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1 Long Range potential kernel

The long range potential equation is derived from the energy equation as

V lr
i = ∂U lr,∗

c

∂qi
. Using the formula given in the Ewald summation description,

this yields:
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The integral over du is discretized using the midpoint rule with a step size

of du = 2π
c

. The term
∫∞
−∞ du f(u) is therefore replaced by 2π

c

∑
n∈Z f

(
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c

)
.

We call a k-point the triplet
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) where (l,m, n) ∈ Z3. (2)

For large values of the k-point norm
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the term exp(−|klmn|
2

4α2 ) is negligible. A cut-off value kmax is used and only
terms for which |klmn| < kmax are taken into account. Thus the infinite sums
are truncated such that

|l| <
⌈
kmax

a

2π

⌉
, |m| <

⌈
kmax

b

2π

⌉
and |n| <

⌈
kmax

c

2π

⌉
.

The term inside the sum is symmetric with respect to the (l,m, n) triplets.
Half of the computation effort is avoided by computing only terms for which

(l = 0,m ∈ [1,mmax], n ∈ [−nmax, nmax]) and

(l ∈ [1, lmax],m ∈ [−mmax,mmax], n ∈ [−nmax, nmax]).

Trigonometric rules are used to reduce the complexity of computing all
values of V lr

i from O(N2) to simply O(N). Using the equality cos(a − b) =
cos(a) cos(b) + sin(a) sin(b), it appears that for each (l,m, n) triplet the same
factors are used for all i:

Cl,m,n =
∑
j

Qj cos
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l
2π

a
xj +m
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b
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2π

c
zj

)
Sl,m,n =

∑
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Qj sin
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l
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a
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b
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2π

c
zj

)
In order to avoid the call to the expensive intrinsic function cos and sin,

the required values are pre-computed and stored in six arrays:

Clj = cos(l
2π

a
xj), Slj = sin(l

2π

a
xj),

Cmj = cos(m
2π

b
yj), Smj = sin(m

2π

b
yj),

Cnj = cos(n
2π

c
zj), Snj = sin(n

2π

c
zj).

Then, using trigonometric rules, the values of

Clmnj = CljCmjCnj − SljCmjCnj − CljSmjCnj − CljCmjSnj,
Slmnj = SljCmjCnj + CljSmjCnj + CljCmjSnj − SljSmjSnj

are easily recovered. This trick requires a storage of 2N(lmax +mmax +nmax +
3) double precision words when we store only values for positive l, m and
n. One can note that storing all values of Clmnj and Slmnj would require
2N(2lmaxmmax + lmax +mmax)(2nmax + 1) double precision words.
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The long range potential computed in the Metalwalls implementation
corresponds to

Ṽ lr
i =

8π

abc

∑
|klmn|<kmax

(ClmniClmn + SlmniSlmn)
e−
|klmn|

2

4α2

|klmn|2
(3)

The listing of the source code corresponding to this implementation is
shown in Figure 1. The kernel consists in two loop levels. The outer loop runs
on the k-points and two inner loops run on the number of electrode atoms.
The first inner loop corresponds to a reduction on the variables Sk cos and
Sk sin. The second inner loop uses these values to add the contribution of
the current k-point to each electrode atom potential. The two inner loops
are executed only if the k-point satisfies the cut-off criterion. The subroutine
compute kmode index computes the (l,m, n) triplet corresponding to a given
k-point index.

As an optimization, blocking has been introduced in order to reuse data
already loaded into the cache. Indeed, when the k-point index, imode, in-
creases, the n index increases the fastest while the l index increases the slow-
est. Therefore the data loaded from cos kx elec(j,l), sin kx elec(j,l),
cos ky elec(j,m), sin ky elec(j,m) can be reused. Figure 2 shows the
listing of the source code corresponding to this optimization. In order, to
save some space, parts of the code which are identical to the one presented
in Figure 1 has been replaced by ellipses. As can be seen, the kernel is now
decomposed into two loop nests of three-level. The outer level corresponds
to the blocking, the second level is on the k-point and the innermost level
is on the electrode atoms. The size of the innermost loop is controled by a
constant named block vector size. We also have to introduce the two 1D
arrays Sk cos(:) and Sk sin(:) of size num kpoints to be able to use the
values computed in the first loop nest in the second one.

