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Chapter 1

Interaction Between
Electrode Charges and
Dipoles of the Melt

The starting point for the derivation is the dipole-charge interaction term
given by Allen and Tildesley [1], which is the same used by Ishii et al. [2] and
by Aguado and Madden [3]. For a system of N point charges ¢; with associated
dipoles p;, this term is given by
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where the damping functions have been dropped and the distance vector is
defined — at contrary with respect to MetalWalls (part I) by Abel — as r;; =
r; — r;. The modulus |r;;| is indicated by r;;.

The system we want to study is different in many ways from the one described
by eq. (1.1). Indeed, we want to describe a set of Gaussian-charge distributions
which is interacting with the dipoles of a set of point-charge distributions. In
particular, the particles involved are of two different kinds, one being particles of
the metal walls, while the other being particles of the melt. The above statement
encodes two main differences:

e The sums run on two different sets of indexes, one representing the melt
particles the other the electrode charges.

e The charges are not point charges, but they are distributed as Gaussians.

The first item of the list imposes a reindexing of the sums as no double counting
is involved in this case. This means, in particular, that, indicating by N, and
N, the number of electrode charges and the number of (dipolar) point particles
in the melt, eq. (1.1) can be written as
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where the tilde indicates the different indexing method (indeed r;; # —wr;; for
this system). We stress the fact that the summations, running on particles of
different kinds, do not include the term 7 = j since no such term actually exists.

The second item in the list implies the Gaussian shape of the charge distri-
butions, which are given by
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where r; and @Q; are the position and the integral charge of the atom ¢, respec-
tively and 7; is a model parameter which is dependent by the particular site
considered. Substituting this expression in eq. (1.2) in place of the point charge
q; and integrating over the whole space we get
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It is now possible to substitute ' = r; — r so that » = r; — v’ (the Jacobian is
—1). The final expression is then given by
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where the prime has been dropped since no ambiguity is produced. The same
result would be obtained using Abel’s convention 7;; = r; — 7; changing the
sign in front of the expression.

Periodic boundary conditions are enforced in the system and we will treat
separately the case in which only two or all three dimensions are replicated. For
the moment the repeated boxes will be generally labelled through the vector
n € Z3 where n, = 0 when two-dimensional periodic boundary conditions are
considered. This means that, for each particle (melt or electrode) at position
r;, there are an infinite number of other particles at position m = nL (product
component by component) where n is defined above and L = (L, Ly, L) are
the dimensions of the simulation box. The expression of the energy then becomes
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Note that no prime is present on the summation over the boxes, since no term
i = j exists and has to be excluded.

The exponential in r can be expanded using the property of the Gaussian
integral as
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as done in the case of MetalWalls (part I) by Abel.

The term |r;; —r+m| ™3 can be expanded using the properties of the Euler’s
gamma functions
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which is again the same trick used by Abel. In the case of the inverse function
r~! wehad a =% and b = —%. In the present case, i.e. 73 2

and b= —l—%, so that!

1.2 /OO dt tie 't (1.9)
3 VT o .
The next relation used by Abel is the so-called “Jacobi Imaginary Transfor-
mation”? to switch from a sum over n in real space to a sum over k in reciprocal
space. I found no trace in the literature of this transformation except that in the
context of Elliptic functions which I do not know how to relate to the present
case. What I think is the relation sought by Abel and the others is the Poisson
Summation Formula [4], which reads
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where f (k) is the Fourier Transform of the function f(r), given by
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and n and k represent periodicity and corresponding wavevectors in real and
reciprocal space, respectively. We want to write in reciprocal space an expression
of the form
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The reciprocal space will be characterized by the wavevectors indexes k € Z3
where, again, k, = 0 when two-dimensional periodic boundary conditions have
to be enforced. The size of the system is taken into account in the basis elements
of the reciprocal space defining the vectors h = 2wk/L (ratio component by
component). Expanding the scalar products outside and inside the exponential
function in eq. (1.12) and exploiting the properties of the exponentials, we obtain
a sum of products of the following two terms
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where a € {z,y, z}. Fourier transforming these terms we get
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Now a distinction has to be made between the cases in which the periodic
boundary conditions are enforced in two or three dimensions.

