you want to split the line; press Fdit line
— Split line in the Line control panel

Inserting a point
e Ctrl+P > switch to ‘insert point’ mode
e LeftClick > insert point at a given position

o Ctrl+LeftClick > insert point very close to the existing point
(normally it will be inserted right above the closest point)

e Esc > escape from the ‘inset point” mode
Editing a point
e LeftClick + drag > move the point

o Ctrl+LeftClick + drag > move the point close to the existing
point (normally it is moved right above the closest existing point)

e LeftClick + drag on the point arrow > change point orientation or
size (according to the given switches in the Point control panel)

Inserting an area

e press Ctrl4+A or File commands — Insert — area to switch to the
‘insert area border’ mode

e RightClick on the lines, that surround the desired area
e Esc to finish the area border lines insertion

Editing an area

e select the area you want to edit

e press ‘Insert’ in the Area control to insert other border lines at the

current cursor position

e press ‘Insert ID’ to insert a border with a given ID at the current
cursor position

e press ‘Delete’ to remove the selected area border line
Selecting an existing object
o LeftClick > select the object at the top

e RightClick > select the object right below the top object (useful
when several points lie above each other)

Thinking in Therion

Although everything (well, almost everything) about Therion input
files has been explained, this chapter offers some additional hints
and tips.

How to enter a centreline

The basic building block is the centreline command. If the cave is
larger than a few meters it’s a good idea to split the data into more
files and separate the centreline data from the map data.

We usually use one *.th file containing a centreline per survey trip.
It’s handy to start with an empty template file as shown below,
where dots will be replaced with appropriate texts.

encoding IS08859-1
survey ... —title "..."
centreline
team "..."
team "..."
date ...
units clino compass grad
data normal from to compass clino length
endcentreline
endsurvey
To create a unique namespace the centreline command is enclosed
in survey ... endsurvey command. It’s useful when the survey has
the same name as the file which contains it.>* The points will then
be referenced using the @ character—see the survey command
description.

For really large caves it’s possible to build a hierarchical structure of
directories. In such a case we create one special file called INDEX.th

54 T.g. survey entrance in the file entrance.th.

which includes all other *.th files from a given directory and
contains equate commands to define connections between surveys.

How to draw maps

The most important thing is to devise a division of the cave into
scraps. Scrap is the basic building block of the map. It’s almost
always a bad idea to try to fit each scrap to corresponding *.th
file with a centreline from one survey trip. The reason is that the
connections between scraps should be as simple as possible. Scraps
in general are independent on the centreline hierarchy so try to
forget the survey hierarchy when drawing maps and choose the best
scrap joins.

We usually insert maps in the last-but-one level in survey
hierarchy.”® Each scrap may than contain arbitrary parts of any
survey in the last level of the hierarchy. For example, there is a
survey main which contains surveys a, b, ¢ and d. Surveys a — d
contain centreline data from four survey trips and each of them is in
a separate file. There is a map main_map which contains scraps s1
and s2. If the main_map is located in the main survey, scrap s1 may
cover part of the centreline from survey a, complete survey b and
part of ¢; s2 will cover part of the a and ¢ surveys and a complete d
survey. The survey stations names will be referenced using the @
symbol (e.g. 1@a) in the scraps.®

55 Remember that surveys create namespaces, so you may reference only the
objects in the given survey and all subsurveys.

561f you include maps in the top-level survey, you may reference any

survey station in any scrap, which is very flexible. On the other

hand you then have to use longer names in station references, like

3@dno.katakomby. jmn.dumbier.

Scraps are usually stored in *.th2 files. Each file may contain more
scraps. To keep the data well organized, there are some naming
conventions: in the file foo.th2 all scraps are named foo_si, where
iis 1, 2 an so on. Cross-sections are named foo_ci, lines foo_1i
etc. This helps a lot with large cave systems: if some scrap is
referenced, you immediately know in which file it has been defined.

Similar to *.th files, there may be one file INDEX. th2 per directory
which includes all the *.th2 files, and defines scrap joins and maps.

When drawing scraps you should check if the outline is properly
defined: all lines creating the outer border should have -outline
out option; all lines surrounding inner pillars —outline in option.
Scrap outlines can’t intersect themselves—otherwise the inner side
of the scrap can’t be determined. There are two simple tests that
the scrap outline is correct:

e there is no METAPOST warning “scrap outline intersects
itself”

e when you set a passage fill to any color (color map-fg <number>
option in layout), you may see what Therion considers to be
inside the scrap.

How to create models

The model is created from scrap outlines. The height and depth of
the passage are computed from passage-height and dimensions
point map symbols.

Therion in depth

How the map is put together

This chapter explains how -clip, -place, -visibility and
-context options of point, line and area commands work exactly.
It also gives an explanation of color, transparency, symbol-hide
and symbol-show options of the layout command.

While exporting the map, Therion has to determine three attributes
for each point, line or area symbol: visibility, clipping and ordering.

(1) Symbol is visible if all of the following is true:
e it has the -visibility option set on (all symbols by default),
e it hasn’t been hidden by the —-symbol-hide option in the layout,

e if its —context option is set, the corresponding symbol hasn’t
been hidden by the -symbol-hide option in the layout.

Only the visible symbols are exported.

(2) Some symbols are clipped by the scrap outline. These are by
default all of the following:
o point symbols: symbolic passage fills (bedrock. . . guano),

e [ine symbols: all line symbols which don’t have the -outline
option set with the exception of section, arrow, label, gradient
and water-flow

e area symbols: all.

The default setting may be changed using the -clip option, if this
is allowed for a particular symbol. All other symbols are not clipped
by the scrap boundary.

(3) Ordering: Each symbol belongs to one of the following groups
which are drawn consecutively:

e bottom > all symbols with the -place bottom option set
o default-bottom > all area symbols by default

e default > symbols which don’t belong to any other group
e default-top > ceiling-step and chimney by default

e top > all symbols with -place top option set

Ordering of symbols inside each group follows the order of
commands in the input file®”: symbols which come first are drawn
last (i.e. they are displayed at the top of each group).

Now we are ready to describe how the map (or atlas chapter) is
constructed:

e map area is filled with color map-bg
e surface bitmaps are displayed if surface is set bottom
e FOR each scrap: outline is filled white
e grid is displayed if grid is set bottom
e preview below®™ is filled with color preview-below
e FOR each level®:
BEGIN of transparency
FOR each scrap: outline is filled with color map-fg

5T Or File commands menu in XTherion.
58 As specified using the preview option in the map command.
59 Level is a collection of scraps not separated by a break in the map command.

FOR each scrap: area symbols are filled and clipped to scrap
boundary

END of transparency

BEGIN of clipping by text labels (for all labels in this and upper
levels)

FOR each scrap:

draw all symbols to be clipped (with the exception of line
survey)

ordered from bottom to top
draw line survey symbols
clip to scrap boundary
FOR each scrap:

draw all symbols not to be clipped (with the exception of
point station

and all labels) ordered from bottom to top
draw point station symbols
END of clipping by text labels

FOR each scrap: draw all (point and line) labels (including
wall-altitude)

e preview above is drawn with color preview-above
e surface bitmaps are displayed if surface is set top

e grid is displayed if grid is set top

Processing data

Besides data files, which contain survey data, Therion uses a
configuration file, which contains instructions on how the data
should be presented.

Configuration file

The configuration filename can be given as an argument to therion.
By default Therion searches for file named thconfig in the current
working directory. It is read like any other therion file (i.e. one
command per line; empty lines or lines starting with ‘#” are ignored;
lines ended with a backslash continue on the next line.) A list of
currently supported commands follow.

‘system’

Allows to execute system commands during therion compilation.®®
Normally Therion waits until the subprocess is finished. If you want
to continue compilation without break, use <command> & syntax on
Linux and start <command> syntax on Windows.

‘encoding’

Works like the encoding command in data files—specifies character
sets.

60 F.g. to open or refresh external PDF viewer.

‘language’
Syntaz:
e language <xx_[YY]>

Sets the output language for translatable texts.

cs
Syntax:
e cs <coordinate system>

Outside of layout command specifies the coordinate system for
output. It is not possible to specify more coordinate systems for
different outputs (the last occurrence of cs is used for all output
files).

If no cs is defined in the configuration file, the first cs therion
encounters in the data files is used as an output cs.

Inside the layout specifies coordinate system for subsequent
location data (origin, grid-origin).

‘sketch-warp’
Syntaz:
e sketch-warp <algorithm>

Specifies which scrap warping (morphing) algorithm to use. Possible
algorithms are 1ine—the default; plaquette—invented by Marco

Corvi.

‘input’

Works like input command in data files—includes other files.

‘source’

Description: Specifies which source (data) files Therion should read.
You can specify several files here; one per line. You can also specify
them using the -s command line option (see below).

It is also possible to type (some small snippets of) code directly in
configuration file using the multi-line syntax.

Syntazx:

source <file-name>
or

source

... therion commands. .
endsource

Arguments:

o <file-name>

‘select’

Description: selects objects (surveys and maps) for export. By
default, all survey objects are selected. If there is no map selected,
all scraps belonging to selected surveys are selected by default for
map export.

If there are no scraps or maps in the data, centerline from all
surveys is exported in the map.

When exporting maps in different projections, you need to select
them for each projection separately.

select does not only affect subsequent <export> commands but
instead also <export> commands preceding the select command in
the configuration file.

Syntaz: select <object> [OPTIONS]

Arguments:

e <object> b any survey or map, identified by its ID.
Options:

e recursive <on/off> > valid only when a survey is selected. If set
on (by default) all subsurveys of the given survey are recursively
selected /unselected.

e map-level <number> i> valid only when a map is selected.
Determines the level at which map expansion for atlas export is
stopped. By default 0 is used; if ‘basic’ is specified, expansion is
done up to the basic maps. Note: Map previews are displayed
only as specified in maps in the current map-level.

e chapter-level <number> > valid only when a map is selected.
Determines the level at which chapter expansion for atlas
export is stopped. By default 0 is used, if ‘=’ or *.” is specified,
no chapter is exported for this map. If title-pages option in
layout is on, each chapter starts with a title page.