The computation of the contribution from one k-point is completely inde-
pendent from the other k-points. The MPI parallelisation strategy is straight-
forward. Data is replicated on each process and work is distributed. Each
process is assigned a range of k-points to work on and a call to MPI Allreduce

is made at the end of the kernel to sum up all the k-points contribution into
the vector V(:). During the setup phase, k-points which satisfy the cut-off
criteria are assigned a weight of 1 and k-points which don’t satisfy the cut-off
criteria are assigned a weight of 0. The k-points are distributed consecutively
to each processes such that all processes work on an equal amount of weighted
k-points. Figure 3 shows the skeleton of the implementation for the MPI im-
plementation of this kernel. The loop on the k-point index now runs only
the local range, from imode start to imode end. The local and global rep-
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Figure 1: Long range potential kernel fortran implementation

! Loop on all k-points : num_kpoints = (2*n_max+1)*(2*l_max*m_max+l_max+m_max)
do imode = 1, num_kpoints
  ! Setup the current k-point (l,m,n) triplet
  call compute_kmode_index(imode, l, m, n)

  ! cos_ky/sin_ky are stored only for m>= 0
  mabs = abs(m)
  sign_m = real(sign(1,m), wp)
      
  ! cos_kz/sin_kz are stored only for n>= 0
  nabs = abs(n)
  sign_n = real(sign(1,n), wp)

  ! Compute the norm squared of the k-point
  kx = real(l,wp) * twopi / a
  ky = real(m,wp) * twopi / b
  kz = real(n,wp) * twopi / c
  knorm2 = kx*kx + ky*ky + kz*kz

  if (knorm2 <= knorm2_max) then

    ! Compute Sk_cos/Sk_sin for this (l,m,n) k-point
    Sk_cos = 0.0_wp
    Sk_sin = 0.0_wp
    do j = 1, num_atoms
      ! load precomputed cos/sin values
      cos_kx = cos_kx_elec(j,l)
      sin_kx = sin_kx_elec(j,l)
      cos_ky = cos_ky_elec(j,mabs)
      sin_ky = sin_ky_elec(j,mabs) * sign_m
      cos_kz = cos_kz_elec(j,nabs)
      sin_kz = sin_kz_elec(j,nabs) * sign_n

      ! Compute cos/sin values using trigonometric rules 
      cos_kxky = cos_kx * cos_ky - sin_kx * sin_ky
      sin_kxky = sin_kx * cos_ky + cos_kx * sin_ky
      cos_kxkykz = cos_kxky * cos_kz - sin_kxky * sin_kz
      sin_kxkykz = sin_kxky * cos_kz + cos_kxky * sin_kz

      Sk_cos = Sk_cos + q_elec(j)*cos_kxkykz
      Sk_sin = Sk_sin + q_elec(j)*sin_kxkykz
    end do

    ! For each atom, compute the contribution of this k-point to the potential
    Sk_alpha = 2.0_wp * (4.0_wp*pi/(a*b*c)) * exp(-knorm2/(4*alphasq))/knorm2
    do i = 1, num_atoms
      ! Load precomputed cos/sin values
      cos_kx = cos_kx_elec(i,l)
      sin_kx = sin_kx_elec(i,l)
      cos_ky = cos_ky_elec(i,mabs)
      sin_ky = sin_ky_elec(i,mabs) * sign_m
      cos_kz = cos_kz_elec(i,nabs)
      sin_kz = sin_kz_elec(i,nabs) * sign_n

      ! Compute cos/sin values using trigonometric rules 
      cos_kxky = cos_kx * cos_ky - sin_kx * sin_ky
      sin_kxky = sin_kx * cos_ky + cos_kx * sin_ky
      cos_kxkykz = cos_kxky * cos_kz - sin_kxky * sin_kz
      sin_kxkykz = sin_kxky * cos_kz + cos_kxky * sin_kz

      V(i) = V(i) + Sk_alpha * (Sk_cos * cos_kxkykz + Sk_sin * sin_kxkykz)
    end do
  end if
end do
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Figure 2: Long range potential kernel fortran implementation with blocking

Sk_cos(:) = 0.0_wp
Sk_sin(:) = 0.0_wp

num_blocks = (num_atoms-1) / block_vector_size + 1

! Compute Sk_cos/Sk_sin for each k-point
do iblock = 1, num_blocks
  jstart_block = (iblock-1) * block_vector_size + 1 
  jend_block = max(jstart_block + block_vector_size - 1, num_atoms)

  ! Loop on all k-points : num_kpoints = (2*n_max+1)*(2*l_max*m_max+l_max+m_max)
  do imode = 1, num_kpoints
    (...)
    if (knorm2 <= knorm2_max) then

      ! Compute block contribution to Sk_cos/Sk_sin for this (l,m,n) k-point
      do j = jstart_block, jend_block
        ! load precomputed cos/sin values
        (...)
        ! Compute cos/sin values using trigonometric rules 
        (...)
        Sk_cos(imode) = Sk_cos(imode) + q_elec(j)*cos_kxkykz
        Sk_sin(imode) = Sk_sin(imode) + q_elec(j)*sin_kxkykz
      end do
    end if
  end do
end do

! Compute potential on each electrode atom
do iblock = 1, num_blocks
  istart_block = (iblock-1) * block_vector_size + 1 
  iend_block = max(jstart_block + block_vector_size - 1, num_atoms)

