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1 Electrostatics with 2D periodic boundary
conditions

The ions in the bulk of the system have a point charge distribution,

pi(r) = @0 (T —73) (1)

where r; and ¢; are the position and the integral charge of the ion i, respec-
tively, and &(r) is the Dirac delta function.

The atoms on the electrodes are modeled with a gaussian charge distri-
bution,
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where r; and @); are the position and the integral charge of the atom 1,
respectively, and 7 is a model parameter.

The simulation cell is an orthombic box with dimensions a, b and ¢ in
the @, y and z direction, respectively. 2D periodic boundary conditions are
applied in the xy-plane. The position of an ion or atom 7 in the simulation
box can be expressed by r; = (2,9, 2;), where 0 < z; < a, 0 < y; < b and
0<z <ec.

We define &; = (x;,y;,0) the projection of r; in the zy-plane. Then we
can write r; = &; + z;2.

We define the distance between two charges ¢ and j by r; = r; — 7.

We define the lattice vector n = (nga, ny,b,0), where n,,n, € Z and the

reciprocal lattice vector k = (k;x%’r, k;y%’r, 0), where k,, k, € Z.

1.1 Coulomb Energy
The total energy of the system due to Coulomb interaction is given by
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We define the intermediate quantities,
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1.2 Point charges system

First we consider only a system of point-charges. The energy is given by
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The sum over the lattice vector m is slowly convergent. In order to speed
up the numerical calculation, the sum will be split into a short-range and
long-range contributions. This is achieved by representing |r;; + |~ as an
integral over a dummy variable via the identity
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Using Equation (8) into Equation (7) yields:
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The integral over the dummy variable ¢ may be split up into two parts cor-
responding to short-range and long-range contributions of 1/7:
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The short-range term can be directly computed with the substitution ¢ =
20 2.
u?lri; + nl*:

I 1 o 1 .. 2
_ . —1/2 —|rij+nl|?t
U = Zq,qj ﬁ/z dtt=/2e i (11)
1 —u2
== Qi% / du |'r2] + n|
2 ; \/_ alrij+n|
1 rerfe (alr;; + n|)

The long-range interaction term will be treated in Fourier space. For this we
will use the Poisson summation formula:
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However, in order to be able to do this, we need complete periodicity and the
sum needs to include the terms with ¢ = 7 and n = 0. These self-interaction
terms will be computed separately and subtracted from the value computed
with the Fourier sums. First we compute the long-range term:
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The term with & = 0 in the sum needs to be treated separately from the
other terms. Thus we split the sum into two terms, Uy>* and U :
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Again we use a Fourier transform expression to write the e *4"f term as
an integral over a dummy variable, since
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In order to simplify the term U, clf,}?’ we use integration by parts and make the
hypothesis that the system of point-charges is charge neutral.

Uy = Z%qy/ dtt=*%e” (18)
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Now we need to compute the self-interaction term to be able to subtract it
from the long-range contribution:
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Putting it all together we have:
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1.3 Gaussian charges system

Now we consider only a system of gaussian charges. The energy is given

by
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The sum over the lattice vector n is slowly convergent. In order to speed up
the numerical calculation, the sum will be split into a short-range and long-
range contributions. This is achieved by representing |r;; + " — 1’ + n|71
as an integral over a dummy variable via the identity
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Using Equation (22) into Equation (21) yields:
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Additionally, we use the following identity to express the gaussian exponen-
tials as integrals over dummy variables:
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Using Equation (24) further yields
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And using Poisson summation formula (Equation (12)) yields:
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Using Equation (16) on the exponential term in z;; + 2" — 2 yields:
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Grouping terms in 7’ and in 7" together yields two integral formulas of the
0-function, where we defined Kk = k + uz
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Using the integral formula for Dirac d-function,

% /_ Z dzexp (i(k — K)z) = 6(k — k) (29)
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Before going forward and splitting the energy term into short-range and long-
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The integral over the dummy variable t may be split up into two parts
corresponding to short-range and long-range contributions of 1/r:
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In order to compute the short-range term we need first to revert back to real
space:

range contributions, we apply the substitution ¢’ =
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The real-space terms are computed through the substitution ¢ = u?|r; +n|*:
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The long-range interaction term will be treated in Fourier space.

