

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 1 / 52

MinForth V3.4
a MINimalistic but complete FORTH system in C

© Andreas Kochenburger 1994 - 2021
… beware, it’s all Genglish down there! 

What is Forth?

Forth is a language for direct communication
between human beings and machines. Using natural
language diction and machine-oriented syntax,
Forth provides an economical, productive
environment for interactive compilation and
execution of programs. Forth also provides low-
level access to computer-controlled hardware, and
the ability to extend the language itself. This
extensibility allows the language to be quickly
expanded and adapted to special needs and different
hardware platforms.

Essential elements of the Forth programming
language are standardized in ISO/IEC 15145:1997
or ANSI X3.215-1994 publications. Newer
refinements are in progress by the Forth200x
committee. Information and useful links are
available at the web site https://forth-standard.org/.

What is MinForth?

The MinForth interpreter is a nearly complete
implementation of ISO/ANS Standard Forth. It
passes the Forth-2012 test suite and thus provides a
reliable system to run own Forth software.

Building MinForth

Its attribute “minimalistic” indicates that it requires
very little development resources: a text editor and
a plain C compiler are sufficient. MinForth can be
compiled as 32-bit or 64-bit version alike on
Windows and Linux operating systems.

MinForth source code is a seamless mixture of C
and Forth definitions. The build process goes first
through a unique Forth to C source code transpiler.
In a second step it is compiled to fast machine code
through the C compiler. In this way portability to
other platforms and easy code maintenance is
ensured.

Using MinForth

Main target application is the interactive MinForth
interpreter which can compile and execute high-
level Forth definitions without C compiler support.

Using it for highly interactive testing of numeric
algorithms, embedding it into other C programs, or
scripting in Forth language are other interesting
application areas.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 2 / 52

1 MinForth Design

1.1 Introduction

MinForth calls itself minimalistic. Some call it fat. Decide by yourself. Anyhow, by design MinForth
has just minimal requirements. A normal C compiler and a text editor are sufficient to build MinForth
from a Windows or Linux command line.

So the ‘min’ in MinForth means resource minimalism (MinForth itself is a rather complete although
compact standard Forth system). Its historic roots (‘closed source’ and under a different name) reach
back to early DOS times; its application field was remote diagnostics and service of measurement and
control systems. MinForth V3.4 is a very modified version adapted to PCs operating with a Windows
or Linux OS. A number of words and wordsets were added to follow modern Forth standards.

From a User point-of-view, MinForth provides a small Forth system very close to ISO/ANS Forth
standard, even with most newer Forth-2012 functions like quotations. It is operated “à la classique”
i.e. through command-line input. A graphical IDE is not provided.

From a developer or system adapter viewpoint, MinForth’s speciality is a Forth-to-C transpiler (mf2c),
a little C program that translates MinForth source text input to commented C source text output. The
transpiled code can be compiled by any decent C99 compiler to executable machine code.

The most important feature is that Forth code and C code can be mixed seamlessly even within
definitions, which brings great flexibility to software development f.ex. for being able to include
external C libraries without hassle (the transpiler will pass C code just through). A good example is the
optional arbitrary-length floating-point number word set, outlined in § 2.7.14.

Development cycles are fast. A complete rebuild takes only seconds (using the Tiny C compiler by the
make32 or make64 scripts about 1 second on a modern desktop PC).

1.2 Quick Start

When you read this document, you probably have already downloaded a copy of all MinForth files. It
is assumed that you know how to use the command shell of your OS, or at least a file manager.

Create a new minforth folder (name is not important, MF34 is recommended) somewhere in your
home directory and copy all files into this new directory while preserving MinForth’s file names and
(sub)directory structure.

Move to the ./src directory to check if your C compiler works. On Windows the ./src/tcc

directory should contain a copy of a 64-bit Tiny C compiler (if you are on a 32-bit OS vou’ll need the
32-bit version, see §6.2.5). From the ./src/windows directory, copy make*.bat and tc*.bat

script files to the ./src directory. On Linux you should have already gcc or clang installed.

From your OS command line
- on Windows enter tc32 hello
- on Linux enter cc hello.c -o hello
to compile the famous ‘Hello World’ program. If something goes wrong, read § 6.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 3 / 52

To build MinForth on Windows execute make32.bat or make64.bat. Here you are:

e:\src>make64
Making mf2c.exe with tcc 64 bit

MinForth V3.4 to C Transpiler

Reading Forth source file mf3.mfc
Including core.mfc
Including except.mfc
Including facility.mfc
Including double.mfc
Including float.mfc
Including complex.mfc
Including memory.mfc
Including search.mfc
Including locals.mfc
Including string.mfc
Including file.mfc
Including block.mfc
Including tools.mfc
Total definitions: 955
 - in dictionary: 874
 - therein hidden: 242
Writing C target file mf3.c
Making mf3.exe with tcc 64 bit
Renamed mf3.exe to mf64.exe

Ready to start mf64 and enjoy your new
MinForth V3.4 64-bit :-)

Press any key . . .

Similarly, to build and start MinForth on Linux, enter from your shell command-line:

~$ cc mf2c.c -o mf2c
~$./mf2c
~$ cc mf3.c -o mf3 -std=gnu99 -funsigned-char -lm
~$./mf3

or simply use the ./lmake script

~$./lmake mf2c
~$./mf2c
~$./lmake mf3
~$./mf3

1.3 Memory Model

MinForth uses real host memory addresses, no sandboxed virtual memory or neutralized (obfuscated)
memory addresses. This allows direct co-operation with other C programs or libraries without address
translation.

Functions or Forth words processed through the transpiler become machine code (primitives in Forth
speak) that can be called by function pointers. MinForth execution tokens are function pointers in C.
The Forth dictionary is a simple array or list of structures (headers in Forth speak) comprising link
fields, flags, name fields and those function pointers (execution tokens).

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 4 / 52

The linked dictionary is continued in MinForth’s dataspace for high-level words and data. New
headers are created by MinForth’s _HEADER word (in core.mfc). The dataspace is defined as a
character array (mfdsp[] in file mf3.h) while stacks are defined as cell arrays. Forth stacks are only
used by high-level words, primitives use C stack frames of course.

Memory access violations (segfaults) are caught by a signal handler (defined in mf3.sys).

1.4 Safety Aspects

In ‘reasonable’ circumstances MinForth should crash ‘nicely’ on errors, with some message about
error cause and error location. To this end many C primitives can be compiled with runtime check
code (mferr macro) to throw an exception e.g. when a stack underflow is detected.

To improve speed, runtime error checking can be switched off and back on by the MinForth
commands FAST> and SAFE>. But benchmark tests showed relative speed improvements of only

about 5%. Other hardware platforms might show better figures, but it demonstrates also that this
additional comfortable safety harness comes relatively cheap and thus should remain enabled.

To disable runtime error checking permanently, set the compiler flag MFRTCHECK within mf3.h to 0

and recompile MinForth without runtime error checking code. This might also be useful when
MinForth is embedded within another host application that brings its own safety harness.

1.5 64-bit Applications

MinForth can be compiled as 32-bit or 64-bit program version from the same codebase. In the 64-bit
version, 128-bit integer arithmetic for Forth mixed/double numbers is provided. Floating-point
numbers occupy 64 bits in either version, following the IEEE 754 standard.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 5 / 52

2 MinForth System

2.1 Overview

This chapter concentrates on the MinForth command-line interpreter, the “system”. A Forth system is
an interactive programming environment for Forth application programs. Forth systems are often
rather compact and offer program execution, compilation and testing in one shell for an efficient
seamless development workflow.

This document does not provide basic Forth information or explanations of standard Forth words.
Those can be extracted from the enclosed Forth-2012 draft standard proposal (in ./doc directory), or
found online along with lots of additional information at https://forth-standard.org/

2.2 Running a MinForth Session

Start a MinForth session by executing mf3.exe (or ./mf3 on Linux). A terminal will appear
looking somewhat like

┌────────────────────────┐
│ MinForth V3.4 - 64 bit │
└────────────────────────┘
Dataspace: 1000000 / 999076 unused
Stacks: d:100 / r:100 / f:20
198816 bytes free

MinForth uses ANSI terminal command sequence for text colours and cursor control. If this is not
available in your system and if you see garbled letters on your screen, try with VT OFF.

Try some keyboard inputs and MinForth will give you immediate feedback if it can accept your inputs
or not. Note the automatic stack diagram in the system prompt. F.ex. enter hex (or HEX,) the decimal
prompt will change to a $ hex prompt.

You can enter Forth words in upper or lower case; word names are automatically converted to upper
case by default. To change this automatism, enter CAPS OFF.

If something goes wrong, MinForth shows the actual source line, points out the exception causing
word and tries to analyse stack contents and backtrace nested high-level words. With WHERE you can
redisplay the last backtrace.

With DIR you can inspect the files in your working directory; use CHDIR <NAME> to change your
working directory of your current session.

To execute OS commands use SYSTEM (ac uc --) by command string (ac uc) including
parameters.

┌────────────────────────┐
│ MinForth V3.4 - 64 bit │
└────────────────────────┘
Dataspace: 1000000 / 999076 unused
Stacks: d:100 / r:100 / f:20
s" uname -a" system
Linux localhost.localdomain 5.3.18-lp152.60-default #1 SMP Tue Jan 12 23:10:31 UTC
2021 (9898712) x86_64 x86_64 x86_64 GNU/Linux
 ok

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 6 / 52

With the Facility wordset included, typical command-line editing functions are provided, including
history for the last 8 keyboard entries. The last 8 lines can be recalled with cursor up/down keys.

When the session is closed by the word BYE the history is copied to file mfhist.blk.