  ! Loop on all k-points : num_kpoints = (2*n_max+1)*(2*l_max*m_max+l_max+m_max)
  do imode = 1, num_kpoints
    (...)
    if (knorm2 <= knorm2_max) then
      ! For each atom, compute the contribution of this k-point to the potential
      (...)
      do i = istart_block, iend_block
        ! Load precomputed cos/sin values
        (...)
        ! Compute cos/sin values using trigonometric rules 
        (...)
        V(i) = V(i) + Sk_alpha * (Sk_cos(imode)*cos_kxkykz &
                                 + Sk_sin(imode)*sin_kxkykz)
      end do
    end if
  end do
end do
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Figure 3: Long range potential kernel fortran implementation with MPI
parallelization

Sk_cos(:) = 0.0_wp
Sk_sin(:) = 0.0_wp

num_blocks = (num_atoms-1) / block_vector_size + 1

! Compute Sk_cos/Sk_sin for each k-point
do iblock = 1, num_blocks
  (...)
  ! Loop on local k-points
  do imode = imode_start, imode_end 
    (...)
    if (knorm2 <= knorm2_max) then
      ! Compute block contribution to Sk_cos/Sk_sin for this (l,m,n) k-point
      do j = jstart_block, jend_block
        (...)
        Sk_cos(imode) = Sk_cos(imode) + q_elec(j)*cos_kxkykz
        Sk_sin(imode) = Sk_sin(imode) + q_elec(j)*sin_kxkykz
      end do
    end if
  end do
end do

! Compute potential on each electrode atom
do iblock = 1, num_blocks
  (...)
  ! Loop on local k-points
  do imode = imode_start, imode_end
    (...)
    if (knorm2 <= knorm2_max) then
      ! For each atom, compute the contribution of this k-point to the potential
      (...)
      do i = istart_block, iend_block
        (...)
        V_local(i) = V_local(i) + Sk_alpha * (Sk_cos(imode)*cos_kxkykz &
                                           + Sk_sin(imode)*sin_kxkykz)
      end do
    end if
  end do
end do

call MPI_allreduce(V_local(:),V_global(:), num_atoms, &
                   MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)

resentation of the potential values V(:) is explicitely shown, however one
can avoid the allocation of the extra storage by using the MPI IN PLACE tag
in the call to MPI Allreduce. The Sk cos(:) and Sk sin(:) arrays are
local to each process and thus they only need to be allocated for the range
(imode start:imode end).
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Figure 4: k = 0 potential kernel fortran serial implementation

do i = 1, num_atoms
  do j = 1, i
    zij = z(j) - z(i)
    zijsq = zij * zij
    pot_ij = volfactor * (sqrpialpha * exp(-zijsq*alphasq) &
                          + pi * zij * erf(zij*alpha))
    V(j) = V(j) - q_elec(i) * pot_ij
    V(i) = V(i) - q_elec(j) * pot_ij
  end do
end do

2 k = 0 potential kernel

The k = 0 potential equation is derived from the energy equation as V k=0
i =

∂U lr,0
c

∂qi
. Using the formula given in the Ewald summation document, this

yields:

V k=0
i = −2

√
π

ab

∑
j

Qj

(
e−z

2
ijα

2

α
+
√
π|zij| erf(α|zij|)

)
(4)

The k = 0 potential on an electrode atom is the sum of the contribution
from all other atoms in the system. One can note that for a pair of atoms
V k=0
ij

Qj
=

V k=0
ji

Qi
and therefore the computation of the potential on each electrode

atom can be implemented as a triangular loop as shown in Figure 4.
In order to improve the data locality and the vectorization potential, the

triangular loop on atom pairs has been reformulated into a loop of block of
atoms pairs. The block size parameter is a constant parameter chosen to be a
multiple of the vector length. Figure 5 shows the order used to compute pair
interaction in the triangular loop, while Figure 6 shows the ordering used in
the blocked version. All blocks are treated fully, even blocks on the diagonal
for which we don’t use the symmetry of the interaction. For small values
of the block size parameter, the extra work is compensated by an increase
in vectorization potential. The corresponding implementation is shown in
Figure 7.