‘unselect’
Description: Unselects objects from export.
Syntaz: unselect <object> [OPTIONS]
Arguments:

The same as the select command.
Options:

The same as the select command.

‘maps’

Description: Turns processing of maps on (default) or off. If you
turn if off, all scraps from selected surveys will be used in the
output, no map definitions are taken into account. Usefull for
debugging map definitions.

Syntaz: maps <on/off>

‘maps-offset’

Description: Turns drawing maps in offset on (default) or off. If you
turn if off, all cave passages will be displayed in detail in their actual
position. All offset specifications will be completely ignored.

Syntax: maps-offset <on/off>

‘log’
Description: Turn on logging of various info. Currently only

extended elevation processing log is supported.

Syntaz: log extend

‘text’

Description: Specifies translation of any default therion text in
output.

Syntaz: text <language ID> <therion text> <my text>

Arguments:

e <language ID> > standard ISO language identifier (e.g. en or
en_GB)

e <therion text> > therion text to translate. For list of therion
texts and available translations, see thlang/texts.txt file.

‘layout’

Description: Specifies layout for 2D maps. Settings which apply to
atlas mode are marked ‘A’; map mode ‘M’.

Syntaz: layout <id> [OPTIONS]
copy <source layout id>
cs <coordinate system>
north <true/grid>
scale <picture length> <real length>

base-scale <picture length> <real length>

units <metric/imperial>

rotate <number>

symbol-set <symbol-set>

symbol-assign <point/line/area/group/special>
<symbol-type> \

<symbol-

set>

symbol-hide <point/line/area/group/special>
<symbol-type>

symbol-show <point/line/area/group/special>
<symbol-type>

symbol-colour <point/line/area/group/special>
<symbol-type> <colour>

min-symbol-scale <scale>

fonts-setup <tinysize> <smallsize> <normalsize>
<largesize> <hugesize>

size <width> <height> <units>

overlap <value> <units>

page-setup <dimensions> <units>

page-numbers <on/off>

exclude-pages <on/off> <list>

title-pages <on/off>

nav-factor <factor>

nav-size <x-size> <y-size>

transparency <on/off>

opacity <value>

surface <top/bottom/off>

surface-opacity <value>

sketches <on/off>

layers <on/off>

grid <off/top/bottom>
grid-origin <x> <y> <x> <units>
grid-size <x> <y> <z> <units>
grid-coords <off/border/all>
origin <x> <y> <z> <units>
origin-label <x-label> <y-label>
own-pages <number>

page-grid <on/off>

legend <on/off/all>
legend-columns <number>
legend-width <n> <units>
colour-legend <smooth/discrete/off/on>
map-comment <string>

map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center>

map-header-bg <on/off>
map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center>
<filename>
statistics <explo/topo/carto/copyright
all/off/number>
<explo/topo-length on/hide/off>
<carto/copyright-count on/hide/off>
scale-bar <length> <units>
survey-level <N/all>
language <xx[_YY]>
colo[ulr-model <cmyk/rgb/grayscale>
colo[u]r <item> <colour>
smooth-shading <off/quick>
debug <on/all/first/second/scrap-names/station-
names/off>

doc-author <string>
doc-keywords <string>
doc-subject <string>
doc-title <string>
code <metapost/tex-map/tex-atlas>
endcode
endlayout

Arguments:
<id> i layout identifier (to be used in the export command)
Command-like options:

e copy <source layout id> b set properties here that are not
modified based on the given source layout.

map presentation-related:

scale <picture length> <real length> b set scale of output
map or map atlas (M, A; default: 1 200)

base-scale <picture length> <real length> b if set, Therion
will optically scale the map by a (scale/base-scale) factor.
This has the same effect as if the map printed in base-scale
would be photo-reduced to the scale. (M, A)

e rotate <value> b rotates the map (M, A; default: 0)

e units <metric/imperial> 1> set output units (M, A; default:
metric)

e symbol-set <symbol-set> > use symbol-set for all map
symbols, if available. Be aware, that symbol set name is case
sensitive. (M, A)

Therion uses following predefined symbol sets:

UIS (International Union of Speleology)
ASF (Australian Speleological Federation)
AUT (Austrian Speleological Association)
BCRA (British Cave Research Association)
NSS (National Speleological Society/USA)
NZSS (New Zealand Symbol Set)

SBE (Brazilian Speleological Society -Sociedade Brasileira de
Espeleologia)

SKBB (Speleoklub Banské Bystrica)

symbol-assign <point/line/area/group/special> <symbol-tyj
<symbol-set> > display a particular symbol in the given symbol-set.
This option overrides symbol-set option.

If the symbol has a subtype, <symbol-type> argument may have
one of the following forms: type:subtype or simply type, which
assigns new symbol set to all subtypes of a given symbol.

Following symbols may not be used with this option: point section
(which isn’t rendered at all) and all point and line labels (label,
remark, altitude, height, passage-height, station-name, date). See
the chapter Changing layout/Customizing text labels for details
how to change labels’ appearance. (M, A)

Group may be one of the following: all, centerline, sections, water,
speleothems, passage-fills, ice, sediments, equipment.

There are two special symbols: north-arrow, scale-bar.

symbol-hide <point/line/area/group/special>
<symbol-type> > don’t display particular symbol or group of
symbols.

You may use group cave-centerline, group
surface-centerline, point cave-station, point
surface-station and group text in symbol-hide and
symbol-show commands.

Use flag:<entrance/continuation/sink/spring/doline/dig>
as a <symbol-type> to hide stations with particular flags (e.g.
symbol-hide point flag:entrance).

May be combined with symbol-show.(M, A)

symbol-show <point/line/area/group/special>
<symbol-type> 1> display particular symbol or group of symbols.
May be combined with symbol-hide. (M, A)

symbol-colo[ulr <point/line/area/group/special>
<symbol-type> <colour> > change colour of particular symbol or
group of symbols.®" (M, A)

min-symbol-scale <scale> i define minimal <scale>, from
which points and lines are displayed on the map. E.g. for
min-symbol-scale M, no points or lines scaled S and XS will
be shown on the map. <scale> has the same format, as scale
option for points and lines.

fonts-setup <tinysize> <smallsize> <normalsize>
<largesize> <hugesize> > specify size of the text in points.
<normalsize> applies to point label, <smallsize> applies to
remark and all other point labels. Each of them may apply to line
label according to its ~scale option.

61 Note: colour change currently applies to pattern fills only if (1) output

format is PDF and (2) METAPOST version is at least 1.000

The defaults are 8 10 12 16 24 for scales upto 1:100; 7 8 10 14
20 for scales upto 1:200; 6 7 8 10 14 for scales upto 1:500 and 5
6 7 8 10 for scales smaller than 1:500.

page layout related:

e size <width> <height> <units> > set map size in the atlas
mode. If not specified, it will be calculated from page-setup and
overlap. In map mode applies iff page-grid is on (M, A; default:
18 22.2 cm)

e overlap <value> <units> > set overlap size in paper units in the
atlas mode or map margin in the map mode (M, A; default: 1 cm)

e page-setup <dimensions> <units> b set page dimensions in
this order: paper-width, paper-height, page-width, page-height,
left-margin and top-margin. If not specified, it will be computed
from size and overlap (A; default: 21 29.7 20 28.7 0.5 0.5
cm

)

e page-numbers <on/off> > turn on/off page numbering (A;
default: true)

e exclude-pages <on/off> <list> b exclude specified pages from
cave atlas. The list may contain page numbers separated by a
comma or dash (for intervals) e.g. 2,4-7,9,23 means, that pages
2,4,5,6,7, 9 and 23 should be omitted. Only the map pages
should be counted. (Set own-pages 0 and title-pages off
to get the correct page numbers to be excluded.) Changes of

own-pages or title-pages options don’t affect page excluding.
(A)

e title-pages <on/off> > turn on/off title pages before each atlas
chapter (A; default: off)

e nav-factor <factor> b set atlas navigator zoom factor (A;
default: 30)

e nav-size <x-size> <y-size> > set number of atlas pages in
both directions of navigator (A; default: 2 2)

e transparency <on/off> b set transparency for the passages
(underlying passages are also visible) (M, A; default: on)

opacity <value> b set opacity value (used if transparency is
on). Value range is 0-100. (M, A; default: 70)

e surface-opacity <value> > set the surface bitmap opacity (used
if transparency is on). Value range is 0-100. (M, A; default: 70)

e surface <top/bottom/off> i set the position of the surface
bitmap above/below the map. (M, A; default: off)

sketches <on/off> > turn on/off displaying of morphed sketch
bitmaps. (M, A; default: off)

layers <on/off> b enable/disable PDF 1.5 layers (M, A; default:
on)

grid <off/bottom/top> > enable/disable grid (optionally
coordinates’ values may be also displayed) (M, A; default: off)

cs <coordinate system> > coordinate system for origin and
grid-origin

north <true/grid> b specify default orientation of the map. By
default, true (astronomical) north is used. It is ignored when used
with local coordinate system.

e grid-origin <x> <y> <x> <units> > set coordinates of grid
origin (M, A)

e grid-size <x> <y> <z> <units> b set grid size in real units (M,
A; default is equal to scalebar size)

e grid-coords <off/border/all> > specify where to label grid
with coordinates. (M, A; default: off)

e origin <x> <y> <z> <units> > set origin of atlas pages (M, A)

e origin-label <x-label> <y-label> > set label for atlas page
which has the lower left corner at the given origin coordinates.
May be either a number or a string.”® (M, A; default: 0 0)

e own-pages <number> > set number of own pages added before
the first page of automatically generated pages in atlas mode
(currently required for correct page numbering) (A; default: 0)

e page-grid <on/off> > show pages key plan (M; default: off)
map legend related:

e map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center> 1>
print map header at location specified by <x> <y>. Predefined
map header contains some basic information about cave: name,
scale, north arrow, list of surveyors etc. It is fully customizable
(see the chapter Changing layout for details). <x> is easting
(left-right on page). <y> is northing (up/down page). Ranges for
<x> and <y> are -100-200. Lower-left corner of the map is 0 0,
upper-right corner is 100 100. The header is aligned with the
specified corner or side to this anchor point. (M; default: 0 100
nw

)