2.3 System Command-Line Arguments

With the Facility wordset included, the following system command-line arguments are available
which are executed during MinForth start:

/e “<words>” evaluate given words at start, e.g. mf3 /e “cr s\” hello\” type”

/d <size> resize data stack, e.g. mf3 /d 200

/f <size> resize floating-point number stack, e.g. mf3 /f 100

/r <size> resize return stack, e.g. mf3 /r 200

/i <filename> evaluate given file line-by-line at start, e.g. mf3 /i mft.mf
(for more flexibility use: /e “include <filename>”)

/nl do not show the logo at start-up

(above flags start with a / slash character to leave the – dash character to application programs)

When MinForth finds a file autoexec.mf in your current work directory, it will be evaluated
automatically during program start (useful for project-specific settings).

2.4 Low-Level and High-Level Internals

A MinForth system is a MinForth program built from ground up with little Forth words written in
mixed C and Forth definitions.

For example the standard Forth word FM/MOD is defined as

: FM/MOD \ (d n -- mod quot) mixed floored division
C mfCell n=mftos, s=mftos^mfsec;
 sm/rem
C if (mfsec&&(s<0)) mftos-=1,mfsec+=n; ;

which is transpiled to get the equivalent plain C code

void mf66F1FDC7(void) { // : FM/MOD
 mfCell n=mftos, s=mftos^mfsec;
 mf1705E412(); // SM/REM
 if (mfsec&&(s<0)) mftos-=1,mfsec+=n;
}

to be compiled by a C99 compiler (see § 6.2) to become the executable primitive integer division
word. One can have as many primitives as desired or required.

The MinForth system also provides a Forth compiler for new ‘high-level’ words defined within the
system, without needing the C compiler any more. Such ‘high-level’ compiled words build upon ‘low-
level’ primitive words, or on other high-level words.

The high-level compiler translates them to address pointer lists which can be executed through the ‘:’
colon runtime function _[:] that is the workhorse of nearly all MinForth hi-level words. It is defined
a classical virtual machine for direct-threaded code:

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 7 / 52

: _[:] \ (-- ..) nest into hilevel definition
C mfrpush(mfip); mfip=(mfXT**)mfw+1;
C while(mfw=*mfip++,mfw) (*mfw)(); // MinForth hilevel VM
C mfip=(mfXT**)mfrpop(); ;

So in Virtual Machine terminology: the MinForth system is subroutine threaded, whereas high-level
definitions are direct threaded.

That’s the general concept. Finer details ͧͪͩͨ are described within MinForth’s *.mfc source files.

Side note: when you browse through MinForth source files, you’ll observe that it is written in a very
tight horizontal style, and not easily legible. This originates from early times and working with tiny
field monitors and has continued since then; but also because I prefer it this way personally. But be my
guest and add as many line feeds and tabs as you like to get to a more modern vertical style.

2.5 Building a new MinForth System

The development system of MinForth is radically minimal: no IDE, no autotools or makefiles, no
libraries. Instead: very small scripts to call a C compiler as shown in § 1.2

The first step is to call the mf2c transpiler with the following files in its path:

- mf3.mfc build instructions
- mf3.h data space, stacks and type declaration, useful macros (syntactic sugar)
- mf3.sys machine-specific and some general routinies
- *.mfc all source files mentioned in mf3.mfc

A typical build instruction in file mf3.mfc looks like (your actual distribution may look slightly
different):

\ ------ MinForth Wordsets ---

#INCLUDE core.mfc \ MINFORTH kernel
\ optional:
#INCLUDE except.mfc \ EXCEPTION wordset
#INCLUDE facility.mfc \ FACILITY wordset
#INCLUDE double.mfc \ DOUBLE-NUMBER wordset
#INCLUDE float.mfc \ FLOATING-POINT NUMBER wordset
#INCLUDE complex.mfc \ COMPLEX-NUMBER wordset
#INCLUDE memory.mfc \ MEMORY-ALLOCATION wordset
#INCLUDE search.mfc \ SEARCH-ORDER wordset
#INCLUDE locals.mfc \ LOCALS wordset
#INCLUDE string.mfc \ STRING wordset
#INCLUDE file.mfc \ FILE-ACCESS wordset
#INCLUDE block.mfc \ BLOCK wordset
#INCLUDE tools.mfc \ PROGRAMMING-TOOLS wordset

\ ------ MinForth System Start ---

: MAIN \ (--) MF Hilevel Forth system, called by C main() function
 _boot \ initialize system
 _logo \ startup banner
 _abort \ initialize and start Forth text interpreter
 bye ; \ clean system before program end

So MinForth comprises all standard Forth wordsets except the XCHAR Extended Characters wordset.
Being a C-based Forth system, some few words from the Programming-Tools Wordset like
CODE..;CODE are also not implemented.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 8 / 52

On the other hand MinForth provides many additional words and functions that are useful for
programming in Forth, without becoming too fat.

With those instructions mf2c builds a C file mf3.c. The second step is to compile the final
executable MinForth system mf3.exe (or ./mf3 in Linux).

2.6 MinForth Kernel Words

The standard Forth Core Wordset alone does not make a usable system because it does not (and of
course can not) reflect target-specific hardware and software environments, like presence or absence
of an underlying operation system.

Therefore the MinForth core system consists of

- the standard core and extended core wordset
- additional words to make a small runnable stand-alone program: the MinForth kernel.

A number of words are deferred to enable added functionality through including additional wordsets
during the transpiler phase, e.g. more comfortable exception handling or local values.

If you want to experiment with a minimal Forth kernel (in the spirit of eforth) the./ecore directory
provides the necessary sources.

2.6.1 Core Wordset

All standard words as of ISO/ANS standard document §6 are provided within source file
./src/core.mfc.

From user perspective, important additional words are:

-ROT (a b c -- c a b)
rotate top three stack elements anti-clockwise

PLUCK (a b c -- a b c a)
copy third over top stack element

RDROP (r: x1 x0 – x1) 2RDROP (r: x2 x1 x0 – x2)
drop top / top 2 return stack element(s)

RPICK r(n |r: xm..x0 – xn |r: xm..x0)
copy n-th return stack element from return stack to data stack

NOT (f -- !f)
logic not, identical to 0=

ROL ROR (n p -- nr)
bit-wise left/right rotation by p bit-positions

0<= 0>= <= >= U<= U>= (n -- f)
common logic comparison operators

ON OFF (a --)
store true/false flag at address a (used on logic variables)

INCR DECR (a --)
increment/decrement cell at address a (used on counter variables)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 9 / 52

CHAR/ (a u -– a+1 u-1)
ignore first string character

STR= (a1 u1 a2 u2 -– f)
compare two strings, true if both have identical length and content

CELL (-– u)
size of one cell in bytes (4 on 32-bit, 8 on 64-bit machines)

CELL- (a –- a-u)
reduce address by size of one cell

,. U,. (n –-) ,.R U,.R (n w --)
numeric output with ,-separator between every 3 decimal digits, e.g. 1000000 .. 1,000,000

DEC. (n –-)
display number in decimal notation, regardless of current BASE

HEX. (n –-)
display number with $ in unsigned hexadecimal notation, regardless of current BASE

CAPS (–- a)
variable when set controls upper case conversion for WORD, ENVIRONMENT? (and
SEARCH-WORDLIST in the Search Wordset)

NAMED (a u –-)
create next word with given string as name, e.g. S” RTCflag” NAMED VARIABLE

COMPILE-ONLY (--)
flag latest word as ‘compile-only’

RECOGNIZER (rec-xt exec-xt comp-xt <name> --)
append new recognizer to recognizer chain (see § 2.7.12.2)

+TO (x <name> --)
add x to VALUE NAME

.\” (string”--)
display extended string, equivalent to S\” xxx” TYPE

BOUNDS (a u -– end start)
convert address range a u for following DO or ?DO

FAST> SAFE> (--)
disable or re-enable runtime error checking

2.6.1.1 Hidden Core Words

Many MinForth primitive words are hidden from normal dictionary search to reduce clutter of
wordlists.

Word names starting with a single _underscore character are just hidden within the dictionary. But
they can still be made visible with the commands

HIDE> UNHIDE> (--)
make hidden words visible and invisible again

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 10 / 52

HIDDEN (--)
unhide only next word

┌────────────────────────┐
│ MinForth V3.4 - 64 bit │
└────────────────────────┘
198816 bytes free
1 2 3 4 5 6 7 8 ok
1 2 3 4 5 6 7 8 # unhide> 0 _sp! hide> ok

Primitive words starting with two or more __underscore characters are not mapped by the transpiler
into the dictionary at all. These words become simple C functions.

High-level words do not follow this scheme. But one can use the words _REVEAL and _HIDE to take
the latest compiled word in or out of the current compilation wordlist.

2.6.2 Literal Recognizers

The text interpreter is extendable to process customized literal (or word) classes.

RECOGNIZER (rec-xt exec-xt comp-xt <name> --)
defines a new named recognizer and appends it to the recognizer list, with
rec-xt execution token of pertaining literal checker
exec-xt execution token of the recognized literal, mostly NOOP
comp-xt compilation token of the recognized literal

Example: ‘ >FLOAT ‘ NOOP ‘ FLITERAL RECOGNIZE REC-FLOAT
(which is actually included in the boot sequence of the fp-number wordset)

The literal checker must follow the stack diagram (a u –- n..x true | false) with
a u token string provided by the text interpreter
n..x any number of stack elements provided as recognized

The programming tools wordset provides some additional words to support literal checker
development, see § 2.7.12.2.

MinForth’s recognizer scheme is very simple. A more elaborated and more comfortable recognizer
proposal is pending in the Forth Standard committee.

2.7 Optional MinForth Wordsets

In any standard Forth system at least the standard Core Wordset shall be present. Other wordsets are
optional. MinForth follows this rule.