2
ng: bZQQJZ/ du/ dat' t' 2 ex <|4t|,+m ’I“Z])

(35)

This expression is identical to the one computed for a point charge system.
Therefore, we use the same decomposition between the k = 0 term and the
other terms and get the same expression:
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Putting it all together we have:
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1.4 Gaussian charges and Point charges system
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In a system where gaussian charges and point charges are in interaction,
the Coulomb energy can be computed in an entirely analogous manner. We
make the assumption of charge neutrality in each such sub-system. The total
energy of the system is the sum of the energy of the point charges subsystem,
the energy of the gaussian charges subsystem and the interaction energy
between the 2 subsystems. From the two previous sections we already know
the first two terms of the energy. In this section, we compute the interaction
energy.
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1.5 Evaluating the charges on the electrodes

The Coulomb potential at site ¢ in electrode e is ggc When considering

a system which is coupled to external electrodes, capable of sourcing or sink-




ing charge to maintain a constant potential V., the equipotential constraint
becomes

oU,
—V (41)
Qi
Put another way, the charges rearrange themselves to minimize
Nelec Ne
Ur=U—> > V@i (42)
e=1 i=1

The second term represents the interaction between the charges on the
metal and the external system holding the metal at the potentials V., . Equa-
tion (42) is satisfied when Ur is minimized with respect to the @, ’s since
the energy minimization implies gQLiT =

The energy Ur can be cast into a quadratic form:

1
Ur = 5QTAQ —v'Q+c (43)
where ) and b are vectors of size Ngauss = .1 NelecVe, A 1S an Ngauss X Ngauss

matrix and c is a scalar. Introducing the notation from the previous sections,
we can see that:

LQTAQ =T, (44)
v'Q=v"'Q-U,, (45)
c="U,, (46)

A is a symmetric positive-definite matrix (provided that 7 is chosen large
enough) and therefore there exists a single minimum vector ) to Equation
(43). The minimum energy is obtained for the vector ) satisfying the rela-
tionship AQ) = b. In order to be able to use an iterative method to find the
appropriate value of () we need to be able to compute AQ and b. This is
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easily obtained from the results of the previous sections:
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1.6 Forces on the mobile point charges
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2 Electrostatics with 3D periodic boundary
conditions

The ions in the bulk of the system have a point charge distribution,

pi(r) = qd(r —r;) (57)

where r; and ¢; are the position and the integral charge of the ion i, respec-
tively, and &(r) is the Dirac delta function.

The atoms on the electrodes are modeled with a gaussian charge distri-
bution,

o (TN e
pi(r) = Q; e (58)

where r; and @); are the position and the integral charge of the atom 1,
respectively, and 7 is a model parameter.

The simulation cell is an orthombic box with dimensions a, b and ¢ in
the x, y and z direction respectively. 3D periodic boundary conditions are
applied. The position of an ion or atom ¢ in the simulation box can be
expressed by ; = (x;, s, 2;), where 0 < x; < a,0<y; <band 0 < z; < c.

We define the distance between two charges ¢ and j by r;; = r; — 7.

We define the lattice vector n = (nya, n,b, n.c), where n,,n,, n, € Z and

the reciprocal lattice vector k = (k.= 2k, 2;, k. 2”) where k;, &k, k. € Z.