1Of course the choice a = 6 and b = —% is equally possible, but it is much better to work
with Gaussian integrals.

2The relation is cited with this name also by Pounds and Gingrich in their PhD and Master
thesis, respectively.



1.1 Periodic Boundary Conditions on the xy-
plane.
When periodic boundary conditions are enforced on the xy-plane the vectors

n and k are given by n = (n,,n,,0) and k = (ks, ky,0), respectively, so that
the sum in eq. (1.12) can actually be expanded as

Zu r+m exp{ (r —|—m)2t}:
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The exponential function in z can be taken out from the summation and it will

be not involved in the Fourier transform. The F operator can now be applied
on the rest of the expression to get
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where the linearity of the Fourier operator and the factorizability in the x and y
variables have been used. We can now use the results from eqs. (1.14) to write
the expression in reciprocal space as
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The exponentials can now be factored together to obtain finally
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recalling that h = 2nk/L = (2nk, /L, 2rk,/L,,0) for two-dimensional periodic
boundary conditions. We can now substitute the three relations eqs. (1.7), (1.9)
and (1.18) in the original expression of the energy
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We can now further simplify this expression exploiting again the properties
of the Gaussian integrals. In particular we want to expand the exponential
exp[—(zi; — 2z)*t] which, contrary to the case treated in MetalWalls (part I), is
now multiplied by the factor (z;; — z)p.. This can be done once we recognize
that this factor can be written as the derivative of a Gaussian
10
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The Gaussian integral eq. (1.7) can now be used in its standard one-dimensional
form and, taking the derivative with respect to x, we obtain the result

— 2 = =
x exp[—x“t] 5 896 [ 47r / du eXp + 1uJ:H
11 u2 :
=5 N u (iu) exp {—4—75 + 1u:17H = (1.21)

i d u?

Z—t\/ﬁ/_w U uexp{—zt +1u:rH

Since the exponential exp[—(z;; — z)?t] is multiplied by the whole scalar product
we have to treat consistently all the prefactors. In particular there will be a term
(V4nt)~! [ duexp[—u?/(4t)+iu(z;; —z)] multiplied by the whole scalar product,
while the term —iu/(2t) will multiply only the z component. In this way the
energy can be written as
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If we now define k = (2nk; /Ly, 27k, /Ly, u) = (hg, hy, u) and reorganize some
prefactors, we can write the following expression for the energy
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At this point we can get rid of the integral in d3r and d3v using the integral
representation of the three-dimensional Dirac’s delta

Br—mry) = # /]RS d3k exp[—i(r — 7¢) - K] (1.24)

Reorganizing factors in eq. (1.23) we have
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and substituting eq. (1.24), recalling that §%(r) = §2(—7), we obtain
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Performing the change of variables
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" Ll
dt t=2 exp[ o Hie r”} (1.33)
0
where the prime has been dropped since no ambiguity is produced.
The form of the energy at this point is given by
2
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We now split the contribution to the energy in a long-range and a short-range
part, which can be done by dividing the integral in dt introducing the Ewald
cut-off parameter o
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where it is easy to identify
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To obtain a useful expression for the long-range part it is necessary to treat
separately the kK = 0 term and the rest of the sum over the wavevectors in
reciprocal space. In this fashion, we write down the long-range part of the
energy as Ué;“ = Ué;: + Uézf where
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Focusing for the moment on the k = 0 term we can contract the integral in
the u variable using the Gaussian integral formula in eq. (1.21) and, solving the
integral in dt, we obtain
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where sgn(z;;] = z;;/|2;| and the last equality follows from the oddity of the
error function under change of sign of its argument.