2.7.1 Exception Wordset

All standard words as of ISO/ANS standard document §9 are provided within source file
./src/except.mfc.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 11 / 52

The Exception Wordset is the ‘least optional’ of all wordsets because even core words can throw
exceptions. Therefore CATCH and THROW are already prepared as deferred words within the kernel.

MinForth exception frames reside within the C frame stack. Throwing a high-level exception through
the Forth word THROW unwinds the Forth stack as well as the C frame stack through C’s setjmp/
longjmp mechanism.

ABORT is organized accordingly through longjumping to _ABORT from within THROW (in core.mfc).

When the Exception Wordset is included, most throw codes are translated to plain-text exception
messages. More detailed error information is provided through display of the source line, indicating
the exception causing word, stack content(s) and a tentative backtrace to callees (the calling high-level
words). On exceptions up to 6 stack values are remembered within the internal structure mfxcs[].

┌────────────────────────┐
│ MinForth V3.4 - 32 bit │
└────────────────────────┘
19999172 bytes free
: T3 rot ; : T2 3 t3 ; : t1 2 t2 ; ok
1 >r t1
? 1 >r t1
 ^ ?? stack underflow
Stacks: r: $1 $0 ^ ^ | #2 #3 --
Backtrace: ROT <- T3:1 <- T2:3

where -> stack underflow
Stacks: r: $1 $0 $30774C $307724 | #2 #3 --
Backtrace: ROT <- T3:1 <- T2:3 ok

Carets ^ in the return stack mean return addresses to the callees displayed within the backtrace.
Otherwise the backtrace would show only long cryptic address numbers.

The number separated by a colon : from the word name in the backtrace indicates the calling position
within the caller’s definition. In the example T2:3 means that T2’s 3rd cell contains T3’s execution
token, which lead to the stack underflow later i.e. ROT found only 2 stack cells and couldn’t operate.

With WHERE you can re-display the last backtrace. The ^ carets are now resolved to their real
addresses withn the return stack at the time of the last exception.

2.7.2 Double-Number Wordset

All standard words as of ISO/ANS standard document §8 are provided within source file
./src/double.mfc. In a 32-bit system double numbers represent 64-bit integers, in a 64-bit
system they represent 128-bit integers.

Additionally the following words are provided:

2NIP (d1 d2 – d2) 2TUCK (d1 d2 – d2 d1 d2)
like standard NIP and TUCK but for cell pairs or double numbers

D<> D> D<= D>= DU> DU<= DU>= (d1 d2 –- flag)
more double number comparison operators

DROL DROR (d p -- dr)
double bit-wise left/right rotation by p bit-positions

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 12 / 52

D* (d1 d2 –- dprod)
double number multiplication d1 * d2 (all 128 bits in 64-bit systems)

D/ (d1 d2 –- dquot)
double number division d1 / d2 (all 128 bits in 64-bit systems)

D/REM (d1 d2 –- drem dquot)
double number division d1 / d2 with symmetric remainder (all 128 bits in 64-bit systems)

D/MOD (d1 d2 -– dmod dquot)
double number division d1 / d2 with floored remainder (all 128 bits in 64-bit systems)

UD. (ud --) UD.R (ud w --)
print unsigned double number (UD.R right-aligned in w-wide field)

D,. UD,. (d --) D,.R UD,.R (d w --)
numeric output with ,-separator between every three decimal digits

+TO (d <name> --)
adds to 2VALUE NAME

When the Double Number Wordset is included before the Floating-Point Number Wordset:

DPL (–- a)
decimal point location variable to support fixed point arithmetic applications

┌──────────────────────────┐
│ MinForth V3.4.5 - 64 bit │
└──────────────────────────┘
Dataspace: 1000000 / 998736 unused
Stacks: d:100 / r:100 / f:20
-1. hex 30 ud.r FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ok
$ #10. ok
A 0 $ decimal 1.2345 dpl ? 4 ok
10 0 12345 0 # 2drop 2drop ok
\ input a 37 digit number ok
1.234567890123456789012345678901234567 dpl ? 36 ok
3259073885544336263 66926059427634869 # 10. d/ ok
-1518767018816521536 6692605942763486 # d. 123456789012345678901234567890123456 ok

Traditionally Forth recognizes numbers that are directly followed by a trailing dot as double numbers,
not as floating-point numbers as might be expected by new users. Recognition of double numbers is
implemented by appending a recognizer during MinForth’s boot process.

However, when the Double-Number Wordset is included after the Floating-Point Number Wordset,
numbers with a trailing single dot are recognized not as double but as floating-point numbers, similar
to other programming languages.

When the Programming Tools Wordset is included this can be changed and verified by the commands
SWAP-RECOGNIZERS and SHOW-RECOGNIZERS (see § 2.7.12.2).

When the Locals Wordset is included (see § 2.7.5) many double-number operations can be simplified
by using MinForth’s double number locals with the D: prefix.

2.7.3 Floating-Point Number Wordset

All standard words as of ISO/ANS standard document §12 are provided within source file
./src/float.mfc.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 13 / 52

MinForth uses C double numbers (64-bit IEEE 754 fp-numbers) on a separate floating-point stack.
When the fp-number wordset is included, the QUIT prompt is extended to display the fp-stack content.

Additionally provided words:

FDEPTH (f: fn..f1 -- | d: -- n)
actual fp-numbers in fp-number stack

FPICK (f: fm..f0 -- fm..f0 fi | d: i --)
pick i-the fp-number from within fp-number stack

FNIP (f: f1 f2 – f2) FTUCK (f: f1 f2 – f2 f1 f2)
like standard NIP and TUCK but for fp-numbers

F>R (f: f -- | r: -- f) FR@ (f: -- f | r: f -- f)
FR> (f: -- f | r: f --)
 like standard >R R@ R> but for fp-numbers

FINV 1/F (f: f –- 1./f)
inverse fp-number

FSQR (f: f – f^2)
square fp-number

F2* (f: f –- f*2.) F2/ (f: f –- f/2.)
like standard 2* 2/ but for fp-numbers

FMA (f: a b c –- (a+b*c)) F2/ (f: f –- f/2.)
quick multiply-add (Horner scheme)

F0> F0<> F0>= F0<= (f: f -- | d: -- flag)
F> F>= F<= F= F<> (f: f1 f2 -- | d: -- flag)
 more comparison operators (beware of rounding effects, for precise identity check use F~)

ISNAN (f: f – | d: -- -1|0|+1)
signed ‘not-a-number’ check

ISINF (f: f – | d: -- -1|0|+1)
signed infinity check

FSIGN (f: f – | d: -- -1|0)
sign function

RAD>DEG (f: r –- d) DEG>RAD (f: d -– r)
conversion between radians and degrees, useful for trigonometric calculation

FHYPOT (f: a b –- sqrt(a^2+b^2))
hypotenuse or complex magnitude

PI EULER FSQRT2 (f: -- x)
common fp-number constants

G. GS. GE. (f: f --)
print fp-numbers like their corresponding standard words F. FS. FS. but without trailing 0s.

F, (f: f –-)
compile fp-number into dataspace

+TO (f: f <name> --)
adds f to FVALUE NAME (or to fp locals)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 14 / 52

When the Double-Number Wordset is included before the Floating-Point Number Wordset, numbers
with a trailing single dot are recognized as double integer numbers. This can be changed by changing
the recognizer order (see § 2.7.12.2).

┌────────────────────────┐
│ MinForth V3.4 - 64 bit │
└────────────────────────┘
19998912 bytes free
1. ok
1 0 # 2drop swap-recognizer rec-float ok
1. ok
f: 1. | #

2.7.4 Complex Number Wordset

Some popular operations and functions with complex numbers are provided within source file
./src/complex.mfc. Complex numbers are not specified by standard Forth. MinForth complex
numbers are fp-number pairs, their imaginary part occupying the higher fp-stack position.

MinForths complex trigonometric and hyperbolic functions take branch cuts into account and “behave
well” in complex operations.

Recognition of complex numbers in <re>+/-j<im> syntax is implemented by appending a
recognizer during MinForth’s boot process.

┌────────────────────────┐
│ MinForth V3.4 - 32 bit │
└────────────────────────┘
199116 bytes free
2+j3 ok
f: 2. 3. | # zsqr ok
f: -5. 12. | # z. -5.+j12. ok

Provided words:

ZDROP (f: z --)
ZSWAP (f: z1 z2 -- z2 z1)
ZNIP (f: z1 z2 -- z2)
ZROT (f: z1 z2 z3 -- z2 z3 z1)
ZDUP (f: z -- z z)
ZOVER (f: z1 z2 -- z1 z2 z1)
ZTUCK \ (f: z1 z2 -- z2 z1 z2)
 stack operation words like their counterparts for other numeric types

Z>R (f: z -- | r: -- z)
ZR@ (r: z -- z | f: -- z)
ZR> (r: z -- | f: -- z)
 move to / read / fetch complex number to / from return stack

COMPLEX (-- u) COMPLEXES (n –- u)
 storage size in bytes for 1 or n complex numbers

Z! (f: re im –- | d: adr --)
Z@ (f: -- re im | d: adr --)
 store / read fp-number pair or complex number at / from address

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 15 / 52

Z0= (f: z1 z2 -- d: f)
Z= (f: z1 z2 -- d: f)
Z~ (f: z1 z2 r3 -- flag)
 comparison operators like their counterparts for fp-numbers

ZREAL (f: z -- re)
ZIMAG (f: z -- im)
 real / imaginary part of complex number

ZCONJ (f: z – z’)
 conjugate complex number

ZABS (f: z -- |z|)
ZARG (f: z – arg)
 absolute value (modulus) / argument (angle) of complex number

