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In molecular dynamics simulations, intramolecular bond may be treated explicitly with a po-
tential that reproduces the main features of the bond (bond length, vibration frequencies...).
But the treatment of vibrations in particular may be even more challenging since it needs to
develop a force field and may result in the need of a smaller timestep if the frequency of the
mode is high (for instance the O-H bond in water). In cases when this level of description is
not needed, constraint algorithm are used to keep the bonds rigid. The two main constraint
algorithms used in MD simulations are SHAKE and RATTLE. When molecules (more than
three sites) are subject to multiple constraints, such as water, these algorithms are relevant
only if the molecule is not linear like carbon dioxide. Indeed in this case the system looses one
rotational degree of freedom (along the axe of the molecule), leading to a number of constraints
larger than the number of unknowns. An alternative would be to use other kinds of constraint
algorithm, for instance using the quaternion framework. We present here a route to derive the
equations of the RATTLE algorithm in the case of linear molecules.

1 Presentation of the system and notations
We consider a linear molecule with three sites referred as 1, 2 and 3 as shown on Figure 1.
Each site i has a position ri, a velocity vi, a resultant of the forces fi and a mass mi.

Figure 1: Configuration of the molecule

In this molecule the distance r13 is constrained to the value d, the distances r23 and r12 being
constrained to λd and (1− λ)d respectively. In the case of a linear molecule, these constraints
read

r213 − d2 = σ = 0 (1)

r2 − (1− λ)r1 − λr3 = τ = 0 (2)
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This corresponds to four scalar equations instead of three, so the rotational degree of freedom
along the axis of the molecule has been removed. By deriving these constraints with respect to
time, we obtain the constrains on the velocity

v13 · r13 = σ̇ = 0 (3)

v2 − (1− λ)v1 − λv3 = τ̇ = 0 (4)

where v13 = v3 − v1 and r13 = r3 − r1

2 General derivation
In the equations of motion, these constraints will correspond to an effective force applied on
atom i

gi = −a∇riσ −∇ri(b · τ), (5)

where a and b are the Lagrange multipliers. If we expand this expression for each of the three
atoms we obtain

g1 = 2ar13 + (1− λ)b

g2 = −b

g3 = −2ar13 + λb

(6)

We notice that the sum of the gi is 0, meaning that the total momentum of the molecule is not
modified by these additional terms. We can write the equations of motion

m1r̈1 = f1 + 2ar13 + (1− λ)b= F1

m2r̈2 = f2 − λb = F2

m3r̈3 = f3 − 2ar13 + λb = F3

(7)

where a and b are still unknown. In the following, we will only be interested in the motion
of atoms 1 and 3 (referred as the bases) and determine the position and velocity of atom 2 by
using the constraints (2) and (4). First, we shall use the second derivative of constraint (2)

τ̈ = 0 = r̈2 − (1− λ)r̈1 − λr̈3 (8)

By using the equations of motion (7) we can write

1

m2

(f2 − b)−
1− λ
m1

(f1 + 2ar13 + λb)− λ

m3

(f3 − 2ar13 + λb) = 0, (9)

where we can regroup the terms proportional to b[
1

m2

+
(1− λ)2

m1

+
λ2

m3

]
b =

1

m2

f2 −
1− λ
m1

f1 −
λ

m3

f3 − 2a

(
1− λ
m1

− λ

m3

)
r13. (10)
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To simplify this we pose A =
1

m2

+
(1− λ)2

m1

+
λ2

m3

and B =
1− λ
m1

− λ

m3

. We now can express

b as a function of a

b =
1

Am2

f2 −
1− λ
Am1

f1 −
λ

Am3

f3 −
2aB

A
r13. (11)

Let us now replace b in the equations of motion (7) by its expression

r̈1 =
1

m1

f1 +
1− λ
Am2m1

f2 −
(1− λ)2

Am2
1

f1 −
λ(1− λ)
Am1m3

f3︸ ︷︷ ︸
1

m1

fcorrect,1

− 2a

m1

[
(1− λ)B

A
− 1

]
r13︸ ︷︷ ︸

G1

m1

r13

r̈3 =
1

m3

f3 +
λ

Am3m2

f2 −
λ(1− λ)
Am1m3

f1 −
λ2

Am2
3

f3︸ ︷︷ ︸
1

m3

fcorrect,3

− 2a

m3

[
λB

A
+ 1

]
r13︸ ︷︷ ︸

G3

m3

r13

(12)

These equations look similar to a diatomic molecule composed of the two bases with a con-
strained bond. We notice some differencies with the standard RATTLE or SHAKE algorithm:

• The forces on the two bases are corrected by the force apllied on each of the atoms of the
molecule.

• The constraints Gi applied on each of the bases are not opposites.