From this point, parallelisation in MPI is straightforward. Using a data
replication strategy, the work is distributed by blocks. Each process computes
a contribution from a subset of the blocks and a call to MPI Allreduce is used
to add the contribution from all blocks to the potential. The implementation
is shown in Figure 8.
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Figure 5: Pair ordering for triangular loop nest (num atoms=12)
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Figure 6: Pair ordering for block loop nest
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Figure 7: k = 0 potential kernel fortran blocked implementation

! Compute contribution from blocks on the diagonal
do iblock = 1, num_block_diag
  call compute_diag_block_boundaries(iblock, istart, iend)
  do i = istart, iend
    do j = istart, iend
      zij = z(j) - z(i)
      zijsq = zij * zij
      pot_ij = volfactor * (sqrpialpha * exp(-zijsq*alphasq) &
                            + pi * zij * erf(zij*alpha))
      V(i) = V(i) - q_elec(j) * pot_ij
    end do
  end do
end do

! Compute contribution from blocks below the diagonal
do iblock = 1, num_block_full
  call update_tri_block_boundaries(iblock, istart, iend, jstart, jend)
    do i = istart, iend
      do j = jstart, jend
        zij = z(j) - z(i)
        zijsq = zij * zij
        pot_ij = volfactor * (sqrpialpha * exp(-zijsq*alphasq) &
                              + pi * zij * erf(zij*alpha))
        V(j) = V(j) - q_elec(i) * pot_ij
        V(i) = V(i) - q_elec(j) * pot_ij
      end do
    end do
  end do
end do

Figure 8: k = 0 potential kernel fortran parallel implementation

! Compute contribution from blocks on the diagonal
do iblock = istart_block_diag, iend_block_diag
  call compute_diag_block_boundaries(iblock, istart, iend)
  do i = istart, iend
    do j = istart, iend
      (...)
      V_local(i) = V_local(i) - q_elec(j) * pot_ij
    end do
  end do
end do

! Compute contribution from blocks below the diagonal
do iblock = istart_block_full, iend_block_full
  call update_tri_block_boundaries(iblock, istart, iend, jstart, jend)
    do i = istart, iend
      do j = jstart, jend
        (...)
        V_local(j) = V_local(j) - q_elec(i) * pot_ij
        V_local(i) = V_local(i) - q_elec(j) * pot_ij
      end do
    end do
  end do
end do

call MPI_Allreduce(V_local(:), V_global(:), num_atoms, &
                   MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)
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3 Short Range potential kernel

The short range potential equation is derived from the energy equation as
V sr
i = ∂Usr

c

∂qi
. Using the formula given in the Ewald summation document this

yields:

V sr
i =

∑
j

Qj

∑′

n

|rij + n|−1 (erfc(α|rij + n|)− erfc(ηij|rij + n|)) (5)

In Equation (5), the sums run on all particles and all of their images.
The ′ indicates that the self-interaction term should be ommited. However,
we cannot compute infinite sums on a computer. A cut-off distance distance
rcut is imposed and the minimum image distance convention is used.

The structure of the short range potential kernel is very close to the k = 0
potential. The interaction are symmetric and thus involve a triangular loop.
The main difference, apart from the actual value, is the presence of a cut-
off radius and the absence of self-interaction which may hinder vectorization.
However the same blocking and parallelisation strategy is used as in the other
kernel. The Figure 9 shows the fortran implementation of the kernel.

Knowing that electrode atoms have a constant position during the whole
simulation. It is possible to distribute only blocks for which we know, from
a setup phase computation, where there will be some interactions between
particles in those blocks.
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Figure 9: Short-range potential kernel fortran parallel implementation

! Compute contribution from blocks on the diagonal
do iblock = istart_block_diag, iend_block_diag
  call compute_diag_block_boundaries(iblock, istart, iend)
  do i = istart, iend
    do j = istart, iend
      call minimum_image_distance(x(i), y(i), z(i), x(j), y(j), z(j), drnorm2)
      if (drnorm2 < rcut_sq) then
        drnorm = sqrt(drnorm2)
        pot_ij = (erfc(alpha*drnorm) - erfc(eta*drnorm)) / drnorm
        V_local(i) = V_local(i) + q_elec(j) * pot_ij
      end if
    end do
  end do
end do

! Compute contribution from blocks below the diagonal
do iblock = 1, num_block_full
  call update_tri_block_boundaries(iblock, istart, iend, jstart, jend)
    do i = istart, iend
      do j = jstart, jend
        call minimum_image_distance(x(i), y(i), z(i), x(j), y(j), z(j), drnorm2)
        if (drnorm2 < rcut_sq) then
          drnorm = sqrt(drnorm2)
          pot_ij = (erfc(alpha*drnorm) - erfc(eta*drnorm)) / drnorm
          V_local(j) = V_local(j) + q_elec(i) * pot_ij
          V_local(i) = V_local(i) + q_elec(j) * pot_ij
        end if
      end do
    end do
  end do
end do

call MPI_Allreduce(V_local(:), V_global(:), num_atoms, &
                   MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)
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4 Self potential kernel

The short range potential equation is derived from the energy equation as

V sr
i = ∂Uself

c

∂qi
. Using the formula given in the Ewald summation document

this yields:

V self
i =

2√
π
Qi

(
ηi√

2
− α

)
(6)

The self potential kernel is straightforward to implement. It is simply a
vector scaling. It will not be discussed further in this document.
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