Z>POLAR (f: re im -- |z| angle)
Z>CARTESIAN (f: |z| angle -- re im)
 convert between polar and cartesian representation of complex numbers

Z+ (f: z1 z2 –- zsum)
Z- (f: z1 z2 -- zdiff)
Z* (f: z1 z2 -- zprod)
Z/ (f: z1 z2 -- zquot)
Z** (f: z1 z2 -- power)
 add / subtract / multiply / divide / power of two complex numbers

ZSCALE (f: z f -- zscaled)
Z2* (f: z -- z*2)
Z2/ (f: z -- z*2)
ZNEGATE (f: z -- -z)
1/Z (f: z –- 1/z)
 scale / double / halve / negate / invert a complex number

ZSQR (f: z -- z^2)
ZSQRT (f: z -- sqrt(z))
ZEXP (f: z -- exp(z))
ZLN (f: z -- ln(z))
 complex square / square root / exponential / natural logarithm functions

ZSIN (f: z -- sin(z)) ZASIN (f: z -- asin(z))
ZCOS (f: z -- cos(z)) ZACOS (f: z -- acos(z))
ZTAN (f: z -- tan(z)) ZATAN (f: z -- atan(z))
 complex trigonometric and their inverse functions

ZSINH (f: z -- sinh(z)) ZASINH (f: z -- asinh(z))
ZCOSH (f: z -- cosh(z)) ZACOSH (f: z -- acosh(z))
ZTANH (f: z -- tanh(z)) ZATANH (f: z -- atanh(z))
 complex hyperbolic and their inverse functions

Z. (f: z --)
 display complex number in <re>+/-j<im> syntax

>COMPLEX (a u -- f, true: r: -- fr fi)
 try to convert string in <re>+/-j<im> syntax to complex number (like its counterpart >FLOAT)

ZLITERAL (f: z --)
 compile complex number into dataspace

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 16 / 52

ZCONSTANT (ct: z <name> -- | rt: -- z)
 complex CONSTANT

ZVARIABLE (ct: z <name> -- | rt: -- adr)
 complex VARIABLE

ZVALUE (ct: z <name> -- | rt: -- z)
complex VALUE

TO +TO (f: z <name> --)
store / add to FVALUE

When the Locals Wordset is included (see § 2.7.5) many complex number operations can be
simplified by using MinForth’s complex number locals with the Z: prefix.

Syntactic Considerations

In textbooks and some popular math software, complex numbers are presented in +/-re>+/-<im>i
notation, f.ex. as z=2+3i. While this looks pleasing to the eye at first, it becomes quickly annoying in
real-world technical computations with longish real and imaginary parts like in
-12.9602E-3-0.2301E-12i. The eye has to parse the string. It is easier to separate in
<re>+/-j<im> notation like -12.9602E-3-j0.2301E-12. Here the substrings +j or -j serve as
unambiguous separation markers between real and imaginary parts. The letter j (instead if i) is used,
because I is already frequently used in many technical applications e.g. to denote electrical current.

2.7.5 Locals Wordset

All standard words as of ISO/ANS standard document §13 are provided within source file
./src/locals.mfc.

Three syntax options for locals declarations are available:
- standard {: .. :} syntax
- legacy Forth-94 LOCAL| .. | syntax
- the widespread { .. } syntax

In addition floating-point, complex, and double number locals are supported by type annotation
prefixes with {: .. :} and { .. } syntax:

F: NAME
declare a floating-point number local

D: NAME
declare a double-number (double integer) local

Z: NAME
declare a double floating-point number (complex) local

Local type annotations are persistent until they are reset by

N: NAME
declare a normal (integer) local

TO +TO (x <name> --)
store / add to local NAME of any type

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 17 / 52

Example:

: RLC-Impedance {: f: R L C freq | omega -- Zre Zim :} \ serial RLC resistance
 2e pi f* freq f* to omega \ polar frequency
 R \ Zre on stack
 omega L f* omega C f* 1/f f- \ Zim on stack
;

2.7.5.1 Output Locals

MinForth provides a handy extension to standard locals. It enhances the standard -- syntax (that only
starts a comment) by a novel == syntax that indicates output locals. Output locals are put
automatically on the stack before a word ends. Be aware that this does not happen when a word is
prematurely left through EXIT.

Output locals can significantly reduce stack juggling and typing (and mistakes) for words with a large
number of parameters i.e. words that cannot factored much otherwise.

== (--)
mark all following locals declarations as output locals (unless there is already an input local with
the same name) thereby replacing the standard -- end-of-locals separator

:= += (x <name> --)
assign / add to local NAME of any type (:= borrowed from Pascal, += from C)

Examples:

┌──────────────────────────┐
│ MinForth V3.4.6 - 64 bit │
└──────────────────────────┘
998736 bytes free
: Z-ROT { z: a b c == c a b } ; \ complex -ROT ok
1+j 2+j2 3+j3 z-rot ok
f: 3. 3. 1. 1. 2. 2. | # .. ok
: MYOVER { a b == a b a } ; ok
4 5 myover ok
4 5 4 #

In this first example the notation looks already very much like a typical Forth stack diagram. The
compiler does the rest without much (no) ado.

The next example demonstrates more possibilities.

\ Complex division, flag true if |quot|<1

: ZDIVLESSUNIT { f: xr xi yr yi | r == qr qi | n: f }
 yr yr f* yi yi f* f+ := r
 xr yr f* xi yi f* f+ r f/ := qr
 xi yr f* xr yi f* f- r f/ := qi
 qr qi fhypot 1e f< := f ;

1e 2e 3e -4e zdivlessunit ok
-0.2 0.4 | -1 #

Note that local declarations, incl. type annotation, are also possible with output locals.

For better readability the word := can act as placeholder for TO. It is generally recommended to use
TO or +TO for global values and := or += for locals.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 18 / 52

P.S. a shorter solution, just for fun:

: ZDIVLESSUNIT3 { z: x y == q | n: f }
 x y z/ := q q zabs 1e f< := f ;

2.7.6 String Wordset

All standard words as of ISO/ANS standard document §17 are provided within source file
./src/string.mfc.

Internally mf2c compiles most strings with a trailing zero character to ease co-operation with other C
programs.

Additionally provided:

PARSE-STRING (a u –- a’ u’ ap up)
parse string (a u) for blank-delimited string-token (ap up), leaving (a’ u’) as remaining unparsed
string; ap is the address of the first character following the string token; if either u’ or up are zero,
no string-token was found

2.7.7 Memory-Allocation Wordset

All standard words as of ISO/ANS standard document §14 are provided within source file
./src/memory.mfc.

MinForth’s dataspace is defined in ./src/mf3.h as a static character array of constant size
MFDSPSIZE. This size might not be sufficient for some programs e.g. if they ALLOT a lot. Then one
can either ALLOCATE external memory instead, or increase MFDSPSIZE and recompile MinForth.

Stack sizes can also be adapted through command-line arguments (see § 2,3)

2.7.8 Search-Order Wordset

All standard words as of ISO/ANS standard document §16 are provided within source file
./src/search.mfc.

MinForth can hold up to 10 wordlists (in the WORDLISTS array), and search up to 8 wordlists in the
search order (in the CONTEXT array.

MinForth provides also classic vocabularies like in previous Forth standards.

MinForth V31 - 64 bit
4193616 bytes free
vocs
WORDLISTS: FORTH ROOT FILES ok
order
CONTEXT: FORTH
CURRENT: FORTH ok
vocabulary myvoc ok
also myvoc definitions ok

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 19 / 52

order
CONTEXT: MYVOC FORTH
CURRENT: MYVOC ok
previous definitions ok
order
CONTEXT: FORTH
CURRENT: FORTH ok

Provided default wordlists (vocabularies):

FORTH comprises all MinForth system words
ROOT contains the minimum standard wordset
FILES contains included file names in file-access wordset

2.7.9 File-AccessWordset

All standard words as of ISO/ANS standard document §11 are provided within source file
./src/file.mfc.

Additionally provided words:

STDIN STDOUT STDERR (-- fid)
standard terminal stream IDs

EXIST-FILE (a u – false|1|-1)
check if named file exists, returns 1/-1 when it is readable/writable

FILES (--)
vocabulary (see SEARCH wordset) holding all file names as MARKERs, so executing a file name
eliminates all later included or defined words.

FORGET-INCLUDED (-- a)
when flag variable is set, reset dataspace after file include error and thereby eliminate all compiled
new words

2.7.10 Blocks Wordset

All standard words as of ISO/ANS standard document §7 are provided within source file
./src/block.mfc.

MinForth implements block mass-storage through binary block-files. If no block-file is selected, a
default block-file mfblock.blk is opened or created if it does not exist.