62 String labels form the following sequence, either in lower or upper case: A,
B, ..., Z, AA AB, ...

e map-header-bg <on/off> > when on, background of map header
is filled with background color (e.g. to hide map grid). (M;
default: off)

e map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center>
<filename> > include image specified by <filename> into map
at location specified by <x> <y>. For coordinates and alignment
details, see map-header specification.

e legend-width <n> <units> > legend width (M, A; default: 14
cm)

legend <on/off/all> » display list of used map symbols in the
map header. If set to all, all symbols from the current symbol set
are displayed. (M, A; default: off)

e colo[ulr-legend <smooth/discrete/off/on> > set type of
map-fg colours legend when map-fg is set to altitude, scrap or
map. For compatibility reasons, on is equivalent to smooth. (M,
A; default: smooth if applicable)

e legend-columns <number> > adjusts the number of legend
columns (M, A; default: 2)

e map-comment <string> > optional comment displayed at the map
header (M)

e statistics <explo/topo/carto/copyright all/off/number>
or

e statistics <explo/topo-length on/hide/off> i display
some basic statistics; if set to off, team members are sorted

63 Note that you can include PDF too, which may be used to combine plan
and extended elevation into one nice looking PDF file.

alphabetically; otherwise according to their contribution to
exploration and surveying (M, A; default: hide)

statistics <carto/copyright-count on/hide/off> i display
number of scraps for given author/copyright string; if set to off,
items are sorted alphabetically; otherwise by number of scraps
(M, A; default: hide)

scale-bar <length> <units> > set the length of the scale-bar
(M, A)

language <xx[_YY]> > set output language. Available languages
are listed on the copyright page. See the Appendiz if you want to
add or customize translations. (M, A)

colo[ulr-model <cmyk/rgb/grayscale> i select the output
colour model (M, A; default: cmyk).

The CMYK colour model is intended for printing. Black overprint
is used for the best appearance of black lines and texts. The hue
of other colours may vary depending on the type or settings of the
RIP or printer driver.

The RGB colour model is intended for screen or multimedia
projector presentation. If used for printing, the result will depend
on the colour management settings and also on particular colour,
as not all RGB colours can be represented on printer.

The grayscale colour model is meant for printing on B&W
printers.

If input colours (lookup, colour in the layout) do not match the
output colour model (e.g. only RGB is defined in the lookup and
CMYK selected as the colour-model), they will be converted to
the output model.

e colo[ulr-profile <cmyk/rgb/grayscale> <filename> I> assign
an ICC profile to colours specified in the given colour model. ICC
profiles are applied only to drawings, not to embedded raster
images like sketches and surface bitmaps. (M, A)

e colo[ulr <item> <colour> > customize colour for special
map items (map-fg, map-bg, preview-above, preview-below,
labels). Colour range is 0-100 for grayscale, [0-100 0-100 0-100]
triplet for RGB colours and [0-100 0-100 0-100 0-100] quadruplet
for CMYK colours.* RGB colours can be specified in hexadecimal
format (e.g. fleeaa).

For map-fg, you can use altitude, scrap or map as colours. In
this case the map is coloured according to altitude, scraps or
maps.

For map-bg, you can use transparent to omit page background
completely.

For labels, you can switch colour on/off. If on, labels are
coloured using the colour of associated scrap.

e smooth-shading <off/quick> b set the mode of smooth scrap
backgroud shading. By default, altitude and depth colour is
interpolated across the scrap the quick way. Some issues are
present if transparent symbol colours are used.®® More precise
modes should be added in the future. If off, scrap is filled with
single colour.

64 Note, that not all colour combinations are valid; e.g. no printer will
print CMYK [100 100 100 100]. The maximum ink coverage or limit
(C'+ M +Y + K) may be around 240 or 300, depending on the printer.

65 Coloured scrap background is visible underneath the semitransparent areas,
although only lower-scrap-drawings should be visible.

e debug <on/all/first/second/scrap-names/station-
names/off> > draw scrap in different stages of transformation
in different colours to see how Therion distorts map data. See
the description of scrap command for details. The points with
distance changed most during transformation are displayed
orange. If scrap-names is specified, scrap names are shown for
each scrap, station-names displays name of each survey station.

e survey-level <N/all> > N is the number of survey levels
displayed next to the station name (M, A; default: 0).

PDF related:
e doc-author <string> > set document author (M, A)
e doc-keywords <string> > set document keywords (M, A)
e doc-subject <string> > set document subject (M, A)
e doc-title <string> > set document title (M, A)
customization:

e code <metapost/tex-map/tex-atlas> > Add/redefine TEX and
METAPOST macros here. This allows user to configure various
things (like user defined symbols, map and atlas layout at one
place &c.) See the chapter Changing layout for details.

e endcode > should end the TeX and METAPOST sections

‘lookup’

Description: Allows to define lookup maps. They are used for
defining custom coloring of maps.®

66 see colour command.

Syntaz: lookup <type>[:<index>] [-title "custom title
text"]
<parameter(s)> [colour] ["text in legend"]

endlookup
Arguments:

e <type> > May be altitude, explo-date, topo-date, map or
scrap.

e <index> > the index is a user defined string that allows to
distinguish different lookup maps for the same type.

e <parameter> > the thing, you want to set the color for, e.g. an
altitude with type altitude. May be distinct values or (if
appropriate) bands.

e [colour] > grayscale value, RGB triplet, CMYK quadruplet or a
combination of eight values (RGB, grayscale, CMYK). Use empty
brackets ([]1) if you want Therion to use its default colour palette
together with a text label.

e [text in legend] > some optional text to show in the legend.

Ezample: Banded altitudes. It should generate red-blue scale with
desired values.

lookup altitude -title "Altitude legend"
700 [100 0 0] "700 m a.s.1."
680
660
640
620
600 [0 0 100] "below 600 m"
endlookup

Ezample: Using banded altitude specification (with index banded).
Notice that if the text is omitted, then the default will display the
range, ie 1600 m - 1500 m

lookup altitude:banded

[1500 16001 [J # <- displays "1600 m -
1500 m"
[1800 1900] [] "cave floor 2"
endlookup
‘setup3d’
Syntax:

e setup3d <value>

Temporary hack to set sampling distance in meters when generating
piecewise linear 3d model from passage walls made of Bézier curves.

‘sketch-colors’
Syntaz:
e sketch-colors <number-of-colors>

This option can be used to reduce size of sketch bitmap images in

maps.

‘export’

Description: Exports selected surveys or maps.

Syntaz:

e export <type> [OPTIONS]

Arguments:

e <type> > The following export types are supported:
model > 3D model of the cave
map > one page 2D map
atlas > 2D atlas in more pages
cave-list > summary table of caves
survey-list > summary table of surveys
continuation-list b list of possible continuations
database > SQL database with centreline

Options:
common:

e encoding/enc <encoding> > set output encoding

e output/o <file> 1> set output file name. If no file name is given
the prefix “cave.” is used with an extension corresponding to
output format.

If the output filename is given and no output format is specified,
the format is determined from the filename extension.

model:

e format/fmt <format> > set model output format. Currently the
following output formats are supported: loch (native format;
default), compass (plt file), survex (3d file), dxf, esri (3d

shapefiles), vrml, 3dmf and kml (Google Earth).

enable <walls/[cave/surface-]centerline/splay-
shots/surface/all> and

disable <walls/[cave/surface-]centerline/splay-
shots/surface/all> >

selects which features to export, if the format supports it. Surface
is currently exported in therion format only.

wall-source <maps/centerline/all/splays> > set source data
for passage wall modeling.

map/atlas:

format/fmt <format> b set map format. Currently pdf, svg,
xhtml® survex, dxf, esri®, kml (Google Earth), xvi® and
bbox™ for map; pdf for atlas are supported.

projection <id> > unique identifier that specifies the map
projection type. (See the scrap command for details.)

If there is no map defined, all scraps in the given projection are
exported.

If there are no scraps with the specified projection then Therion
will display centreline from selected surveys.

layout <id> > use predefined map or atlas layout.

57SVG embedded in XHTML file which contains also legend

68 ESRI shapefiles. Multiple files are written to a directory with the specified
filename.

69 Xtherion vector image. XVI images may be used in xtherion to draw
in-scale maps. Scale (100 DPI image resolution is assumed) and grid-size
from layout are used in export.

70 Text file containing geographic coordinates of lower-left and upper-right
corners of the map area.

e layout-xxx > where xxx stands for other layout options. Using
this you can change some layout properties directly within the
export command.

encoding/enc <encoding> > set output encoding

common for lists:

format/fmt <format> > set continuation output format.
Currently the following output formats are supported: html
(default), txt, km1™ and dbf.

continuation-list:

e attributes <(on)/off> > set whether to export user defined
attributes in continuation list table.

filter <(on)/off> i set whether continuations without
comment/text should be filtered out.

cave-list:

e location <on/(off)> > set whether to export coordinates of
cave entrances in the table.

e surveys (on)/off > exports raw list of caves when set off.
Otherwise survey structure with aggregated statistics is also
displayed.

database:
e format/fmt <format> > currently sql and csv
e encoding/enc <encoding> > set output encoding

File formats summary:

™ For cave-list and continuation-list.

export type available formats

model
map
atlas

loch, dxf, esri, compass, survex, vrml, 3dmf, kml
pdf, svg, xhtml, dxf, esri, survex, xvi, kml, bbox
pdf

database sql, csv

lists

html, txt, kml, dbf

Running Therion

Now, after mastering data and configuration files, we're ready to run

Therion. Usually this is done from the command line in the data

directory by typing

therion

The full syntax is

therion

or

therion

[-q] [-L] [-1 <log-file>]

[-s <source-file>] [-p <search-path>]
[-b/--bezier]

[-d] [-x] [--use-extern-libs] [<cfg-file>]

[-h/--help]
[-v/--version]
[--print-encodings]
[--print-environment]
[--print-init-file]
[--print-library-src]
[--print-symbols]
[--print-tex-encodings]
[--print-xtherion-src]

[--reproducible-output]

[--generate-output-crc]

[--verify-output-crc]

Arguments:

<cfg-file> Therion takes only one optional argument: the name
of a configuration file. If no name is specified thconfig in the
current directory is used. If there is no thconfig file (e.g. current
directory is not a data directory), Therion exits with an error
message.