The rest of the long-range part is treated just like the case of the point-
charge-to-point-charge interaction since the form is the same with the exception
of the scalar product (p;- &) in place of the second charge. We solve the integral
in dt as a first step, splitting now the contributions directly dependent on k and



the ones depending on u. Recalling that h = (277%, 27r§—y, 0) we have that
x y
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where it has been recognized that i = exp[in/2] and, in the last equality, the
oddity of the function (p;-h+ups)icos(p;-h+ups) with respect to its argument
and the symmetry of the domain of integration/summation has been used. In
addition, it is possible to recognize that

sin(h - r;; + uz;;) =sin(h - r; + uz;) cos(h - rj + uz;)+

1.40
—cos(h - r; + uz;)sin(h - r; + uz;) (1.40)

Reorganizing the sums over melt particles and electrode atoms, it is easy to see
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that the expression for the long-range term of the energy can be written as
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Since here we exploited the definition of r;;, there is no sign difference with
Abel’s expression for this term when written in this form. Nonetheless, while in
the actual implementation of the code this form of the expression is very useful,
in what follows we will keep using the exponential notation

U;’;’:‘— ZZ/ duZQl (kj - h+upj)x
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since it is shorter to write and easier to handle for the analytic calculations.
The short-range part
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is a bit more tricky to handle since it is necessary to go back into real space. We
first contract the integral over du exploiting the inverse of the transformation
in eq. (1.21)
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and then we go back from a summation in reciprocal space to a summation in
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real space using eq. (1.18)
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To solve the integral we perform the substitution u? = |ri; + m|?t which implies
2udu = |r;; + m|?dt for the differential and ¢t = o? = u = a|r;; + m| and
t =n? = u =n;|r;; + m| for the extrema. The integral in d¢ then becomes
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(1.46)

For numerical reasons, in the actual implementation, it is better to work with
complementary error function instead of error function. Therefore, using the
relation 1 — erfc[x] = erf[z] and substituting eq. (1.46) into eq. (1.45) we obtain
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- (\/Eerfc [mi|ri; + m|] + 2ni|ri; + m|exp [—U$|Tij + mﬂ)}

Putting together all the pieces, the final expression for the interaction energy be-
tween the dipoles associated to point charges and Gaussian-distributed charges
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with two-dimensional periodic boundary conditions is written as
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In MetalWalls, since Abel’s convention on 7;; is followed, the energy is im-
plemented with the opposite sign. See also eq. (1.5) and comments below.

1.2 Three-dimensional Periodic Boundary Con-
ditions
When periodic boundary conditions are enforced on the whole space the

vectors n and k are given by n = (ng,ny,n,) and k = (k;, ky, k.), respectively,
so that the sum in eq. (1.12) can actually be expanded as

Zu r+m exp{ (r —|—m)2t}:

= Z Z Z the (T + noLo) + py (Y + nyLy) + p(z +n2L2) [ x (1.49)

Ng Ny Nz
X exp [—(m + nxLI)Zt} exp [— (y + nyLy)2t} exp {—(z + nsz)zt}
The F operator can now be applied on the rest of the expression using again

linearity of the Fourier transform and factorizability of the expression in the
three variables x, y and z to get

[Zu r+m exp[ (r—s—m)QtH =
- Z Z Zf[[#w(w +ngLy) + py(y + nyLy) + p(z +n. L) x

Mg Ny Ny
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) 1 7T3 % |h2 )
__12V<t5) Z(u-h)exp[—zlt+1h-r}

k
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where V = LyL, L, is the volume of the system and h = 27k /L as before.
The final result comes from the fact that the application of the F operator
to the expression above results in the sum of three terms of the form

mats b o k2 n 2Tk o
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L2z el P Ty La
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1
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where the indexes {«, 8,7} are a cyclic permutation of {z,y,z}. Each of the
three terms then contributes as
1 |h|?

h|
B 1.52
V hau exp[ + ih - r} a € {x,y,z} ( )

Using this formula in the expression of the energy, together with egs. (1.7)
and (1.9) yields
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We now use the integral definition of the three-dimensional Dirac’s delta func-
tion eq. (1.24) to remove the integrals over d3r and d3v. Proceeding exactly in
the same way as the two-dimensional case we obtain

r e _ h2/1 1 i
Ue,, = 1VZZZQ2 / dt t QeXP[—4<t+‘2>+1h'TU}
n
i=1j=1 k ?
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The same change of variables performed in the two-dimensional case leads to
the expression