2.7.10.1 Block-File Management

MinForth provides many words for comfortable block-file handling. F.ex. to work with old fig-Forth
source files:

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 20 / 52

MinForth V3.4 - 64 bit
198816 bytes free
s" FORTH.SCR" open-blockfile ok
10 list
--- BLOCK # 10 of 39 in forth.scr
 1: ("Starting Forth" line editor - load screen) :
 2: (FD 3:80) CR ." Editor loading, please wait..." :
 3: 1 WARNING ! :
 4: FORTH DEFINITIONS HEX :
 5: : TEXT HERE C/L 1+ BLANKS WORD HERE PAD C/L 1+ CMOVE ; :
 6: : LINE DUP 0FFF0 AND IF 17 MESSAGE DROP QUIT ENDIF :
 7: SCR @ (LINE) DROP ; :
 8: :
 9: VOCABULARY EDITOR IMMEDIATE HEX :
10: :
11: : WHERE DUP B/SCR / DUP SCR ! ." Scr " DECIMAL . :
12: SWAP C/L /MOD C/L * ROT BLOCK + CR C/L TYPE :
13: CR HERE C@ - SPACES 5E EMIT [COMPILE] EDITOR QUIT ; :
14: :
15: :
16: --> : ok

Provided words are:

OPEN-BLOCKFILE (a u --)
Open file named (a u) in binary mode and use it as current block-file

CREATE-BLOCKFILE (a u --)
Create new file named (a u) in binary mode, fill it with 40 empty blocks (16 line x 64 columns pe
block) and use it as current block-file

CLOSE-BLOCKFILE (a u --)
Write current block-file to disk and close it

BLOCKFILE-NAME (-- a u)
get name of current block-file

BLOCKFILE-SIZE (-- u)
get number of blocks in current block-file

RESIZE-BLOCKFILE (u --)
add or cut blocks to/from current block-file to hold u blocks at the end

BLOCK-READ (adr u --)
read block u to buffer at adr (buffer must be able to hold 1024 bytes)

BLOCK-WRITE (adr u --)
write buffer at adr to block u (buffer must hold 1024 bytes)

BLOCK-FILL (u c --)
fill block u with 1024 characters c

2.7.10.2 Block Screen Editor

MinForth provides a comfortable screen text editor to edit individual blocks. It is available when the
optional source file bledit.mfc had been included in the build.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 21 / 52

Use the keyboard and cursor keys to enter text and to move the cursor. Press SHIFT-F1 to display a

help screen,

The block-editor keeps only the actual screen in memory, leaving the screen with update flag set will
flush the screen to the block-file. A separate backup block-file is not created automatically.

Example:

Edit the block-file HUFFMAN.BLK (from old F83).

s” HUFFMAN.BLK” open-blockfile ok
1 block-edit ok

MinForth BLOCK-Editor shF1:Help ^r:reRead ^s:Save ^x:eXit
--- BLOCK # 1 of 42 in HUFFMAN.BLK
u1: \ Load Screen for Huffman Encoding/Decoding 29MAY84HHL :
 2: :
 3: 3 20 THRU FORTH <:
 4: CR .(Huffman Utility Loaded) EXIT :
 5: :
 6: USAGE :
 7: To compress a file type: :
 8: COMPRESS INFILE1.EXT OUTFILE1.EXT :
 9: To expand a file type: :
10: EXPAND INFILE2.EXT OUTFILE2.EXT :
11: :
12: Where INFILE2.EXT had better be the OUTFILE1.EXT of a prior :
13: compression. After either a COMPRESS or EXPAND executing :
14: EMPTY will reset the dictionary back to its original state. :
15: :
16: :
 ^

You can move the cursor around with the arrow keys of your keyboard and type/edit words on the
screen, very similar to a conventional text editor. Shift-F1 will show an overlay screen with helpful
information about editor key settings.

When you change screen content, a small u appears in the upper left corner of the screen. This flag
indicates that the block buffer has been updated, but has not yet been flushed to disk. To undo changes
press ctrl-R, to save changes to the block-file press ctrl-S. Thereafter the update flag will disappear.

Note: When MinForth is used within a Linux terminal (there are many), some (function) keys or some
alt/ctrl+key combinations may be reserved for terminal control. If this collides with your block editor
control keys, adapt the key settings in source file ./src/bledit.mfc in word BLOCK-EDIT and

rebuild MinForth. Don’t forget to update the help screen in word _BEHELP as well.

2.7.11 Facility Wordset

All standard words as of ISO/ANS standard document §10 are provided within source file
./src/facility.mfc.

Additionaly provided words

TIMER-RESET (--)
(re)set internal timer variable for execution timing

TIMER-STOP (--)
calculate internal time difference since last TIMER-RESET

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 22 / 52

.ELAPSED (--)
(stop timer if not already stopped) display elapsed time difference

RANDOM (-- n)
generate cell-wide pseudo random number from time seed

WEEKDAY (-- n)
identify current weekday from 0=sunday to 6=saturdaa

DAYLIGHTSAVING (-- flag)
identify daylight saving calendar state

MinForth provides code for VT100 terminal escape control sequences. This can be dis-/enabled
through the VT virtual terminal flag. When you start MinForth and see many garbled letters on your
screen instead of the square logo, your terminal does not VT100 escape sequences. Then put the
command VT OFF somewhere in your autoexec.mf file and restart.

VT100 sequences are also used to set text cursor attributes and for command line editing with history
buffer (enhanced ACCEPT). Keyboard scan codes (in Windows) or VT100 key codes (in Linux) are
converted to MinForth-internal key codes.

Provided additional words:

VT (–- a)
flag variable to en-/disable ANSI terminal control sequences

SAVE-XY (--)
save current text cursor position internally

RESTORE-XY (--)
reset cursor to last saved position by SAVE-XY

GET-XY (-- col row) Windows only
get text cursor position, counterpart to standard AT-XY

VTNORMAL VTBRIGHT VTREVERSE VTUNDERLINE VTHIDDEN (--)
set terminal text attributes

VTBLACK VTRED VTGREEN VTYELLOW
VTBLUE VTMAGENTA VTCYAN VTWHITE (–-)
 set terminal text colors

VTUP VTLEFT VTRIGHT VTDOWN (n --)
 move text cursor by n positions

VTERASE (--)
 erase current line from cursor position ot end of line

PRINTF (a u –-)
type string with embedded terminal control characters starting with
% for frequently used number formats:
 %d decimal number %u unsigned decimal number
 %x hex number %y unsigned hex number
 %D double number %f floating-point number
~ for terminal control:
 ~k ~r ~g ~y black, red, green, yellow text

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 23 / 52

 ~b ~m ~ c ~w blue, magenta, cyan, white text
 ~n ~t ~u ~v normal, bright, underlined, reversed text attribute

P” (string” --)
print formatted string like .” but with embedded % or ~ terminal control characters

12. 2dup cr p" A green dozen is ~g~t%D~n and reversed ~g~t~v%D~n"
A green dozen is 12 and reversed 12 ok

To evaluate command-line argument or execute OS shell commands in an application program:

ARGC (-- n)
number of command-line arguments including called program name

ARGC (n –- a u)
get command-line argument n as Forth string (a u)

SYSTEM (a u – errno)
execute system sub-shell command given by string (a u) returning error number (0 on success)

DIR (–-)
display files in current working directory

CHDIR (<path> –-)
change current working directory

2.7.12 Programming Tools Wordset

Practically all standard programming tools words as of ISO/ANS standard document §15 are provided
within source file ./src/tools.mfc.

Missing words in MinForth are mostly due to its transpilation method to C (where CODE .. ;CODE
make not much sense) or because they are somewhat “too specific” (like EDITOR).

Additionally provided words:

ALIAS (xt <NAME>–-)
create a synonymous word NAME that executes xt

.RS (–-)
display actual return stack content

.FS (–-)
display actual floating-point number stack content

XT-SEE (xt –-)
“disassemble” high-level word with given execution token xt (useful for analyzing :NONAMEs that
cannot be accessed by standard word SEE)

Special functions in this wordset:

2.7.12.1 Quotations

Forth quotations are essentially unnamed ‘guest’ definitions nested within other ‘host’ definitions. An
unnamed guest definition is ‘bracketed’ between the following words:

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 24 / 52

[: (–-)
start a quotation

;] (–-)
terminate a quotation

An interior quotation like in the following (trivial) example

: MOTOR-WARNING (-- f)
 prep-checks [: check-condition ;] >r suspect?
 IF get-motor r> execute
 ELSE acknowledge-warning r> drop false
 THEN ;

is functionally equivalent to the more verbose exterior formulation

: CHECK-MOTOR-FLAGS (m – f)
 check-condition ;

: MOTOR-WARNING
 prep-checks suspect?
 IF get-motor check-motor-flags
 ELSE acknowledge-warning false
 THEN ;

So quotations are like ‘packed subroutines’ and can lead to more compact code.

Another example cited from the current working draft Forth standard:

: HEX. (u --)
 base @ >r [: hex u. ;] catch r> base ! throw ;

The advantage of using CATCH here is that the BASE is restored even if there is an exception (e.g. an
output stream interrupt) during the U..

2.7.12.2 Recognizers

MinForth recognizers have already been introduced with the kernel word RECOGNIZER in § 2.6.2.

Recognizers are part of MinForth’s text interpreter. Whenever a parsed text token is neither found nor
convertible to a single integer number, the hidden core word _LITERAL? walks the recognizer list
and tries to process the text token at each recognizer element.

SHOW-RECOGNIZERS (–-)
display actual recognizer list

SWAP-RECOGNIZER (<name> –-)
exchange position with preceding recognizer in list

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 25 / 52

┌────────────────────────┐
│ MinForth V3.4 - 32 bit │
└────────────────────────┘
199116 bytes free
show-recognizers
Recognizers:
REC-DOUBLE : _DOUBLE? NOOP 2LITERAL
REC-FLOAT : >FLOAT NOOP FLITERAL
REC-COMPLEX : >COMPLEX NOOP ZLITERAL ok
1. \ 1. is a double number ok
1 0 # swap-recognizer rec-float ok
1 0 # 1. \ 1. is now a fp number ok
f: 1. | 1 0 # show-recognizers
Recognizers:
REC-FLOAT : >FLOAT NOOP FLITERAL
REC-DOUBLE : _DOUBLE? NOOP 2LITERAL
REC-COMPLEX : >COMPLEX NOOP ZLITERAL ok
f: 1. | 1 0 # swap-recognizer rec-double \ back to normal ok
f: 1. | 1 0 # 10. ok
f: 1. | 1 0 10 0 #

When programming new recognizers it is sometimes necessary to re-parse the text token or the input
source. This is supported by

<IN (–-)
reposition >IN back to the beginning of the actual text token within the input source

2.7.12.3 Stepping Debugger

The mf2c transpiler and C compiler catch many syntactic errors, but they cannot detect algorithmic or
program flow errors. A seasoned C programmer can use the debugger tools of his toolchain for
compiled primitives. But they are often awkward to use for debugging high-level words.