Options:

e —-d > Turn on debugging mode. The current implementation
creates a temporary directory named thTMPDIR (in your system
temporary directory) and does not delete any temporary files.

e -h, --help > Display short help.

e -L > Do not create a log-file. Normally therion writes all the
messages into a therion.log file in the current directory.

e -1 <log-file> > Change the name of the log file.

e —p <search-path> > This option is used to set the search path
(or list of colon-separated paths) which therion uses to find its
source files (if it doesn’t find them in the working directory).

e —q > Run therion in quiet mode. It will print only warning and
error messages to STDERR.

e —-print-encodings > Print a list of all supported input
encodings.

e ——print-tex-encodings > Print a list of all supported encodings
for PDF output.

e —-print-init-file > Print a default initialization file. For more
details see the Initialization section in the Appendiz.

e —-print-environment > Print environment settings for therion.

e —-print-symbols > Print a list of all therion supported map
symbols in symbols.xhtml file.

e ——reproducible-output > Create reproducible PDF and SVG
files. No volatile information is included (e.g. creation date or
software version is omitted from the metadata). TEX variables
\thversion and \currentdate are set to predefined constatnts.
This option enforces the use of Therion loop closure.

To get the same output files on different platforms, it’s necessary
to install the same set of basic fonts used by Therion™ and use
reasonably recent TEX distribution on all platforms.

e —-generate-output-crc > Generate a ‘.crc’ file with CRC32
checksum for each output file. Implies —-reproducible-output.

e ——verify-output-crc > Verify that the output file has not been
changed. Generate reproducible output, calculate CRC32
checksum and check it against one saved in ‘.crc’ file.

e —s <source-file> > Set the name of the source file.

e ——use-extern-libs > Don’t copy TEX and METAPOST macros
to working directory. TEX and METAPOST should search for
them on their own. Use with caution.

e -v, —-version b Display version information.

e —-x > Generate file ‘.xtherion.dat’ with additional information for
XTherion.

72 CM, CS and/or CMCYR font families; the “.pfb’ font files have to be exactly
the same on all platforms as they are embedded into PDF files.

XTherion—compiler

XTherion makes it easier to run Therion especially on systems
without a command line prompt. Compiler window is the default
window of XTherion. To run Therion it’s enough to open a
configuration file and press ‘F9’ or ‘Compile’ button.

XTherion displays messages from Therion in the lower part of the
screen. Each error message is highlighted and is hyperlinked to the
source file where the error occurred.

After a first run there are activated additional menus Survey
structure and Map structure. User may comfortably select a survey
or map for export by double clicking on some of the items in the
tree. Simple click in the Survey structure tree displays some basic
information about the survey in the Survey info menu.

What do we get

Information files

Log file

Besides the messages from Therion and other programs used, the
log file contains information about computed values of magnetic
declination and meridian convergence, loop errors, scrap distortions
and transformations beetwen coordinate reference systems chosen by
the Proj library.

Absolute loop error is \/Az2 + Ay? + Az2, where Az is the
difference between the identical start and end points of the loop
before the error distribution measured along the = coordinate axis;
similarly for y and z. Percentage loop error is calculated as absolute
error / loop length. Average error is the simple arithmetic average of
all loop errors.

Scrap distortion is calculated using the distortion measure defined

for all pairs of points (point symbols, points and control points of

|do —d |
o

where d, is the distance of points before warping and d, is the

line symbols) in the scrap. The measure is calculated as

distance of points after warping. The maximal and average scrap
distortions are calculated as a maximum or average of such measures
applied to all pairs of points.

XTherion

Therion provides some basic facts about each survey (length,
vertical range, N-S range, E-W range, number of shots and
stations) if -x option is given. This information is displayed in
XTherion, Compiler window, Survey info menu, when some survey
from the Survey structure menu is selected.

SQL export

SQL export makes it easy to get very detailed and subtle
information about the centreline. It is a text file starting with a
tables declaration (where ‘?” stands in the following listing for a
maximal value required by the column data)

create table SURVEY (ID integer, PARENT_ID integer,
NAME varchar(?), FULL_NAME varchar(?), TITLE

varchar(?));

create table CENTRELINE (ID integer, SURVEY_ID integer,
TITLE varchar(?), TOPO_DATE date, EXPLO_DATE date,
LENGTH real, SURFACE_LENGTH real, DUPLICATE_LENGTH

real);

create table PERSON (ID integer, NAME varchar(?), SURNAME

varchar(?));

create table EXPLO (PERSON_ID integer, CENTRELINE_ID

integer) ;

create table TOPO (PERSON_ID integer, CENTRELINE_ID

integer) ;

create table STATION (ID integer, NAME varchar(?),

SURVEY_ID integer, X real, Y real, Z real);
create table STATION_FLAG (STATION_ID integer, FLAG
char(3));
create table SHOT (ID integer, FROM_ID integer, TO_ID
integer,

CENTRELINE_ID integer, LENGTH real, BEARING real,
GRADIENT real,

ADJ_LENGTH real, ADJ_BEARING real, ADJ_GRADIENT real,

ERR_LENGTH real, ERR_BEARING real, ERR_GRADIENT real);
create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));

which is followed by a mass of SQL insert commands. This file may
be loaded into any SQL database (after some database-dependent
initialization, which may include running an SQL server and
connecting to it, creating a database and connecting to it. A good
idea is to start a transaction before loading this file, if the database
doesn’t start a transaction automatically.) It’s important to set-up
database encoding to match the one specified in Therion export
database command.

Table and column names are self-explanatory; for undefined or
non-existing values NULL is used. FLAG in SHOT_FLAG table is dpl or
srf for duplicated or surface shots; in STATION_FLAG table ent, con,
fix, spr, sin, dol, dig, air, ove, arc for stations with entrance,
continuation, fixed, spring, sink, doline, dig, air-draught, overhang
or arch attributes, respectively.

Examples of simple queries follow:

List of survey team members with information about how much each
of them has surveyed:

select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME
from CENTRELINE, TOPO, PERSON
where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID
= PERSON_ID
group by NAME, SURNAME order by 1 desc, 4 asc;

Which parts of the cave were surveyed in the year 19987

select TITLE from SURVEY where ID in
(select SURVEY_ID from CENTRELINE
where TOPO_DATE between ’1998-01-01’ and ’1998-12-31°);

How long are the passages lying between 1500 and 1550 m a.s.l.?

select sum(LENGTH) from SHOT, STATION Si, STATION S2
where (S1.Z+S2.Z)/2 between 1500 and 1550 and
SHOT.FROM_ID = S1.ID and SHOT.TO_ID = S2.1ID;

Lists—caves, surveys, continuations

Using export continuation-list you get an overview of all points
in the centreline and scraps marked™ as a possible continuation.

export cave-list gives you a tabular information about surveyed
caves (you need to specify entrance flags in your data) including
length, depth and entrance(s) location.

Detailed information about each sub-survey gives export
survey-list command. The length includes shots with
approximate flags, but not explored, duplicate or surface.

7 Using station attribute for centreline points and point continuation in
scraps.

2D maps

Maps for printing

Maps are produced in PDF and SVG formats, which may be viewed
or printed in a wide variety of viewers. Be sure to uncheck Fit page
to paper or similar option if you want to print in the exact scale.

In atlas mode some additional information is put on each page: page
number, map name, and page label.

The numbers of neighbouring pages in N, S, E and W directions, as
well as in upper and lower levels are especially useful. There are also
hyperlinks at the border of the map if the cave continues on the
next page and on the appropriate cells of the Navigator.

PDF files are highly optimized—scraps are stored in XObject forms
only once in the document and then referenced on appropriate pages.
Therion uses advanced PDF features like transparency and layers.

Created PDF files may be optionally post-processed in applications
like pdfTEX or Adobe Acrobat—it’s possible to extract or change
some pages, add comments or encryption, etc.

If the map was produced using georeferenced data then it also
contains georeferencing information. This can be extracted
by XTherion to produce georeferenced raster images (see
XTherion/Additional tools for details).

Maps for GIS

Maps produced in DXF, ESRI or KML formats may be further
processed in appropriate software. These maps do not contain
visualized map symbols

Special-purpose maps

Map in XVI format contains centreline with LRUD information (and
optionally morphed sketches) and can be imported in XTherion to
serve as a background for digitization.

Map in Survex format is intended for a quick preview in Aven.

3D models

Therion may export 3D models in various formats besides its native
format. These may be loaded in appropriate viewing, editing or
raytracing programs to be printed or further processed. If the
format doesn’t support arbitrary passage shape definition, only the
centreline is included.

Loch

Loch is a 3D model viewer included in the Therion distribution. It
supports e.g. high-resolution rendering to file and stereo view using
3D-glasses.

Changing layout of PDF maps

This chapter is extremely useful if you're not satisfied with the
predefined layout of map symbols and maps provided, and want to
adapt them to your needs. However, you need to know how to write
plain TEX and METAPOST macros to do this.

Page layout in the atlas mode

The layout command allows basic page setup in the atlas mode.
This is done through its options such as page-setup or overlap.
But there are no options which would specify the position of map,
navigator and other elements inside the area defined by page-width
and page-height dimensions; e.g., why is the navigator below the
map and not on its right or left side?

There are many possible arrangements for a page. Rather than
offer even more options for the layout command, Therion uses
the TEX language to describe other page layouts. This approach
has the advantage that the user has direct access to the advanced
typesetting engine without making the language of Therion overly
complex.

Therion uses pdfTEX with the plain format for typesetting. So you
should be familiar with the plain TEX if you wish to define new
layouts.

The ultimate reference for plain TEX is

Knuth, D. E.: The TgXbook, Reading, Massachusetts,
Addison-Wesley 11984

For pdfTEX’s extensions there is a short manual

Thanh, H. T.—Rahtz, S.—Hagen, H.: The pdfTgX user manual,
available at
http://www.pdftex.org

The TEX macros are used inside the code tex-atlas part of the
layout command (see the chapter Processing data for details). The
basic one predefined by Therion is the

\dopage

macro. The idea is simple: for each page Therion defines TEX
variables (count, token, and box registers) which contain the page
elements (map, navigator, page name etc.). At the end of each page
macro \dopage is invoked. This defines the position of each element
on the page. By redefining this macro you'll get the desired page
layout. Without this redefinition you’'ll get a standard layout.