N, 2
71' e P 7]1; L, |h 2
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As done before, we split the contribution in long- and short-range parts, intro-

14



ducing the Ewald cut-off parameter « in the integral in dt to obtain

T N. Np o? |h|2

i=1j=1
N. Np n? 2
T Z i _ |h| .
" {_IV i=1j=1 k Qg 1) a? w exp[ At i ri]} }

(1.56)
To compute the short-range term we go back in real space and we obtain

2

Uz = IZZZ Qipj - (14 +m)]/2 dt 12 exp[—(rij +m)?t]

i=1j=1 n

(1.57)

The integral in dt is computed as in the two-dimensional case and, after the
change of variables and the substitution erf[z] — erfc|z], we get

st Qz T'z +m)
chu IZZZ |7. _|_j,n|3 X

=1 j=1 mn

X {ﬁerfc [a|ri; + m|] + 2a|ry; + m|exp[—a?|r;; + m[*]+ (1.58)

— (ﬁerfc [nilri; + m|] + 2n;|ri; + m|exp [777242|r,;j + mﬂ)}

which is indeed the same expression obtained for the two-dimensional periodic
boundary conditions case.
As for the long-range part we have that

N. Np

hl2
3 3) SN dttzexp[ BE i
=1 j=1 k 4
N, N, ) ) (1.59)
:—1%222@2 exp[lh rlj]/ dt t_Qexp[ |4Jﬁ}
i=1j=1 k 0

Again the sum over wavevectors should be split in k = 0 and k # 0 terms,
but this time the k = 0 can be trivially set to zero assuming a globally neutral
system. The term k # 0 can be written as

ool
Ugrt = Z Z S Qi - h)explih - ) — (1.60)

i=1 j=1 k0

The same procedure adopted for the two-dimensional case that yielded eq. (1.41)
can be used here and the result is what will be used in the actual implementation.

Putting together the two pieces, the final expression for the interaction en-
ergy between the dipoles associated to point charges and Gaussian-distributed

15



charges with three-dimensional periodic boundary conditions is written as

1 Q1 ij +
chu = {IZZZ |’I" _:‘in|3m) X

i=1j=1 n

X {ﬁerfe[amj + m|] + 2alr;; + m|exp[—a®|ri; + m|*]+
(1.61)
(ferfc[mh’w + m” + 2n;|ri; + m exp[ n?|ri; + mﬂ)} }—|—

Sy _In?
{WZZZQ eXp[lh rlj]exp[éat"]}
14 i=1 j=1 k#0 ‘hl

Again, due to the convention adopted by Abel in defining the distance r;; the
expression implemented in MetalWalls will have the opposite sign compared to
this one.
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Chapter 2

Forces due to Interaction
between Electrode Charges
and Dipoles

As usual the forces are computed as minus the gradient of the potential
with respect to the spatial coordinates. This implies that, starting from the
expressions in eqgs. (1.48) and (1.61), the forces are computed as

Fk(r) = _VrkUc

“gH

k=1,...,N, (2.1)

There are four fundamental pieces in the computation of the derivative with
respect to the nuclei positions of the energy

V. _exp[i(h - r)]} = ihexpli(h - r)] (2.2a)
0 D I O
v 5] = e M (2:20)

V., | V7 erfe[alr(] +2a|r|exp[—a2|r||2]} =

= —4a®|r|exp[—a?|r|*]r (2.2¢)

V., 71'61‘f[042’]:| = 2an/mexp[—a?2?]2 (2.2d)

where 2 = (0,0, 1). In the calculations that follow it is crucial to keep in mind
the notation used for the distance. Indeed, since here 7;; = r; —r; and since we
are consistently using the index i for the electrode charges and the index j for
the particles in the melt, we will have a minus in each expression arising from
the fact that we are considering the force acting on the melt particles and not
on electrode charges. In particular this means that, writing just for this time
ri; = R; — r; to highlight the difference, where R; is the (fixed) position of the
i-th electrode, each function of the distance r;; that we derive, will be expressed
as

V’I‘k f(’rij) = V’I‘ij f(rij)v'f‘k, (Rz - Tj) = _16?]()V7‘7;j f(rij) (23)
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2.1 Periodic Boundary Conditions on the xy-
plane.