As additional debugging aid MinForth offers step debugging of primitives through the +tr and -tr

transpiler commands (see § 3.6)

Standard Forth just foresees DUMP (adr u --) to display the byte content of a memory
region, and SEE (<name> --) to display a ‘disassembled’ content.

More comfortably, MinForth provides a stepping debugger to visualize execution of highlevel words:

DEBUG (<name> --)
enable stepping debugger for colon word NAME; tap space bar to step through its execution;
special command keys are
<d> for decimal numeric display
<x> for hexadecimal numeric display
<t> to type a string
<r> to display the return-stack
<q> to quit debugging, but the rest of the word is still executed
<e> to exit debugging, the rest of the word is not executed
<u> to disable the debugger for the current word, the rest of the word is executed
<h> to display a help line for debugger command keys

UNBUG (<name> --)
disable stepping debugger for colon word NAME

UNBUG-ALL (--)
disable stepping debugger for all colon word within current compilation wordlist

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 26 / 52

Example:

: STARS 10 0 DO I '*' EMIT LOOP ; ok
debug stars ok
stars
$7FF72E8AC0C8: d# _[LIT] 10 <r: on/off>
$7FF72E8AC0C8: r: 0 | d# _[LIT] 10
$7FF72E8AC0D8: r: 0 | 10 d# _[LIT] 0
$7FF72E8AC0E8: r: 0 | 10 0 d# _[DO]
$7FF72E8AC0F0: r: 0 10 -10 | 0 d# _[LOOP]
$7FF72E8AC0F8: r: 0 10 -10 | 1 d# _[JMPZ] 9
$7FF72E8AC108: r: 0 10 -10 | d# I
$7FF72E8AC110: r: 0 10 -10 | 0 d# _[LIT] 42 <hex>
$7FF72E8AC110: r: 0 A -A | 0 d$ _[LIT] 42 <Help Decimal heX Type Rstack Quit Exit Unbug
$7FF72E8AC110: r: 0 A -A | 0 d$ _[LIT] 42 <unbug> ********** ok
0 1 2 3 4 5 6 7 8 9 #

2.7.13 Overlay Wordset

Overlays are binary copies of a MinForth dataspace mapped to a disk file. They are available when the
optional source file overlay.mfc had been included in the build.

Overlays can be used to freeze and re-use the actual condition of a MinForth session, or to load a
binary application program without its actual source code (as it is with standard Forth words
INCLUDE et al).

The MinForth systems between saving and loading overlays must be identical, ie. overlays between
different builds will not be accepted. Primitives in MinForth codespace are not included in overlays.

SAVED-OVERLAY (a u --)
create overlay file from name (a u) and write current data space content to the file

LOADED-OVERLAY (a u --)
open overlay file with name (a u) and overwrite data space with binary overlay file content

SAVE-OVERLAY (<name> --)
create overlay file with parsed name and write current data space content to the file

LOAD-OVERLAY (<name> --)
open overlay file with parsed name and overwrite data space with binary overlay file content

The loaded overlay deletes the current dataspace and current high-level definitions therein and
replaces them with the dataspace content at the time of saving the overlay. Forth system variables like
STATE or BASE are not affected when reloading an overlay.

2.7.14 Big Floating-Point Number Wordset

Standard floating-point numbers offer a usable calculation precision of about up to 15 decimal digits.
So-called BigFloats are floating-point numbers of arbitrary length. They are available in MinForth
when the optional source file bigfloat.mfc had been included in the build (see § 5.6.4).

Normal floating-point numbers (see § 2.7.3) are addressed directly and fp-stack cells are fp-numbers.
Bigfloats are different in that they are addressed indirectly and some attention is required from the user
to observe memory load. Please read § 5.6 for more detailed information.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 27 / 52

Nevertheless care has been taken to integrate Bigfloats as seamlessly as possible into the whole
MinForth ecosystem. Example:

┌──────────────────────────┐
│ MinForth V3.4.7 - 64 bit │
└──────────────────────────┘
Stacks: d:128 / r:128 / f:16 / B:10
Dataspace: 1,048,576
15 set-precision ok
1000 set-bprecision ok
pi f. 3.14159265358979 ok
bpi b.
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534
2117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622
9489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482
1339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882
0466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567
3518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705
3921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844
0901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960
5187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619
3118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378
7593751957781857780532171226806613001927876611195909216420199 ok

BigFloats can be input through three different methods by

 a capital B as number prefix; this is the most comfortable way, implemented through a
Bigfloat recognizer

 string input through the word STR>B
 type conversion through one of the words F>B S>B U>B D>B

┌──────────────────────────┐
│ MinForth V3.4.7 - 64 bit │
└──────────────────────────┘
Stacks: d:128 / r:128 / f:16 / B:10
Dataspace: 1,048,576
B12e3 ok
B: 12000. # 13e-2 ok
B: 12000. f: 0.13 | # f>b ok
B: 12000. 0.13 # 44 ok
B: 12000. 0.13 | 44 # s>b ok
B: 12000. 0.13 44. # s" 89.2E3" str>b ok
B: 12000. 0.13 44. 89200. | 0 #

2.7.14.1 BigFloat Glossary

Provided number type conversion words:

F>B (f: bf -- B: f)
move fp number from fp stack to BF stack (may lose precision if BPRECISION is low)

B>F (B: bf -- f: f)
move BF number from BF stack to fp stack (may lose precision if BPRECISION is high)

S>B (d: n -- B: bn)
move number from data stack to BF stack (may lose precision if BPRECISION is low)

B>S (B: bn -- d: n)
move rounded BF number from BF stack to data stack (may lose precision if BPRECISION is
high)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 28 / 52

D>B (d: l h -- B: bd)
move double number from data stack to BF stack (may lose precision if BPRECISION is low)

B>D (B: bd -- d: l h)
move rounded BF number from BF stack to data stack as double number (may lose precision if
BPRECISION is high)

Provided BF number rounding words:

BFLOOR (B: bf -- bi)
round towards nearest smaller integer, towards minus infinity

BROUND (B: bf -- bi)
round towards nearest absolute integer, symmetric

BTRUNC (B: bf -- bi)
round towards nearest integer, towards zero

Provided BF stack operation words:

BDEPTH (B: bn..b1 -- bn..b1 d: n)
get BF stack depth

BDROP (B: b --)
drop BTOS (can be undone by BUP)

BDUP (B: b -- b b)
duplicate BTOS, including its memory payload

BOVER (B: a b -- a b a)
duplicate BSECOND over BTOS, including its payload

BSWAP (B: a b -- b a)
exchange BSECOND with BTOS, without copying their payloads

BROT (B: a b c -- b c a)
rotate top three BF stack elements, without copying their payloads

BNIP (B: a b -- b)
discard BSECOND (can be retrieved by BUP)

Provided BF input retrieval words:

The following two words have no correspondence in standard Forth.

BFLIP (B: a b -- x)
exchange BSEC with BONTOS and decrement BF stack pointer, thereby freeing the new BTOS
position while keeping b hidden as new BONTOS and a as new BONSEC

BUP (B: -- x)
increment BF stack pointer, thereby retrieving the hidden number above (BONTOS)

Provided BF comparison words:

BISNAN (B: a -- d: flag)
check if BF number is a NaN (can be retrieved by BUP)

B0< (B: a -- d: flag)
check if BF number is less than zero (can be retrieved by BUP)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 29 / 52

B0= (B: a -- d: flag)
check if BF number is equal zero (can be retrieved by BUP)

B< (B: a b -- d: flag)
check if BSEC is less than BTOS (BSEC can be retrieved by BUP)

BU< (B: a b -- d: flag)
check if BSEC is unsigned less than BTOS (BSEC can be retrieved by BUP)

B= (B: a b -- d: flag)
check if BSEC is equal BTOS (BSEC can be retrieved by BUP)

B~ (B: a b eps -- d: flag)
check if the absolute difference |a-b| is below |eps| (can be retrieved by BUP)

Provided singular BF arithmetic calculations (in place):

BNEGATE (B: a -- -a)
negate BTOS (in place)

BABS (B: a -- abs(a))
absolute BTOS (in place)

B1+ (B: a -- a+1)
increment BTOS (in place)

B1- (B: a -- a-1)
decrement BTOS (in place)

B2+ (B: a -- a+2)
double increment BTOS (in place)

B2* (B: a -- a*2)
double BTOS (in place)

B2/ (B: a -- a/2)
halve BTOS (in place)

Provided dual BF arithmetic calculations (arguments retrievable):

B+ (B: a b -- a+b)
BF addition (BUP retrieves first a then b)

B- (B: a b -- a-b)
BF subtraction (BUP retrieves first a then b)

B* (B: a b -- a*b)
BF multiplication (BUP retrieves first a then b)

B/ (B: a b -- a/b)
BF multiplication (BUP retrieves first a then b)

B** (B: a b -- a**b)
BF power (BUP retrieves first a then b)

BMIN (B: a b -- min(a,b))
BF smaller number of a or b (BUP retrieves the other number)

BMAX (B: a b -- max(a,b))
BF larger number of a or b (BUP retrieves the other number)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 30 / 52

Provided BF analytic functions:

BPI (B: -- pi)
BF pi constant 3.1415…

BEULER (B: -- e)
BF Euler constant 2.7182…

BINV (B: f -- 1/f)
BF inversion (BUP retrieves f)

BSQR (B: f -- f^2)
BF square (BUP retrieves f)

BSQRT (B: f -- sqrt(f))
BF square root (BUP retrieves f)