Here is the list of variables defined for each page:
Boxes:

e \mapbox > The box containing the map. Its width (height) is
set according to the size and overlap options of the layout
command to

size_width + 2%overlap or
size_height + 2xoverlap, respectively

e \navbox > The box containing the navigator, with dimensions

http://www.pdftex.org

size_width * (2*nav_size_x+1) / nav_factor or
size_height * (2#nav_size_y+1) / nav_factor, respectively
Both \mapbox and \navbox also contain hyperlinks.

Count registers:

e \pointerE, \pointerW, \pointerN, \pointerS contain the
page number of the neighbouring pages in the E;, W, N and S
directions. If there is no such page its page number is set to 0.

e \pagenun current page number
Token registers:

e \pointerU, \pointerD contain information about pages
above and below the current page. It consists of one or more
concatenated records. Each record has a special format

page-name | page-number |destination] |
If there are no such pages, the value is set to notdef.

See the description of the \processpointeritem macro below for
how to extract and use this information.

e \pagename > the name of the current map according to the
options of the map command.

e \pagelabel > the page label as specified by origin and
origin-label options of the layout command.

The following variables are set at the beginning of the document:

e \hsize, \vsize > TEX page dimensions, set according to
page-width and page-height parameters of the page-setup
option of the layout command. They determine our playground
when defining the page layout using the \dopage macro.

e \ifpagenumbering > This conditional is set true or false
according to the page-numbers option of the layout command.

There are also some predefined macros which help with the
processing of \pointerx variables:

e \showpointer with one of the \pointerE, \pointerW, \pointerN
or \pointer$S as an argument displays the value of the argument.
If the value is 0 it doesn’t display anything. This is useful because
the zero value (no neighbouring page) shouldn’t be displayed.

o \showpointerlist with one of the \pointerU or \pointerD
as an argument presents the content of this argument. (Which
contains \pointerU or \pointerD, see above.) For each record it
calls the macro \processpointeritem, which is responsible for
data formatting.

Macro \showpointerlist should be used without redefinition in
the place where you want to display the content of its argument;
for custom data formatting redefine \processpointeritem macro.

e \processpointeritem has three arguments (page-name,
page-number, destination) and visualizes these data. The
arguments are delimited as follows

\def\processpointeritem#1|#2|#3\endarg{...}
An example definition may be

\def\processpointeritem#1|#2|#3\endarg{’
\hbox{\pdfstartlink attr {/Border [0 O 0]}%
goto name {#3} #2 (#1)\pdfendlinkl}}
}

(note how to use the destination argument), or much simpler (if
we don’t need hyperlink features):

\def\processpointeritem#1|#2|#3\endarg{’
\hbox{#2 (#1)}%
+

For font management there are macros
e \size[#1] for size changes,

e \cmykcolor[#1 #2 #3 #4], \[rgblcolor[#1 #2 #3] and
\graycolor [#1] for text colour changes (the values should be in
the range 0-100),

e \black which selects the black color in the appropriate colour
model, and

e \rm, \it, \bf, \ss, \si for type face switching.

See below for a list of predefined texts which may be used in the

atlas.

There is also a \framed macro which takes a box as an argument
and displays the box framed. The frame style can be customized by
redefining the \linestyle macro which defaultsto1 J 1 j 1.5 w.

Now we're ready to define the \dopage macro. You may choose
which of the predefined elements to use. A very simple example
would be

layout my_layout

scale 1 200

page-setup 29.7 21 27.7 19 1 1 cm

size 26.7 18 cm

overlap 0.5 cm

code tex-atlas
\def\dopage{\box\mapbox}
\insertmaps

endlayout

which defines the landscape A4 layout without the navigator nor
any texts. There is only a map on the page.

Note the \insertmaps macro. Map pages are inserted at its
position. This is not done automatically because you may wish to
insert some other pages before the first map page.

More advanced is the default definition of the \dopage macro:

\def\dopage{’
\vbox{\centerline{\framed{\mapbox}}
\bigskip
\line{%
\vbox to \ht\navbox{

\hbox{\size[20]\the\pagelabel
\ifpagenumbering\space (\the\pagenum) \fi
\space\size[16]\the\pagename}

\ifpagenumbering
\medskip
\hbox{\qquad\qquad

\vtop{%
\hbox to Opt{\hss\showpointer\pointerN\hss}
\hbox to Opt{\llap{\showpointer\pointerW\hskip
\raiselpt\hbox to
Opt{\hss\updownarrow\hss}’
\raiselpt\hbox to
Opt{\hss\leftrightarrow\hss}’%
\rlap{\hskipO.7em\showpointer\pointerE}}
\hbox to Opt{\hss\showpointer\pointerS\hss}
Haquad\gquad
\vtop{

\def\arr{\uparrow}
\showpointerlist\pointerU
\def\arr{\downarrow}
\showpointerlist\pointerD

}
\fi
\vss
\scalebar
F\hss
\box\navbox
}
}
+

Using other plain TEX macros or TEX primitives it’s possible to
add other features, e.g. a different layout for odd and even pages;
headers and footers; or adding a logo to each page.

In addition to the map pages, the atlas contains additional items:
title page, basic facts about the cave, legend with used map symbols
ete.

Therion automatically generates a list of used map symbols and lists
of people who have discovered, surveyed and drawn the selected part
of the cave. Following token registers may be used (according to the
user’s requirements before or after the \insertmaps macro):

e \explotitle, \topotitle, \cartotitle > translated titles

e \exploteam, \topoteam, \cartoteam > participating members
(according to team, explo-team options for centreline and
author option of scraps)

e \explodate, \topodate, \cartodate > corresponding dates

e \comment b is set according to map-comment option of the layout

command

e \copyrights > is set according to copyright options for surveys
and other objects

e \cavename > name of the exported map; set according to -title
option of the exported map

e \cavelength, \cavedepth > approximate length and depth of the
displayed map

e \cavelengthtitle, \cavedepthtitle b translated labels
e \cavemaxz, \caveminz > altitude max/min value

e \thversion b current therion version

e \currentdate > current date

e \outcscode, \outcsname > output coordinate system code and
name

e \northdir > ‘true’ or ‘grid’
e \magdecl > magnetic declination in degrees
e \gridconv > grid meridian convergence in degrees

There is a macro \atlastitlepages which combines most of the
token registers mentioned above to get simple preformatted atlas
introductory pages.

For legend displaying there are

e \iflegend > conditional; true iff legend option of the layout
command was set to on or all values

e \legendtitle > token register containing translated legend title

e \insertlegend > macro for inserting legend symbols pictures
with translated descriptions in the specified number of columns
(according to legend-columns layout option)

e \formattedlegend > combines all three above commands to get
preformatted legend with header and symbols typeset in two™
columns if 1egend option is set on

North arrow, altitude bar and scale bar may be displayed using

e \ifnortharrow > conditional; true if map projection is plan and
symbol north-arrow is not hidden in layout

e \ifscalebar b conditional; true if the scale bar is not hidden

e \ifaltitudebar i conditional; true if the altitude bar is not
hidden

e \northarrow > macro containing PDF form with the north arrow
e \scalebar > macro containing PDF form with the scale bar
e \altitudebar > macro containing PDF form with the altitude bar

There is a general-purpose macro for typesetting in multiple
columns™:
e \begmulti <i> \endmulti > text between these macros is

typeset in <i> columns

An example of how to create an atlas with lists of surveyors etc.
followed by map pages and with legend at the end:

™ Default; adjust the legend-columns layout option to get more or less of
them.

™ Not to be used with map legend, where multiple columns are to be adjusted
by legend-columns layout option

code tex-atlas
\atlastitlepages
\insertmaps
\formattedlegend

To use a relative path when including another TEX file use the
\inputrel macro instead of \input.

Page layout in the map mode

In the map mode it’s possible to use a lot of predefined variables
which are described in the previous chapter:

\cavename, \comment, \copyrights, \explotitle, \topotitle,
\cartotitle, \exploteam, \topoteam, \cartoteam,

\explodate, \topodate, \cartodate, \cavelength, \cavedepth,
\cavelengthtitle, \cavedepthtitle, \cavemaxz, \caveminz,
\thversion, \currentdate, \outcscode, \outcsname, \northdir,
\magdecl, \gridconv, \ifnortharrow, \ifscalebar, \northarrow,
\scalebar, \iflegend, \legendtitle, \insertlegend, \begmulti
<i>, \endmulti, \formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to
define \maplayout macro in the code tex-map section of the layout
command. It should contain one or more \legendbox invocations.
The \legendbox macro has four parameters: coordinates ranging
0-100, alignment specification (N, E, S, W, NE, SE, SW, NW or C)
and the content to be displayed. To show the content of variables
marked as count registers or token registers in the previous chapter,
you need to prefix them with \the.

A simple example is

\def\maplayout{
\legendbox{0}{100}{NW}{\northarrow}
\legendbox{100}{100}{W}{\the\thversion}

}

which displays north arrow in the upper-left corner of the map sheet
and the version of Therion in the upper-right corner.

The fourth parameter may also be a \loadpicture macro, which
includes a picture in PDF, JPEG or PNG format. Although it
accepts a relative or absolute path, in some cases™ you need to
convert a relative path to absolute and save it for further use:

\savepath{mypath1}{../data/picture.png}
\def\maplayout{

\legendbox{100}{80}{NW}{\loadpicture{mypathi}}
}

For the user’s convenience, there is \legendcontent token register.

It contains preformatted cave name, north arrow, scale bar,
explo/topo/carto teams, comment, copyrights and legend. (The
\legendcontent is also used in the default map layout definition:
\def\maplayout{\legendbox{0}{100}{NWw}{\the\legendcontent}})

The width of the above text may be adjusted by \legendwidth
dimen register (its default value is set by legend-width layout
option). The colour and size of texts in the preformatted legend can
be easily changed using \legendtextcolor, \legendtextsize,
\legendtextsectionsize and \legendtextheadersize token
registers, e.g. for large blue text:

"6 If you combine multiple layouts stored in different directories.

code tex-map
\legendwidth=20cm
\legendtextcolor={\cmykcolor[0 30 50 50]}
\legendtextsize={\size[20]}
\legendtextheadersize={\size[60]}

It is possible to display the whole map framed by setting the
\framethickness dimen register to a positive value, e.g. 0.5mm.