Using egs. (2.2) it is possible to compute the contribution to the forces on
the melt due to the interaction term between the electrode charges and the
dipoles in the system. To lighten the notation we divide the computation in
the different contributions as for the computation of the energy so that U,
UCIZ: Ucl;o Uz, .- Taking the gradient of each term we obtain

su

O =V - S [ ot

i=1j=1 k#0
exp {_ \hL2a4;u2:|
X exp[ (h -7y + uzz])] W —
(2.4)
(h
- { ) Z/ du>" Qilm - b+ up)
k£0
|h|*+u
exp [— 2
x expli(h -7y, + UZZIC)],E,|2+4’LL2:|}

N, N,
_VrkUer _Vrk{ =i ZZQlMJ erf az”]} =

lljl

:{ 4QIZQZukexp —a?z ] }
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The short-range contribution is more complex as it is the product of two func-
tions of the distance. The rule for the derivative of a product yields

- Qipj - (rij + m)
-V, chuz Tk{fzzz |/,~z _:,f,n|3m X

=1 j=1 n

x [Vmerfe[alr;; +m|] + 2a|r;; + m|exp[—a®|ry; + m|?]+

(ﬁerfc nilri; + m|] + 2n;|ri; + m) exp[ n?|ri; + mﬂ)] } =

1 S & Qip - (rir +m)
{IZZZV”[ creel

=1 j5=1

3

X [\/Eerfc alri, +ml] + 2a|ry, + m|exp[—a?|ry + m|*]+

(ﬁerfc ni|rik + m|] + 20; |7k + M exp[ nZ|ra + mﬂ)} }—i—

P

1 - Qipg - (i + m) y
(LSS y e
v

+

>4

i=1j=1 mn
X Vi, {ferfc[a|r,k+m|]+2a|rlk+m|exp[ |rik+m|2]+

7T61‘f(3 771|7“zk: + m|] + 2n;|ri + m| exp[ n2-2|rik + m|2])} }
(2.6)

Solving separately the two terms in curly brackets we have

N,
1 e Q; 3[/1'k . (Tik + m)]
_V Usr — L Qi - i
Cap { VT ;Zn: rie + m|? {“k Epp— (rix +m)| x
X {ﬁerfc [04|7'ik + m” + 20{|’I"Z‘k + m| exp [_a2|rik + m|2]+

- (ﬁeffc[mh“ik + m|] + 2n;|rir + m|exp[—n}|ri. + mFD} +

Qi mk+m){ 3 2 2
4n3|\ri + m|exp|—n; |ri, + m|7 |+
§§n P ;i |7k | exp[—n|rin H

— 403 |ry, + m| exp[—aQ\rik + mﬂ} (ri + m)}

2.7)
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So that the final expression for the force when periodic boundary conditions are
enforced on the xy-plane is given by

N,
Ly Qs [k - (rir + m)]
Vo Ue =3 —= QT .
S L
X {\/%erfc [Oé|7'ik + m|] + 2alry + mlexp [*a2|7‘ik n m|2]+

— (ﬁerfc[m\rik + m|] + 2n;|ri + m|exp[—n} T + mﬂ)} +

ZZ Qi (rix +m) {nf’ exp [—n?\rik + m|2] —a? exp[—a2\rik + m|2]} (ra + m)}—i—
n

Irk +ml?

(h+uz i {_Ihf(;u }
+ Z/ du>" Qi - h+upi) explih - m+uzm>]}+

2 .2
Py |h|%2 + u

/—’H

+

/—/H

S Quionl-ot )¢

(2.8)

2.2 Three-dimensional Periodic Boundary Con-
ditions

The same procedure can be applied to the case when three dimensional
periodic boundary conditions are enforced. The only differences with respect to
two-dimensional case are given by the k = 0 term, which is absent in this case
and by the prefactor of the long-range, k # 0 terms. The definition of the k
vector is also different from the case of 2D-PBC and the integral in du is not
present. For this system set-up, the forces on the melt are given by