2.1 Coulomb Energy
The total energy of the system due to Coulomb interaction is given by
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We define the intermediate quantities,
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2.2 Point charges system

First we consider only a system of point charges. The energy is given by
1 ! i9j
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The sum over the lattice vector m is slowly convergent. In order to speed
up the numerical calculation, the sum will be split into a short-range and
long-range contributions. This is achieved by representing |r;; + |~ as an
integral over a dummy variable via the identity

1 1 > 2
= dttil/z —r“t 4
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Using Equation (64) into Equation (63) yields:
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The integral over the dummy variable ¢ may be split up into two parts cor-
responding to short-range and long-range contributions of 1/7:
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The short-range term can be directly computed with the substitution ¢ =
20 2.
u?lri; + nl*:
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The long-range interaction term will be treated in Fourier space. For this we
will use the Poisson summation formula:

Z e (z+na)? _ < )1/2 i o a2t 27rakz (68)
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However in order to be able to do this we need complete periodicity and
the sum needs to include the terms with i = j and n = 0. These self-
interaction terms will be computed separately and subtracted from the value
computed with the Fourier sums. First we compute the long-range term:
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The term with & = 0 in the sum needs to be treated separately from the
other terms. Thus we split the sum into two terms, Ué;: and Uch;f :
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Uk = QGbCZqquZ / d t2e e s (72)
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The term Ucli)f = 0, when we make the hypothesis that the system of
point-charges is charge neutral.

Now we need to compute the self-interaction term to be able to subtract
it from the long-range term value:

Ut = Zqz\/_/ dtt=1/? (73)
= ﬁ ;qi

Putting it all together, we have:
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2.3 Gaussian charges system

Now we consider only a system of gaussian charges. The energy is given
by
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The sum over the lattice vector n is slowly convergent. In order to speed up
the numerical calculation, the sum will be split into a short-range and long-
range contributions. This is achieved by representing |r;; + " — r' +n| ™"
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as an integral over a dummy variable via the identity

1 1 [ 2
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Using Equation (76) into Equation (75) yields:
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Additionally, we use the following identity to express the gaussian exponen-
tials as integrals over dummy variables.
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And using Poisson summation formula (Equation (68)) yields:
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Grouping terms in 7’ and in 7" together yields two integral formulas of the
o-function,

= (2m) 6" Q. ir [ dw [ e 1
Uy, = (27) Qabczzjj@zczjgfw r [ | 1)
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Using the integral formula for Dirac d-function,
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Before going forward and splitting the Energy term into short-range and
Mt
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we can simplify the expression of U, , with 7;; =

long-range contributions, we apply the substitution ¢’ =

L
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The integral over the dummy variable ¢ may be split up into two parts
corresponding to short-range and long-range contributions of 1/r:
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In order to compute the short-range term we need first to revert back to the
real space:
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ST m 771'2]' /4 1—2 k .
Ui = e QL [l areen (B vikerny) o

1 n?j ’g1—1 2
- 0. =1/2 —|rij+n|*t
N EiijZQj En:/aQ dt' =121

The real-space terms are computed through the substitution ¢ = u?|r;; +n|*:
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The long-range interaction term will be treated in Fourier space.
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This expression is identical to the one computed for a point charge system.
Therefore, we use the same decomposition between the k = 0 term and the
other terms and get the same expression:

vk == > Q> ekrs L~ (89)
s gbe 4= 1 |k|?
1,J k#0
Ur =0 (90)

The self-interaction terms are collectively taken into account by:
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1 g
Uself _ ZQ2/ dt' t/—1/2 (91)
wr 2T = ] e
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Putting it all together, we have:

Ucye = Z Q:iQ; Z |7i; +n| ! (erfe(alry + n|) — erfe(nij|ri; + nl))

(92)

2.4 Gaussian charges and Point charges system

In a system where Gaussian charges and Point charges are in interaction,
the Coulomb energy can be computed in an entirely analogous manner. We
make the assumption of charge neutrality in each such sub-system. The total
energy of the system is the sum of the energy of the point charges subsystem,
the energy of the gaussian charges subsystem and the interaction energy
between the 2 subsystems. From the two previous sections we already know
the first two terms of the energy. In this section, we compute the interaction
energy.