Customizing text labels

Starting with the release 5.4.1 you can use fonts-setup layout
option instead of the METAPOST macro fonts_setup().

New map symbols

Therion’s layout command makes it easy to switch among various
predefined map symbol sets. If there is no such symbol or symbol
set you want, it’s possible to design new map symbols.

However, this requires knowledge of the METAPOST language,
which is used for map visualization. It’s described in

Hobby, J. D.: A User’s Manual for MetaPost, available at
https://www.tug.org/docs/metapost/mpman.pdf

The user may also benefit from comprehensive reference to the
METAFONT language, which is quite similar to METAPOST:

Knuth, D. E.: The METAFONTbook, Reading, Massachusetts,
Addison-Wesley 11986

https://www.tug.org/docs/metapost/mpman.pdf

New symbols may be defined in the code metapost section of
the layout command. This makes it easy to add new symbols
at the run-time. It is also possible to add symbols permanently
by compiling them into Therion executable (see the Appendiz for
instructions on how to do this).

Each symbol has to have a unique name, which consists of the

following items:

e one of the letters ‘p’, ‘I, ‘a’, ‘s’ for point, line, area or special
symbols, respectively;

e underscore character;

e symbol type as listed in the chapter Data format with all dashes

removed;

e if the symbol has a subtype, add an underscore character and
subtype;

e underscore character;
e symbol set identifier in uppercase

Example: standard name for a point ‘water-flow’ symbol with a
‘permanent’ subtype in the ‘MY’ set is p_waterflow_permanent_MY.
Standard name for user-defined symbol types should not include
symbol set identifier, e.g. p_u_bat.

Each new symbol has to be registered by a macro call
initsymbol ("<standard-name>");
unless it’s compiled into Therion executable.

There are four predefined pens PenA (thickest) ... PenD (thinnest),
which should be used for all drawings. For drawing and filling use

thdraw and thfill commands instead of METAPOST’s draw and
fill.

The following variables are also available:™

e boolean ATTR__shotflag_splay, ATTR__shotflag_duplicate,
ATTR__shotflag_approx > set for line survey

® boolean ATTR__stationflag_splay b set true for endstations of
splay shots

boolean ATTR__scrap_centerline > set true for scraps created
from centreline

boolean ATTR__elevation b true for (extended) elevation, false
for plan projection

numeric ATTR__height > height of a pit or wall:pit

string ATTR__id > contains current object ID

string ATTR__survey > contains current survey name

string ATTR__scrap > contains current scrap name

picture ATTR__text B> contains typeset text e.g. for point
continuation

string NorthDir > ‘true’ or ‘grid’

numeric MagDecl > magnetic declination in degrees
e numeric GridConv > grid meridian convergence in degrees

If you need to include some METAPOST definitions from a
file specified by a relative path, you need to use the macro
inputrel("relative/path.mp").

“TIf names clash with Therion commands (like color), you can add an
exclamation mark ‘!’ to prevent Therion parsing the line: ! color
myNewColorDef;

Point symbols

Point symbols are defined as macros using def ... enddef;
commands. The majority of point symbol definitions have four
arguments: position (pair), rotation (numeric), scale (numeric)

and alignment (pair). Exceptions are section which has no visual
representation; all labels, which require special treatment as
described in the previous chapter, and station which takes only one
argument: position (pair).

All point symbols are drawn in local coordinates with the length unit
u. Recommended ranges are (—0.5u, 0.5u) in both axes. The symbol
should be centered at the coordinates’ origin. For the final map,

all drawings are transformed as specified in the T transformation
variable, so it’s necessary to set this variable before drawing.

This is usually done in two steps (assume that the four arguments
are P, R, S, A):

e set the U pair variable to (of the symbol for

width height
2) 2
the correct alignment. The alignment argument A is a pair
. E . shifty shifty,
representing ratios (—Lr) and (—UU)

(Hence aligned A means shifted (xpart A * xpart U, ypart
A * ypart U).)

e set the T transformation variable
T:=identity aligned A rotated R scaled S shifted P;

For drawing and filling use thdraw and thfill commands instead of
METAPOST’s draw and fill. These automatically take care of T'
transformation.

An example definition may be

def p_entrance_UIS (expr P,R,S,A)=
U:=(.2u, .5u);
T:=identity aligned A rotated R scaled S shifted P;
thfill (-.2u,-.5u)--(0,.5u)--(.2u,-.5u)--cycle;
enddef;
initsymbol ("p_entrance_UIS");

Line symbols

Line symbols differ from point symbols in respect that there is no
local coordinate system. Each line symbol gets the path in absolute
coordinates as the first argument. Therefore it’s necessary to set T'
variable to identity before drawing.

The following symbols take additional arguments:

e arrow > numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3
both ends

e contour > text: list of points which get the tick or one of —1,
—2 or —3 to mark undefined tick, tick in the middle or no tick,
respectively

e section > text: list of points which get the orientation arrow or —1
to indicate no arrows

e slope > numeric: 0 no border, 1 border; text: list of
(point,direction,length) triplets

Usage example:

def 1_wall_bedrock_UIS (expr P) =
T:=identity;
pickup PenA;
thdraw P;
enddef;
initsymbol("1_wall_bedrock_UIS");

Area symbols

Areas are similar to lines: they take only one argument — path in
absolute coordinates.

You may fill them in three ways:

o fill a uniform or randomised grid in a temporary picture (having
dimensions bbox path) with some point symbols; clip it according
to the path and add to the currentpicture

o fill path with a solid colour
o fill path with a predefined pattern using a withpattern keyword.

Patterns are defined using the same user interface (except the
patterncolor macro) as described in the article

Bolek, P.: “METAPOST and patterns,” TUGboat,
3, XIX (1998), pp. 276-283, available online at
https://www.tug.org/TUGboat/Articles/tb19-
3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without
setting of T variable in the pattern definitions. In PDF output, all
patterns are uncolored—this means that any colour information
specified in the pattern definition is ignored and the colour is

https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf
https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

assigned later, when the pattern is used (using symbol-colour
layout option).

An example of how to define and use patterns:

beginpattern(pattern_water_UIS);
draw origin--10up withpen pensquare scaled (0.02u);
patternxstep(.18u);
patterntransform(identity rotated 45);

endpattern;

def a_water_UIS (expr p) =

T:=identity;

thclean p;

thfill p withpattern pattern_water_UIS;
enddef;
initsymbol ("a_water_UIS");

Special symbols

There are currently two special symbols: scale bar and north arrow.
Both are experimental and subject to change.

Appendix

Compilation

Installing the dependencies

If you want to compile Therion from source code and run it, you
need (first three are required only during compilation):

e GNU C/C++ compiler or Clang
o GNU make or CMake

e Perl

e Python 3

e PROJ library (https://proj.org/). Supported versions are: v4:
4.9.3; v5: 5.1.0 and newer; v6: 6.2.1 and newer; 7.0.1 and newer.

o fmt (https://github.com/fmtlib/fmt).

e Tcl/Tk 8.4.3 and newer (https://www.tcl.tk) with BWidget
widget set
(https://sourceforge.net/projects/tcllib/) and optionally
tkImg extension
(https://sourceforge.net/projects/tkimg/).

o TEX distribution with at least TEX with Plain format, recent
pdfTEX, and METAPOST (https://www.tug.org).

https://proj.org/
https://github.com/fmtlib/fmt
https://www.tcl.tk
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tkimg/
https://www.tug.org

e LCDF Typetools package (https://wuw.lcdf.org/type/)

e ImageMagick distribution with convert and identify utilities, if
you want to use warping of survey sketches.

e ghostscript if you want to create calibrated images from
georeferenced PDF maps.

To compile Loch, you need

o freetype 2 and newer; pkg-config freetype2 must work

o wxWidgets 3 and newer; wx-config must work

e VTK 7.0 and newer

e libjpeg, libpng, zlib

All programs (with the exception of BWidget and tkImg
package) are usually included in Linux, Unix or MacOS X
distributions. For Windows consider using MinGW and MSYS2
(https://www.msys2.org/). It’s a distribution of GNU utilities

with GNU make and GCC. (BTW, why not to use precompiled
Windows version?)

Installing dependencies to compile Therion on Ubuntu 22.04:

sudo apt install bwidget catch2 cmake gcc ghostscript
imagemagick lcdf-typetools libfmt-dev libfreetype6-dev
libjpeg-dev libpng-dev libproj-dev libtk-img-dev
libvtk7-dev libwxgtk3.0-gtk3-dev tcl-dev texlive-binaries
texlive-metapost zliblg-dev.

Installing dependencies in Fedora 37:

https://www.lcdf.org/type/
https://www.msys2.org/

sudo dnf install brotli-devel bwidget catch2-devel cmake
fmt-devel g++ jbigkit-devel krb5-devel libidn2-devel
libjpeg-turbo-devel libnghttp2 libnghttp2-devel libpsl-
devel libssh-devel libwebp-devel openldap-devel proj-devel
texlive-metapost texlive-pdftex-quiet texlive-scheme-basic
tkimg vtk-devel wxGTK-devel

Check also therion/.github/workflows/ for complete
configurations for Ubuntu, Mac OS X and Windows.