N,
I Qi 3k - (rik + m)] }
Vo U, =9——F= - - Tik + M) | X
" { 7 22 P D
X {ﬁerfe[amk + ml] + 2alry, + m|exp[—a®|ri + m|*]+
- (ﬁerfc[m‘\ﬂk + m|] + 2n;|ri + m|exp[—n}|ri, + mﬂ)} +

Qz/lfk (Tzk + m)

_l’_
|ran + m|2

[77;?’ exp[—n; |[rir + m|?] — o’ exp[—a®|ri, + mﬂ} (rir + m)}—i—

k|2

i exp| - 12z |
+ 77 2o D Qi - h)hexpli(h v gt

i=1 k0
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Chapter 3

Electric Fields and
Potentials due to
Interaction between
Electrode Charges and
Dipoles

The dynamics of the auxiliary variables, i.e. dipole moments g and (inte-
grated) electrode charges @, is generated enforcing a minimum condition on the
energy. In particular we want that the gradient with respect to the auxiliary
variables of the energy is equal to 0, which means to find the value of p and
@ such that the energy is at a minimum given the positions of the melt and of
the electrodes. In this section we will therefore write the explicit expressions
for the quantities By = =V, U, , with k =1,..., N, and V; = 9q,U,,, with
k=1,..., N, which represent the electric field generated by the whole system
to the k-th atom of the melt and the potential generated by the whole system
on the k-th electrode atom, respectively. Being the energy quadratic in these
variables, the expressions of the derivatives will be much easier to compute
compared to the previous ones.
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3.1 Periodic Boundary Conditions on the xy-
plane.

We now give the expressions for the potential and the electric field generated
by a system which is only periodic in the zy-plane

3.1.1 Potential

N. N,
0 Qu (ri; + m)
U, ik (Tij
X {\/Eerfc[amj + m|] + 2alr; + m|exp[—a®|ry; + m|*]+

- (ﬁerfc[m\'rij +ml] + 2ni|ri; + m|exp[—nf|ri; + m|2])} }+

0 i .
+3Qk~{ L, QZZ/ duZQi i b+ ups)x

=1j=1 k40

exp |~ 15|
—

x exp[i(h - 7i; + uzj)] 2 T 12

Ne NP

0 9 )

i=1 j=1
(re; +m)
B Tk T
{fz D
X {ﬁerfc[ah"kj + m|] + 2alry; + mlexp[—a’|ry; + m[*]+

- (ﬁerfe[nﬂrkj + m] + 21 |r; + m| exp[—ni|rr; + ml?])] }+

N,
i 1 [ .
+{_LwLy2 E /_Oodu E (kj - b+ ups)x
j=1 k#0
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3.1.2 Electric Field

-V, U,

_ ey Qipj - (rij + m)
cen = =V by \/;ZZZ |,,a” +mf3 X
X {ﬁerfe[ahﬁ + m|] + 2alr;; + m|exp[—a®|ri; + m|*]+

— (ﬁerfc[m\rij + m” + 2n;|ri; + m exp[—nﬂmj + mﬂ)} }—|—

Vuk{ i, 22;/ dug%@ py - b ) x
exp[—i‘hljgu } }+

x expli(h - 7i; + uz;j)] hE T2

2
2

e p

{25 3 o]} -

1j5=1

-V
L Al Qz Tzk + m)
ﬁ =1 |Tzk + m|3

DO

.
Il

x [Vmerfe|alry, + m|] + 2a|ri + m|exp[—a®|ry, + m[?]+

— (Vmerte[ilra. + ml] + 2m5[ris + ml| exp[—n?[ri +m|2})} }+

{ i %Z/ dué%Q (h + u2)x
),

B+

erf [azik]é}

X exp [i(h ST+ uzzk)]

-

(3.2)
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3.2 Three-dimensional Periodic Boundary Con-
ditions

The same approach can be used when periodic boundary conditions are
enforced in the three direction of space.