772' 3/ Q'Q‘ 20,0112
U. = dr” | 2 N 7 B H L 93
" ;;/W ' (W) [ry 77+l 53)

cpg Z quj Z |’rzj + n| ! (erfC(Oé|'r'Z] + n|) erfc(nj|'rz~j + n|))

1/7J

(94)

3 Implementation details

3.1 Minimum image distance criterion

All sums corresponding to the real space lattice vectors ) = are performed
under the minimum image criterion with an additional cut-off distance. That
is, the sum over mn is removed from the final expressions of the short-range
terms of energies and potentials given before. The coefficient |r;;| must be
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understood as the minimum image distance between the pair of sites ¢ and
j and only those pairs for which |r;j| < r. are taken into account. For
example, the short-range contributions to the Coulomb potential used for
the minimization procedure are then given by

Nelec Ne”

Yie’ sr = Z Z Qje” (erfc(|ri6/je// |Oé) - erfc(|ri8/jeu |776’e”))

|’rze/]e//

e’=1  jun=1
o<|r; , 5 <re
‘ ’Le/]e//l (&

(95)
2 [ e’
L 20, (77 _a>
VT \V2
Npoint
= qi
o= 2o ooy (ertellrii o) — enfe(lr nc) (%6)
i=1 e
|ri]-e\<7“c

where 7. is a user-input parameter.

3.2 Numerical integration

The integral with respect to u contained in the k = 0 term of the final
expressions for energies, potentials and forces for the 2D periodic boundary
condition system is approximated with the rectangle rule. This enables us
to cast this formula in a way which is similar to the 3D periodic boundary
condition case.

B -
[ aut = 3 A (97)
—o0 ke, =— kmax

Here A, = 522?” is the step size and §, is a user input parameter (usually
set to 1.0). £ is a cutoff parameter which is computed as a function of «
and the tolerance on the sum convergence €

3.3 Truncation of reciprocal space sums

Sums on the reciprocal lattice vectors are infinite in principle. However
the terms decay exponentially with the square of the norm of the k vector.
Hence the sums on k are truncated to contain only term with |k| < 7.
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Given the parameter a and a tolerance parameter ¢ we use the following
formula to evaluate r"** and then A7, k** and k7%

et =/ —In(e) — (98)
Tk

Jomax [ max,_min @ :| +1 (99)
e
T | k k o
- -

fmax — | max . min 7 1 100

v _Tk: Tl 27r} + (100)

n .

pmax _ |5, pmax mln_] 1 101

2 kTR T 5| T (101)

where [z] is the greatest integer smaller than z and rj™ = min(2%, 2% 21),

Finally, a, € and d, are user-input parameters.

3.4 Symmetrization of the reciprocal space sums

It can be shown that the terms inside the reciprocal space sums in the
final expression for the long-range contributions of energies, potentials and
forces are symmetric with respect to k. Hence the computation burden can
be cut in half. For example, the long-range terms of the Coulomb potential
used in the minimization procedure, introducing the quantities

kxyz = (kxzaky?7kzéz c

2 2 2 2 2 2
Tk = |Kays| = \/(kgc%) + (ky%) + (kzdz%) (103)

o 2 2
il —”) (102)
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can be written as

fmax k‘mdx kJex
V=2 ek Y Y e
kxfo k:yf_k:mdx kz _kde k
0<ry, <r;€“ax
Nelec N "
x |cos(key: - Ti,,) E E Qj,, cos(kyyz - T5,,,)
e''=1j.,n=1
Nelec Ne”
+ sin(kyy. - 75,,) E E Qj, sin(kay. - 75,,)
e'"=1j.n=1

m—ab22 Yy

ky:_kmax k :_kmax
0<rk<rg‘a"

pomt

x | cos(kyys - T5.) Z q; 08(Kay: - 1)

pomt

+ sin(k:xyz . Tje) Z qi; SlH acyz Tz)
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