Using CMake

Unpack the source distribution therion-6.*.tar.gz and create a
separate directory for the build, e.g.:

e cd therion && mkdir build && cd build

e cmake [parameters]

e make -j4

CMake parameters

Here is a selection of parameters which can be used with cmake:

e -G <generator> i specify the generator, e.g. -G Ninja to use
Ninjga build system instead of make, or -G "MSYS Makefiles" to
build using make under MSYS2

e -DUSE_BUNDLED_SHAPELIB=0FF > use the system Shapelib library

e -DUSE_BUNDLED_CATCH2=0N > use the bundled version of Catch2
library

e -DECM_ENABLE_SANITIZERS=<option> i use runtime sanitizers,
relevant options:

address — detects invalid memory accesses, use-after-free, double
free, memory leaks, useful for debugging

undefined — detects undefined behavior, for example use of
uninitialized values

-DCMAKE_BUILD_TYPE=<option> 1> build type, relevant options:
Debug — compile with debug symbols and asserts
Release — compile with optimizations

RelWithDebInfo — compile with debug symbols and
optimizations, useful for profiling and debugging

e -DTHBOOK_FORMAT=<option> > set the output size of the Therion
book (most of the images are omitted in smaller sizes); relevant
options:

0 — A4 portrait

1 — small screen portrait (some lines and images don’t fit)
2 — small screen landscape

3 — ebook reader optimized

The following cmake components can be used to selectively install a
part of the package: th-runtime, loch-runtime, th-docs, loch-docs.

Legacy approach: using make
e unpack the source distribution therion-6.*.tar.gz
e cd therion

e make config-macosx or make config-win32, if you use
MacOS X or Windows, respectively

e make

e sudo make install

Make parameters

Therion’s makefile may take some optional parameters.

e config-linux, config-macosx, config-win32 > configure
Therion for a specific platform. Linux is a default.

e config-release, config-oxygen, config-ozone > set
optimization level for C++ compiler (none, -02 and -03)

e config-debug > useful before debugging the program
e install > install Therion

e clean > delete all temporary files

Hacker’s guide
Cross-compilation for Windows

Therion supports compilation of Win32/Win64 executables in Linux
using MXE cross compiler (http://mxe.cc).

e install the following static/win32 packages
(1686-w64-mingw32.static-*) or static/win64 packages
(x86-64-w64-mingw32.static-*) to the directory /usr/lib/mxe/:
binutils, bzip2, expat, freetype-bootstrap, gee, gettext, glib,
harfbuzz, jpeg, libiconv, libpng, proj, tiff, vtk, wxwidgets, xz, zlib.

e modify PATH: export PATH=/usr/lib/mxe/usr/bin:$PATH

e use CMake or the legacy approach (cd therion && make
config-win32cross && make) to build Therion

http://mxe.cc

See therion/.github/workflows/ for detailed examples of building

Therion on multiple platforms.

Adding new translations

Therion supports translation of map labels. Suppose you want to

add a new language xx.

e run ‘perl process.pl export xx’ in the ‘thlang’” Therion source
subdirectory. This creates a file texts_xx.txt. This file is UTF-8
encoded.

o cdit the texts_xx.txt file. Add your translations at lines
beginning with ‘xx:’.

e run make update

e compile Therion

Adding new encodings

Although UTF-8 Unicode encoding covers all characters which

Therion is able to process, it may be inconvenient to use it. In that

case it’s possible to add support for any 8-bit encoding for text

input files. Copy a translation file to the thchencdata directory;

add its name to ‘ifiles’ hash in the beginning of the Perl script
generate.pl; run it and recompile Therion.

The translation file should contain two hexadecimal values of a
character (first one in the 8-bit encoding, second one in Unicode) in
each line. Possible comments follow the ‘#’ character.

Adding new TgX encodings

It’s easy to add new encodings for 2D map output.” Copy an
appropriate encoding mapping file with an *.enc extension to the

8 This section applies to old-style font selection using tex-fonts command in
the initialization file and is obsolete when using pdf-fonts command.

texenc/encodings, run the Perl script mktexenc.pl located in the
texenc directory and compile Therion.

Therion uses the same encoding files as afm2tfm program from the
TEX distribution, which has the same format as an encoding vector
in a PostScript font. You may find more details in the chapter
6.3.1.5 Encoding file format in the documentation to Dvips program.

Generating new TpX and METAPOST headers

Therion uses TEX and METAPOST for 2D map visualization and
typesetting. Predefined macros are compiled into the Therion
executable and are copied to the working directory just before
running METAPOST and TEX (unless the -—use-extern-1libs
option is used). Layout command makes it possible to modify some
macros in the configuration file at the run-time.

However, it’s possible to make permanent changes to the macro
files. After modifying the files in the mpost and tex directories it’s
necessary to run Perl scripts genmpost.pl and gentex.pl, which
generate C++ header files, and compile Therion executable again.

Updating the geomagnetic model

Therion uses the IGRF model to calculate the magnetic
declination. Download the model in a txt format from
https://www.ngdc.noaa.gov/IAGA/vmod/igrf . .html and save it in
the geomag/ directory (e.g. igrfXYcoeffs.txt). Run ./igrf2c.py
igrfXYcoeffs.txt which creates thgeomagdata.h in the Therion
source directory and recompile Therion.

To test the model, extract the file sample_out_IGRFXY.txt, which
is included in the Geomag distribution available on the same web
page. Put it into the geomag/test/ directory, run ./build.sh

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

sample_out_IGRFXY.txt and check the lines with an exclamation
mark in the output.

Environment variables
Therion reads following environment variables:
e THERION > [not required] search path for (x)therion.ini file(s)

e HOME (HOMEDRIVE + HOMEPATH on WinXP) & [not required, but

usually present on your system] search path for (x)therion.ini
file(s)

e TEMP, TMP > system temporary directory, where Therion stores
temporary files (in a directory named thPID, where PID is a
process ID), unless tmp-path is specified in the initialization file.

Consult the documentation of your OS how to set them.

Initialization files

Therion’s and XTherion’s system dependent settings are specified in
the file therion.ini or xtherion.ini, respectively. They are searched
for in the following directories:

e on UNIX: ., $THERION, $HOME/.therion, /etc, /usr/etc,
/usr/local/etc

e on Windows: ., $THERION, $HOME\.therion,
<Therion-installation-directory>, C:\WINDOWS, C:\WINNT,
C:\Program Files\Therion

Therion

If no file is found Therion uses its default settings. If you want to
list them, use —-print-init-file option. The initialization file is
read like any other therion file. (Empty lines or lines starting with
‘4’ are ignored; lines ending with a backslash continue on next line.)
Currently supported initialization commands follow.

e loop-closure <therion/survex>
By default, survex is used if present, otherwise therion.
e encoding-default <encoding-name>
Set the default output encoding (currently unused).
e encoding-sql <encoding-name>
Set the default output encoding for SQL export.
e language <xx[_YY]>

Default output language. See the copyright page for the list of
available languages.

e units <metric/imperial>
Set default units.
e mpost-path <file-path>

Set the full path to a METAPOST executable if Therion can’t find
it (“mpost” is the default).

e mpost-options <string>

Set METAPOST options.

e pdftex-path <file-path>

Set the full path to a pdfTEX executable if Therion can’t find it
(“pdftex” is the default).

e identify-path <file-path>

Set the full path to ImageMagick’s identify executable if Therion
can’t find it (“identify” is the default).

e convert-path <file-path>

Set the full path to ImageMagick’s convert executable if Therion
can't find it (“convert” is the default).

e source-path <directory>

Path to data and configuration files. Used mostly for system-wide
grades and layout definitions.

e tmp-path <directory>

Path where temporary directory should be created.
e tmp-remove <0S command>

System command to delete files from the temporary directory.
e tex-env <on/off>

[Works on Windows only.] When set to off (default), Therion
temporarily clears all environment variables related to TEX.
Useful if there is other TEXdistribution installed on your system
which had set-up any environment variables, which could confuse
TEX and METAPOST programs supplied in Therion for Windows
distribution.

Set to on if you use other TEX distribution for maps processing.

e text <language ID> <therion text> <my text>

Using this option you can change any default therion text
translation in output. For list of therion texts and available
translations, see thlang/texts.txt file.

cs-def <id> <projédef>
Define a new coordinate system <id> using Proj4 syntax.
cs—trans <csl> <cs2> <proj-pipeline>

Define a transforamation pipeline between two coordinate
systems.™ Both cs1 and cs2 can be lists of aliases enclosed in
brackets.

Therion contains a built-in database of transformation pipelines.®
You can override any built-in definition either by redefining the
pipeline using cs-trans or make it ignored by using an empty
string in the cs-trans definition.

If the pipeline references transformations grids which are not
installed locally, Therion attempts to download them from
cdn.proj.org if proj-missing-grid option is set to download
(otherwise it prints an error message and stops).

This option is ignored if Therion is using PROJ v6 or older.

Example: cs-trans [jtsk epsg:5513] [etrs34
epsg:25834] "+proj=pipeline +step +inv +proj=krovak
+axis=wsu +lat_0=49.5 +lon_0=24.8333333333333
+alpha=30.2881397527778 +k=0.9999 +x_0=0

+y_0=0 +ellps=bessel +step +inv +proj=hgridshift

™ See https://proj.org/usage/transformation.html for details of
pipelines definition.

80 Mostly for JTSK to ETRS89 transformations. The definitions are in the
thesdata. tel file in the source code, proj_transformations variable.

cdn.proj.org
https://proj.org/usage/transformation.html

+grids=sk_gku_JTSKO3_to_JTSK.tif +step +proj=push +v_3
+step +proj=cart +ellps=bessel +step +proj=helmert
+x=485.021 +y=169.465 +z=483.839 +rx=-7.786342
+ry=-4.397554 +rz=-4.102655 +s=0 +conven-
tion=coordinate_frame +step +inv +proj=cart
+ellps=GRS80 +step +proj=pop +v_3 +step +proj=utm
+zone=34 +ellps=GRS80"

proj-auto <on/off>

If set on, let PROJ v6+ decide which transformation between
coordinate systems is optimal.® The selected transformations are
listed in the log file. It is recommended to specify coordinate
systems using the EPSG codes directly (e.g. EPSG:4258).

If set off or if Therion uses PROJ older than v6, the source
coordinates are first transformed to wgs-84, then from wgs-84 to
the target coordinate system. This might result in a suboptimal
precision.

The default setting is on.This option is ignored for those pairs of
coordinate systems which have a transformation pipeline defined
(see cs-trans).

proj-missing-grid <ignore/warn/fail/cache/download>

Set missing transformation grids handling if proj-auto is on or a
custom transformation pipeline in cs-trans references such grids.
The grids are used to achieve a better transformation precision
between some coordinate systems.

81 In this case the function proj_create crs_to_crs() is used. Otherwise
Therion calls proj_create() function in the PROJ library.