3.2.1 Potential

N. N,
0 0 1 Qs+ (rij + m)
=l s Ty £m)
ok an{ﬁ ;;zn: [rij + mf?
X [ﬁerfc [a|ri; + m|] + 2a|r;; + m|exp[—a®|r; + m[*]+

— (ﬁerfc [ni|rij + m|] + 2n;|r;; + m|exp [—n?\rij + m|2])] }—i—

R D TR B

i=1 j=1 k#0
_ sz: - (rej +m)
T =1 n |rk] +m|3

X [ﬁerfc [a|rej +m|] + 2a|r; + m|exp[—a®|rg; + m|?]+

— (ﬁerfc [k + m] + 201 |7k + M| exp[—nf|rr; + mlz})} }+
N, h
4 ~1aZ
+{ 77T (“j.h)exp[ih.rkj]e}q’[m]}
(3.3)
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3.2.2 Electric Field

X {ﬁerfe[ahﬁ + m|] + 2alr;; + m|exp[—a®|ri; + m|*]+

— (ﬁerfc[m\rij + m” + 2n;|ri; + m exp[—nﬂmj + mﬂ)} +

——

4 Ne My exp[—%}
V“k{szZQ je explh TU]|h|;a}
i=1 j=1 k40
1 Ne Qi(ri + m)
NS 1:1 |rik + m,|3

X [ﬁerfe a|ri, +ml] + 2a|ry, + m|exp[—a?|ry + m|?]+

ﬁerfc Uz‘rzk + m” + 2n;|rik + m|exp[ n?|ra. + mﬂ)} }—F

Ne

-(
exp[ 2L
+{ 7 ZQihexp[ih~rik]p|[h;l°‘]}

i=1 k#0

'S
3

(3.4)
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Chapter 4

Gradient of the Constraints
due to Interaction between
Electrode Charges and
Dipoles

To exploit the massless shake method to compute electrode charges and
dipoles, it is necessary to compute the Hessian of the energy. The expres-
sion of the tensor due to the interaction between electrode charges and dipoles
00, Vu, U, for h=1,... ,N.and k = 1,..., N, is reported below for the case
of periodic boundary conditions on the xy plane and for the three-dimensional
case [SCHWARTZ THEOREM].
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4.1 Periodic Boundary Conditions on the zy-
plane.

5 - Qipj - (rij +m)
T%VWUCW* {\F;;; |7“ Jr;”F’ g

X [ﬁerfc [a|ri; + m|] + 2a|ry; + m|exp[—a?|ry; + m|*]+

- (\/Eerfc [nilri; +ml] + 2n;|ri; + m|exp[—ni|ri; + mQ])] }+

0 i Z
(%thuk{ I.L, L, 222/ duZQZ B up) x

=1 j=1 k#0
exp [~ L5
X exp[ (h TU —+ UZU)} W +

0
o 2SS uale | -
=1 j5=1

(Thr +m)
{5 puem
[ﬁerfc [a|rhe +m|] + 2a|rn, + m|exp[—a?|rn, + m|?]+
(ﬁeffC [n0|7he + m|] + 205 |7he + m|exp[—nj [ rps + mm)} }-i—

i1
+{ LL2/ duZh+uz

k£0

exp |:_ |h|42tu2:| 2
X exp [i(h “Thk + Uth)] a} + { z erf [azhk] 7:'}

X

R + u2 L.L,
(4.1)
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4.2 Three-dimensional Periodic Boundary Con-
ditions

0 0 Qi - (rij +m)
—V, U, ==V, U = E E E J X
th Hok ™ Cen th = { \f i=1lj=1 mn |Tl |3

X [ﬁerfc [a|ri; + m|] + 2a|ry; + m|exp[—a?|ry; + m|*]+

- (\/Eerfc [nilri; +ml] + 2n;|ri; + m|exp[—ni|ri; + mQ])] }+

o i L & 192 ]
+ TQ}LVM@ v Z:: z:: Z Qi(pj - h)exp [1h : 7’113’] T =

x |Vmerfc[alrp, +m|] + 2a|rpe + m|exp[—a®|rue + m|?]+

— (Vmerfe[np|rn, + m|] + 205 |rhs, + mlexp[—np|ra, + mﬂ)} }—i—

L
+{ 1—Zhexp 1h rhk}@(pﬁlp‘mZ]}

k40
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