BEXP (B: f -- exp(f))
BF natural exponentiation (BUP retrieves f)

BLN (B: f -- ln(f))
BF natural logarithm (BUP retrieves f)

BALOG (B: f -- 10**f)
BF decimal exponentiation (BUP retrieves f)

BLOG (B: f -- log10(f))
BF decimal logarithm (BUP retrieves f)

Provided BF trigonometric functions:

BSIN (B: f -- sin(f))
BF sine (BUP retrieves f)

BCOS (B: f -- cos(f))
BF cosine (BUP retrieves f)

BTAN (B: f -- tan(f))
BF tangent (BUP retrieves f)

BASIN (B: f -- asin(f))
BF inverse sine (BUP retrieves f)

BACOS (B: f -- acos(f))
BF inverse cosine (BUP retrieves f)

BATAN (B: f -- atan(f))
BF inverse tangent (BUP retrieves f)

Provided BF hyperbolic functions:

BSINH (B: f -- sinh(f))
BF hyperbolic sine (BUP retrieves f)

BCOSH (B: f -- cosh(f))
BF hyperbolic cosine (BUP retrieves f)

BTANH (B: f -- tanh(f))
BF hyperbolic tangent (BUP retrieves f)

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 31 / 52

BASINH (B: f -- asinh(f))
BF inverse hyperbolic sine (BUP retrieves f)

BACOSH (B: f -- acosh(f))
BF inverse hyperbolic cosine (BUP retrieves f)

BATANH (B: f -- atanh(f))
BF inverse hyperbolic tangent (BUP retrieves f)

Bigfloat Values:

BVALUE (ct: bf <name> -- | rt: -- bf)
Bigfloat VALUE

TO +TO (f: bf <name> --)
store / add to BVALUE

Provided words for memory management:

SET-BPRECISION (n --)
set BF calculation precision to n decimal digits

BPRECISION (-- n)
get actual decimal BF calculation precision

BPAYLOAD (B: bf -- bf d: n)
get used memory net payload (without structure) of BF number

.. (--)
reset all stack pointers including BD stack pointer (but does not free payloads)

FREE-BSTACK (--)
free memory payloads of all unused BF stack elements (above BTOS)

FREE-BVALUE (<NAME> --)
free memory payload of named BVALUE

Bigfloat Input / Output:

STR>B (a u -- ior | 0 B: f)
convert string to BF number, with flag on data stack (zero on success)

B. (B: bf --)
print BF number in decimal notation

.BS (--)
print BF stack content

2.8 Caveats

MinForth V3.4 is rather complete from a literary viewpoint in relation to the Forth standard document,
but otherwise also rather limited for software development. This is partly due to its naked command-
line interface, but mostly due to the nature of Forth that is more geared towards machine programming
than to text processing or high-abstract programming concepts.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 32 / 52

Specifically, not supported out-of-the-box are:

 Integrated Development Environment (IDE)
but you can use your favorite code editor …

 Assembler programming and disassembling to machine code
but it should not be difficult to use the built-in assembler and debugger of your C compiler

 Multitasking
MinForth V3.4 is a command-line program and not thread-safe

 ABI for external libraries
- for dynamic Windows DLL linkage see directory ./demo/windll
- calling C functions from MinForth is straightforward through building new primitives
- calling MinForth functions from C means injecting/reading stack items and using
 MinForth mangled primitive names or search the dictionary to get the right function
 pointers

 Internationalization
although the standard proposes an Extended-Character Wordset, and UTF-8 is dominant in the
Unix and WWW world, M$ Windows does not support UTF-8 well; so it seems that two
differing wordsets would be required…

 Other Platforms
should not be too difficult, but.. right now MinForth V3.4 supports big-endian CPUs (Intel or
ARM with set CPSR flag like some Raspberry PIs) and Windows and Linux operating
systems (there is a limited FreeDOS version too)

 Heap memory management, dynamic strings or arrays, plot interface, linear algebra wordset ..
just to name a few

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 33 / 52

3 MinForth-to-C Transpiler

The central component within the MinForth environment is the separate mf2c transpiler program. It
translates MinForth text source to equivalent C text source. In other words: mf2c is a text converter.

There isn’t much more to it and so mf2c can’t execute any single Forth command. All commands that
do specific conversions during a transpilation process (equivalent to Forth IMMEDIATE words are
hard-coded within mf2c.

mf2c itself is a C program. Why C and not Forth? Because when you start working with a new
hardware or CPU platform, it is very typical to have just a C or C++ compiler in the OEM’s toolbox
and some driver and function libraries.

Usage of mf2c is easy:
mf2c without parameter transpiles the default MinForth source file mf3.mfc
mf2c <name> transpiles the MinForth source file name.mfc.

For example, transpile and run the file hello.mfc

\ Hello

#include core.mfc

: MAIN
 ." Hello World " ;

#reduce

by

> mf2c hello
> tc32 hello \ Linux: lmake hello
> hello
Hello World
>

When you inspect the new generated file hello.c, you’ll see at once what the transpiler has done.

Now change hello.mfc to additionally print a number

\ Hello

#include core.mfc

: MAIN
 ." Hello World " 123 . ;

#reduce

and compare the new generated hello.c with the first one. It has become larger because Forth’s
classic dot-command . to print a number is a rather complex word that is built from a number of other
Forth words. You can look up its definition in source file core.mfc. Therefore the mf2c transpiler
had to pull in the sources of all those other building words for . too.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 34 / 52

3.1 File Name Conventions

The following file name suffix convention are used:

<name>.c C source files

<name>.mfc MinForth/C mixed source files for the mf2c transpiler

<name>.mf Forth source files for the MinForth system

3.2 Function and Word Names

General all internal C function-/variable-/macro names start with the two letters ‘m’ and ‘f’ in lower or
upper case to avoid name conflicts in applications with embedded MinForth code.

mf2c converts every MinForth word name to a hashed C function name aka name mangling. F.ex the

Forth word ERASE becomes declared in C mangled as
 void mfB7F60EB5(void); // ERASE
where mf are prepended letters and B7F60EB5 is the 32-bit FNV-1a hash value of the string

“ERASE”.

This is necessary because Forth has a very flexible syntax (e.g. 2 can be word name and/or a number)

that would conflict with C’s more restricted naming.

However mf2c transpiles to documented C code with transcription of every mangled function. You

should browse an mf3c.c file to get the idea.

3.3 Dictionary Structure

MinForth’s dictionary is implemented as a C array of header structures (the mfdict[] array in
mf3.c). Headers are linked via their link structure field, so that dictionary search can be extended to
high-level words that were not created through mf2c.

Normal MinForth words are declared with a corresponding entry (header) into the dictionary list. But
words whose names start with an underscore character ‘_’ are treated specially:

Words starting with a single underscore like _HIDDEN get a dictionary header, but they are unlinked
from the linked wordlist. SEARCH-WORDLIST “jumps over” such words and thus they cannot be
found by high-level programs. But they are visible from within mf2c and can be ticked and deferred
like any normal word.

Words starting with two consecutive underscores like __AWAY don’t appear in dictionary at all. They
are just named C functions. They don’t even have execution tokens and cannot be ticked or deferred.
They become just plain C functions that can be called from within high-level word definitions
transpiled by mf2c.

3.4 Transpiler Commands

From transpiler perspective the ‘MinForth language’ is just a very restricted subset of some popular
Forth commands.

Most mf2c commands look like their standard Forth counterpart words. They can be grouped in top-
level commands and control commands for colon definitions.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 35 / 52

A very important transpiler aspect is the close interaction between mf2c and MinForth’s header file
mf3.h that contains (among other things) all flow control commands and stack operation macros. I.e.
when mf2c encounters a MinForth primitive definition containing an IF .. ELSE ..THEN
structure, mf2c translates them to mfIF .. mfELSE .. mfTHEN macro names defined in
mf3.h. These macros are only later resolved by C’s preprocessor during compilation of mf2c’s
output resp. target source file.

3.4.1 Top-level Commands

mf2c’s outer transpiler loop is implemented by its internal function ParseFFile(). It parses the
current source file to string tokens and translates them to equivalent C definitions.

: NAME
start a high-level colon definition (see next § 3.5)

C [TEXTLINE]
(non-standard) literal copy of text line into transpiler output, C must be first character in line

n CONSTANT NAME
declare a constant for given number n

[n] VARIABLE NAME
declare a variable and initialize to n, or 0 if n is not given (non-standard)

n BUFFER: NAME
declare a buffer of length n and initialize to 0

n CELLS
modify N to cell sizes for CONSTANT, VARIABLE or BUFFER:
Example: 4 CELLS BUFFER: MYBUF

n FLOATS
modify N to floating-point number sizes for BUFFER:
Example: 4 CELLS BUFFER: MYBUF

DEFER NAME
declare an execution vector initialized to crash, to be resolved later by IF

DEFER: NAME
declare an execution vector initialized by following high-level words (initial hook function), can be
modified later by IF

IS NAME
(non-standard) either set already declared execution vector NAME to execute the just preceding
definition, or set just preceding execution vector to execute the already declared definition NAME
Examples: DEFER VECT … : OUT1 101 THROW ; IS VECT
 : OUT2 102 THROW ; DEFER VECT IS OUT2

IMMEDIATE
mark preceding definition as IMMEDIATE

COMPILE-ONLY
mark preceding definition as COMPILE-ONLY (can be combined with IMMEDIATE)

[DEFINED] <NAME>
[UNDEFINED] <NAME>
 set flag for follow [IF] depending on existence of word NAME

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 36 / 52

N [IF] .. [THEN]
conditional transpilation of definitions between [IF] and [THEN] when N <> zero.
(note that there is no [ELSE], repeat the instruction with inverted N)

#INCLUDE <FILE.MFC>
include another source definition file file.mfc into the current transpilation process

#REDUCE
exclude all words, by backtracking from MAIN, that are not required to execute MAIN
(only useful for small programs that don’t require the Forth outer interpreter, see § 5.1)

3.5 Colon Definition Commands

MF2C’s inner transpiler loop for high-level colon definitions is implemented by its internal function
DoColon().It parses the current source definition to string tokens and macros and translates them to
equivalent C code.