For cs-trans pipelines, only download tries to download the grid;
all other options are equivalent to fail. If proj-auto is used to
find the best transformation, the following applies:

ignore silently lets Proj to choose other transformation which
doesn’t use the missing grid(s); this usually leads to decreased
transformation accuracy (say metres instead of centimetres).
See the log file for a list of the used transformations and their
precisions.

warn behaves like ignore, but prints warnings about missing
grids (the download links are usually displayed as well).5

fail stops after the first missing grid is detected and displays the
download link.

cache enables the network connectivity and lets Proj to download
the missing parts of grids from the Internet. The information is
stored in a local cache.®® As only parts of grids covering the
current area are downloaded, it’s potentially faster and less space
consuming then download. The downside is that the local cache is
not used by Proj if the network is disabled (in Therion you have
to use the cache mode to use the local cache).

download temporarily enables the network connectivity and lets
Proj to download the missing grids from the Internet. The grids
are used in subsequent runs (in any mode).

The default setting is download.The option proj-missing-grid
is ignored if proj-auto is off or Proj v5 or older is used. If Proj
v6 is used by Therion, the settings cache and download are

82 See https://proj.org/resource files.html for the instructions where to
put the downloaded grids.

83 See https://proj.org/usage/network.html

https://proj.org/resourceunhbox voidb@x kern .06em vbox {hrule width.3em}files.html
https://proj.org/usage/network.html

equivalent to fail, as the network connectivity is a feature of
Proj v7 and later.

pdf-fonts <rm> <it> <bf> <ss> <si>

Set-up fonts to be used in PDF maps. The command has to be
followed by paths specifying where regular, italic, bold, sans-serif
and sans-serif oblique fonts are located in your system. TrueType
and OpenType fonts are supported.

Therion requires LCDF Typetools to be installed on your system
to use this command. Example:

pdf-fonts "/usr/share/fonts/Serif.ttf" \
"/usr/share/fonts/Serif-Italic.ttf" \
"/usr/share/fonts/Serif-Bold.ttf" \
"/usr/share/fonts/Sans.ttf" \
"/usr/share/fonts/Sans-0Oblique.ttf"

otf2pfb <on/off>

When set to on (default), OpenType fonts used in pdf-fonts
are converted to PFB fonts, if they are PostScript-based. Some
information is lost in the PFB format, but there is advantage
that pdfTEX can embed subset of PFB fonts (in contrast with
OpenType fonts which must be fully embedded).

tex-fonts <encoding> <rm> <it> <bf> <ss> <si>

Original and more complicated way to set-up fonts for PDF
maps. You need to explicitly specify encoding (maximum 256
characters from the font that will be used). The list of currently
supported encodings gives the -—print-tex-encodings command
line option. The same encoding must be used while generating
TEX metrics (*.tfm files) for those fonts (e.g. with the afm2tfm

program) and this encoding must be explicitly given also in the
pdfTEX’s map file. The only exception is the base set of Computer
Modern fonts, which use ‘raw’ encoding. This encoding doesn’t
need to be specified in the pdfTEX'’s map file.

Encoding has to be followed by five font specifications for regular,
italic, bold, sans-serif and sans-serif oblique styles. Default setting
is tex-fonts raw cmrl0 cmtil0 cmbx10 cmssl1l0 cmssilO

Example how to use other fonts (e.g. TrueType Palatino in x12
(an encoding derived from ISO8859-2) encoding). Run:

ttf2afm -e x12.enc -o palatino.afm palatino.ttf
afm2tfm palatino.afm -u -v vpalatino -T x12.enc
vptovf vpalatino.vpl vpalatino.vf vpalatino.tfm

You get files vpalatino.vf, vpalatino.tfm and palatino.tfm.
Add the line

palatino <x12.enc <palatino.ttf

to the pdfTEX’s map file. The same should be done for the italic
and bold faces and corresponding sans-serif and sans-serif-oblique
fonts. If you're lazy try

tex-fonts x12 palatino palatino palatino palatino
palatino

(We should use actually virtual font vpalatino instead of
palatino, which contains no kerning or ligatures, but pdfTEX
doesn’t support \pdfincludechars command on virtual fonts. To
be improved.)

If you want to add some unsupported encodings, read the chapter
Compilation / Hacker’s guide.

e tex-fonts-optional <encoding> <rm> <it> <bf> <ss> <si>

Similar to tex-fonts, but tests if the TEX fonts are installed in
the system. It does nothing if any of the specified fonts is not
present.

This setting is used by default for Czech/Slovak and cyrillic fonts
to avoid METAPOST errors on systems without these fonts
present.

As the test takes some time (pdfTeX instance is run), you might
disable the default behaviour completely by setting tex-fonts in
the INT file.

e tex-refs-registers <on/off>

Switch between using count registers and macros to store
references to graphical objects in TEX. Each approach has some
advantages, see the section Limitations.

XTherion

Initialization file for XTherion is actually a Tcl script evaluated
when XTherion starts. The file is commented; see the comments for
details.

Limitations
® scrap size >

METAPOST in the default (‘scaled’) mode: =~ 2.8 x 2.8 m in the
output scale

METAPOST in the ‘double’ mode:®* practically no limit%
® page size >
PDF map or atlas: ~ 5 x 5 m (pdfTEX limit)
SVG map: limits depend on the viewing application
e scraps count >
METAPOST in the scaled mode: 4(scraps + sections) < 4000
METAPOST in the ‘double’ mode: practically no limit

TEX limit in registers mode:®® 2 x pages + images + patterns +
6(scraps + sections) < 32500 when using pdfTEX (or
approximately 65000 when using LuaTEX®")

TEX limit in macro mode:*® limited only by memory available to

Tx=

84 To run METAPOST in the ‘double’ mode, set mpost-options
"-numbersystem=double" in the initialization file. It’s not recommended to
use arbitrary-precision modes ‘decimal’ and ‘binary’, as there are still bugs
in their implementation and they are much slower than the ‘double’ mode.
You need to use METAPOST newer than 2.00 to use this mode without
issues.

85 1t’s high enough to be reached.

86 This is the default approach, in which the count registers are used to store
references to the graphic objects.

87 To use LuaTEX, set pdftex-path "luatex" in the initialization file.

88 Instead of using count registers, each reference is stored in a separate
macro. This mode is activated by setting tex-refs-registers off in the
initialization file.

89 Note, that you need to modify texmf.cnf configuration file in your TEX
distribution to change the limits.

Example data

Following simple example illustrates basic usage of Therion
commands:

encoding utf-8
survey main -title "Test cave"

survey first
centreline
units compass grad
data normal from to compass clino length
1 2 100 -5 10
endcentreline
endsurvey

survey second -declination [3 deg]
centreline
calibrate length 0 0.96
data normal from to compass length clino
1 2 0 10 +10
endcentreline
endsurvey

centreline
equate 20first 1@second
endcentreline

scraps are usually in separate *.th2 files
scrap sl —author 2004 "Therion team"

point 763 746 station -name 2@second

point 702 430 station -name 2Q@first

point 352 469 station -name 1@first

point 675 585 air-draught -orientation 240 -scale
large

line wall -close on
287 475
281 354 687 331 755 367
981 486 846 879 683 739
476 561 293 611 287 475
endline

endscrap

map ml -title "Test map"
sl
endmap

endsurvey
Corresponding configuration file could be:

encoding utf-8
source test

layout 11
scale 1 100

layers off
endlayout

select ml@main

export model -fmt survex
export map -layout 11

If you save data file as ‘test.th’ and configuration file as ‘thconfig’
you may process them with Therion.

History
e 1999
Oct: first concrete ideas
Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map in PostScript format for
the first time (32 kB of Perl and 7 kB of METAPOST and
TEX source code). The map warping model was substantially
different from the current one (positions of features were
relative to a particular survey shot, not to positions of all
stations in a scrap). This version already included some
interesting features such as transformation functions which
allowed user specification of the input format for survey data,
or splitting large maps to multiple sheets.

Dec 30: the first web page (with data examples but without
source code)

e 2000
Jan: xthedit (Tcl/Tk), a graphical front-end for Therion
Feb 18: start of reprogramming (Perl)
Apr 1: the first hyperlinked PDF cave map / atlas
Aug: experiments with PDF, pdfTEX and METAPOST
e 2001

Nov: start of reimplementation from scratch: Therion (C++ with
some Perl scripts inherited from the previous version); notion
of a scrap; interactive 2D map editor ThEdit as a replacement
of xthedit (Delphi)

Dec: ThEdit exports simple map for the first time
e 2002

Mar: Therion 0.1 — Therion is able to process survey data
(centreline) of the Cave of Dead Bats. XTherion, text editor
designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 — Therion compiles simple map (consisting of
two scraps) for the first time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of
ThEdit)

Sep: Therion compiles first real and complex map of a cave.
XTherion extended to compiler.

e 2003
Mar: the first version of The Therion Book finished
Apr: Therion included in Debian GNU /Linux

Jun: all Perl scripts rewritten in C++, Therion is one executable
program now (although using Survex and TgX)

e 2004

Mar: Therion 0.3 — Therion exports 3D model created from 2D
maps. Loop closure algorithm included into Therion.

e 2006
Oct: Therion 0.4 — New 3D viewer (Loch).
e 2007
Feb: Therion 0.5 — Support for bitmap sketches morphing.
e 2016
Dec: GitHub repository.
e 2021

Jul: Therion 6.0.0 — Improved graphics (smooth colour
transitions, coulour management).

Future

Although Therion is already used for map production, there are a
lot of new features to be implemented:

General

e loop closure information in SQL

2D maps
e complete the predefined symbol sets
e generate registers for atlas

e use MPlib instead of METAPOST

3D models

e improve passage walls modeling

XTherion

e improve 2D editing capabilities

Loch

e colour schemes

e survey tree for selecting sub-surveys to display
e spatial filtering (e.g. clipping by planes)

e support for multiple surfaces

Labyrinth

e completely new GUI in the far future (see
https://labyrinth.speleo.sk)

https://labyrinth.speleo.sk

	Table of Contents
	Introduction
	Creating data files
	Processing data
	What do we get
	Changing layout of PDF maps
	Appendix