Now we still have to find the last Lagrange multiplier a. For this we need to detail how the
positions and velocities are updated at each timestep. The RATTLE algorithm is based on the
velocity Verlet algorithm

r(t+ dt) = r(t) + dtv(t) + dt2
F(t)

2m
(13)

v(t+ dt) = v(t) + dt
F(t) + F(t+ dt)

2m
(14)
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3 Update of positions
Using the equations of motions (12) and the relation for the update of positions (13) this leads
to

r1(t+ dt) = r1(t) + dtv1(t) +
dt2

2m1

f1(t) +
dt2

2m1

fcorrect,1(t)︸ ︷︷ ︸
r01(t+ dt)

− dt2

2m1

G1(t)r13(t)︸ ︷︷ ︸
ar
dt2

2
C1r13(t)

r3(t+ dt) = r3(t) + dtv3(t) +
dt2

2m3

f3(t) +
dt2

2m3

fcorrect,3(t)︸ ︷︷ ︸
r03(t+ dt)

− dt2

2m3

G3(t)r13(t)︸ ︷︷ ︸
ar
dt2

2
C3r13(t)

(15)

where r0i (t + dt) is our first guess of the position of the atom i at time t + dt and C1 =
2

m1

[
(1− λ)B

A
− 1

]
and C3 =

2

m3

[
λB

A
+ 1

]
are constants. Now all the terms except for ar are

known. We determine it by imposing the constraint (1) to be fulfilled at time t+ dt. It reads

d2 = r13(t+ dt)2, (16)

or

d2 = ‖r013(t+ dt) + ar
dt2

2
(C1 − C3)r13(t)‖2. (17)

If we pose α =
C1 − C3

2
=

(1− λ)B
Am1

− 1

m1

− Bλ

Am3

− 1

m3

, we can develop it

[
dt4r13(t)

2α2
]
a2r + 2

[
αdt2r013(t+ dt) · r13(t)

]
ar +

[
r013(t+ dt)2 − d2

]
= 0 (18)

Since dt is small, r013(t+ dt) will not differ that much from r13(t), leading to r013(t+ dt) · r13(t)
being always positive. This ensures that this second order equation has two solutions referred
as a±r

a±r =
−r013(t+ dt) · r13(t)±

√
[r013(t+ dt) · r13(t)]2 − r13(t)2 [r013(t+ dt)2 − d2]

αdt2r13(t)2
. (19)

Which one of these two solutions should we choose? The physically relevant solution is the one
whose sign changes when the sign of r013(t + dt)2 − d2 changes and this one is a+r . Note that
it corresponds to the solution leading to a correction of minimal norm. These two solutions
have a geometric interpretation displayed on Figure 2. When a+r corresponds to a slight change
of r013(t + dt), a−r strongly changes the orientation of the molecule, almost flipping it in the
opposite direction.
If we assume that r013(t+dt)−d is small compared to d, we can proceed a first order expansion
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Figure 2: Geometric interpretation of a+r and a−r

of the squareroot term in
r013(t+ dt)− d

d

ar ' −
r013(t+ dt)2 − d2

2αdt2r013(t+ dt) · r13(t)
(20)

This does not differ much from the correction on a diatomic molecule, where α replaces 1/m1+
1/m3.

4 Update of velocities
The difficulty in the update of velocities is that as shown on equation (14) it needs the constraint
on time t + dt that needs the velocity at time t + dt. So instead of determining the Lagrange
multiplier as ar(t + dt), associated with the constraint on positions, we determine it as av(t),
associated with the constraint on velocities. We can now write the equations of the update of
the velocities using the equations of motion (12) and equation (14) as

v1(t+ dt) = v1(t) +
dt

2m1

F1(t) +
dt

2m1

f1(t+ dt) +
dt

2m1

fcorrect,1(t+ dt)︸ ︷︷ ︸
v0
1

(t+ dt)− dt

2m1

G1(t+ dt)r13(t+ dt)︸ ︷︷ ︸
av
dt

2
C1r13(t+ dt)

v3(t+ dt) = v3(t) +
dt

2m3

F3(t) +
dt

2m3

f3(t+ dt) +
dt

2m3

fcorrect,3(t+ dt)︸ ︷︷ ︸
v0
3

(t+ dt)− dt

2m3

G3(t+ dt)r13(t+ dt)︸ ︷︷ ︸
av
dt

2
C3r13(t+ dt)

(21)
where v0

i (t+dt) is our first guess of the velocity of the atom i at time t+dt and Fi(t) has been
calculated during the update of the positions. Note that this guess depends on ar determined
previously. Now all the terms except for av are known. We determine it as in the standard
RATTLE algorithm by imposing the contraint (3) to be fulfilled at time t+ dt

v13(t+ dt) · r13(t+ dt) = 0 (22)

or [
v0
13(t+ dt) +

av
2
dt(C1 − C3)r13(t+ dt)

]
· r13(t+ dt) = 0 (23)

where we once again recognize α. This is a first order equation in av that is easy to solve to
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find

av = −
v0
13(t+ dt) · r13(t+ dt)

αr213(t+ dt)dt
. (24)

As for the update of positions, we find a similar result to a diatomic molecule with a bond
constraint where α replaces 1/m1 + 1/m3. These similarities make this algorithm easy to
implement in MD codes where the standard RATTLE algorithm is already implemented. The
procedure of the algorithm is summarized on Figure 3.

Figure 3: Molecular dynamics with the RATTLE algorithm

6


	Presentation of the system and notations
	General derivation
	Update of positions
	Update of velocities