3.5.1 Program Flow Control

MF2C translates flow control commands to equivalent C macros declared in file mf3.h.

IF … ELSE … THEN CASE … n OF … ENDOF … ENDCASE
standard conditional branching instructions, branch when number/flag on stack is not FALSE

BEGIN … WHILE … REPEAT … UNTIL … AGAIN
standard conditional looping instructions

~IF … ~WHILE …~UNTIL …~OF
non-standard branch instruction equivalents when number/flag on stack is FALSE

^IF … ^WHILE … ^UNTIL …^OF
non-standard branch instruction equivalents, but not consuming the number/flag on stack

DO … ?DO … I … LOOP … +LOOP
similar to standard counted loops, but cannot be nested (UNLOOP is not required)

It is often more practical to use the following commands for defining counted loops:

+n FOR … N … NEXT
(non-standard) loop n times between FOR and NEXT thereby incrementing counter N starting from
0
Example: : COUNT-TEN 10 FOR N . NEXT ;
 COUNT-TEN  0 1 2 3 4 5 6 7 8 9

start +n el-size FOR> … N … NEXT
(non-standard) iterate upwards over array beginning at start; the array containing n elements of
size el-size; loop index N retrieves the memory address of each consecutive array element

start +n el-size <FOR … N … NEXT
(non-standard) iterate backwards over array beginning at start; the array containing n elements
of size el-size; loop index N retrieves the memory address of each consecutive array element

Unlike standard Forth, MinForth’s FOR-loops do not clutter the Forth return stack. FOR-parameters
reside within a C stack frame.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 37 / 52

CONTINUE
(non-standard) immediate jump back to head of current loop; don’t forget to put a flag on the stack
in a BEGIN..UNTIL loop because although it appears last, UNTIL is the loop head here

BREAK
(non-standard) immediate jump out of current loop or CASE construct

EXIT
exit current word immediately

3.5.2 Inlining C Instructions

Although standard Forth offers a huge number of words for handling different programming tasks, it
cannot cover everything. Some applications may require using special POSIX or C library functions,
or call Linux syscalls (or Windows WINAPI functions) or even assembler code.

For such tasks the transpiler provides

C [TEXTLINE] [;]
(non-standard) literal copy of input text line to transpiler output text line, upper-case character C
must be first character in line; if line ends with ‘ ;’ (space and semicolon) the current colon
definition is finished.

I” <C commands>“
(non-standard) inline literal copy of input string to transpiler output
Example: i” goto label” can be used to emulate goto’s in MinForth primitives

Many words of the MinForth V3.4 high-level interpreter/compiler are coded in C in this way.

Example for using a Linux syscall:

Transpile the following HELLO word definition within a MinForth build

C #include <sys/syscall.h>
: HELLO
C syscall(SYS_write, 1, "hello, world!\n", 14); ;

Start a new session and call HELLO

┌────────────────────────┐
│ MinForth V3.4 - 64 bit │
└────────────────────────┘
3998816 bytes free
HELLO hello, world!
 ok

3.5.3 Special Compilations

To simulate immediate Forth compiler words MF2C provides

N
push single numeric literal on stack; if N contains a .dot-sign take it as floating-point number

[‘] NAME
push NAME’s execution token on stack

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 38 / 52

[,] NAME
(non-standard, but similar to POSTPONE) compile NAME’s compilation action, necessary for
compilation of immediate Forth words

S” <STRING>”
push literal string start and length on stack

.” <STRING>”
type literal string

DEFERRED <NAME>
(non-standard) transpile the definition that is actually linked with deferred word NAME

;
finish current colon definition sequence

#IFDEF <NAME>.. #ENDIF
#IFUNDEF <NAME>.. #ENDIF
 (non-standard) condition transpilation of words between #IF(UN)DEF and #ENDIF
..depending on existence of word NAME

3.6 Tracing Debugger

In addition to detailed debugger or disassembler analysis, suspect functions can be traced with stack
diagrams while they are executed. For this two simple transpiler commands are available

+TR
compile a halting step before each called MinForth word

-TR
continue with normal compilation (executed automatically when current primitive definition ends

This feature is only available when the MFRTCHECK flag in mf3.h is set.

Functionally mf2c simply inserts a call to the mfTR() function (in mf3.sys) before each called word.

3.7 MAIN Function

If the mfc input source file defines a Forth word MAIN, mf2c will write a standard C main() function
to the C output source file. Such output files can be compiled directly to executable binaries.

If no MAIN word is defined, the C output file must be included in other C files before compilation.
This is useful for embedding MinForth code into C programs.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 39 / 52

4 Testing and Benchmarking

4.1 Standard Test Suite

The ./src/2012-test directory contains the Forth 2012 test suite. Tests can be started by
including the file runtests.fth. It can be very helpful when you adapt MinForth to your own
liking.

Run the standard tests from within MinForth with
include runtests.fth

Run the fp-number tests from the ./src/2012-tests/fp directory with
include runfptests.fth
include paranoia.4th

Diagnosis resumes after milestone Number 190
 Page: 9

What message and/or values does Division by Zero produce?

 Trying to compute 1 / 0 produces ...inf

 Trying to compute 0 / 0 produces ...-nan
Diagnosis resumes after milestone Number 220
 Page: 10

FAILUREs encountered = 0
SERIOUS DEFECTs discovered = 0
DEFECTs discovered = 0
FLAWs discovered = 0

No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754
The arithmetic diagnosed appears to be Excellent!
END OF TEST.

End of paranoia.fth
 ok

In fact MinForth passes all Forth-2012 standard tests. Some remarks to reported ‘errors’:

a) Block wordset test shows 2 false errors because the test assumes BUFFER and BLOCK to be
identical. This is obviously questionable. (There is also a pertaining comment in gforth source file
blocks.fs)

b) String wordset test shows 4 pseudo-errors in the SUBSTITUTE tests that can be attributed to over-
zealous testing of undefined behaviour.

c) Some C compilers might cause floating-point number accuracy warnings. Clang, gcc and MSVCC
cause no warnings.

d) The paranoia test should be run separately from the other fp tests because they redefine i.e.
'overwrite' some words internally that can cause false error report.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 40 / 52

4.2 MinForth Special Words Tests

The ./src/mf-tests directory contains the Forth 2012 test suite. The tests can be run by
including files mftest.mf and mfp.mf.

4.3 Benchmarking

Basically MinForth can be as fast as your C compiler makes it, which should be pretty fast. As
explained elsewhere, high-level words defined in a MinForth system are compiled to address lists and
executed directly as C function pointers without intermediate conversion, which makes it more than
fast enough for most cases. Some speed improvement can be achieved by disabling runtime error
checking (see § 1.4).

There are other free and commercial Forths that are faster (or slower). Many use clever optimization
techniques, like peephole optimization or CPU register allocation, and compile directly to machine
code.

Technically spoken it is rather meaningless (unless for fun) to compare execution timings of micro-
benchmarks between different Forth systems. Too many unknown factors can have significant impact
on the results, like CPU cache effects or unaccounted energy saving modes.

On the other hand it can be very revealing to see how good or bad some C compiler code generation
actually is. Fans of that sport just love to compare each other’s (dis)assembly listings. Before you join
the equipe make yourself familiar with the basics here:

Optimizing subroutines in assembly language: An optimization guide for x86 platforms
https://www.agner.org/optimize/optimizing_assembly.pdf

That said, we arrive at

4.3.1 The three different speeds of MinForth

With MinForth you can formulate words in 3 different ‘languages’.

For fun, let us compare a dummy loop of 500 million iterations:

1. in plain C

: 500MLOOPC
C for (i=500000000; i>0; i--);

2. in transpiled (pseudo) Forth

: 500MLOOPT
 500000000 BEGIN 1- dup 0= UNTIL drop ;

3. identical in high-level interpreted (standard) Forth

: 500MLOOPH
 500000000 BEGIN 1- dup 0= UNTIL drop ;

500MLOOPC and 500MLOOPT have to be transpiled so that they become part of a MinForth system
(or application). 500MLOOPH is defined within a MinForth interpreter session:

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 41 / 52

The following test was run on a little 13” laptop (1.7 GHz core-i5 gen8 CPU).

MinForth V3.4e
500mloopt ok
500mloopc ok
: 500MLOOPH 500000000 begin 1- dup 0= until drop ; ok
timer-reset 500mlooph .elapsed 4411 ms ok
timer-reset 500mloopt .elapsed 1277 ms ok
timer-reset 500mloopc .elapsed 161 ms ok

Unsurprisingly the high-level threaded code is slowest with about 4.4 seconds, but it fares still okay.

The transpiled (subroutine-threaded) word arrives second, with about 1.3 seconds, which is within the
speed range of some other high-performance Forth compilers.

The third (direct compiled C code) word is fastest by far. Here we could profit from advanced
optimization algorithms built into the C compilers (the empty loop without side effects had even been
eliminated away). A comparison with other Forth systems would not be correct.

On the other hand, this artificial example demonstrates an important MinForth design decision:
“Usability goes before speed.” If we need a very fast routine within an application, code it in C and let
the C compiler do what it can make of it. C compiler makers are no idiots; the compiled machine code
may not be top notch at micro-inspection, but it will run fast enough in most cases.

4.3.2 Optimizing Compilation

Nonetheless, it doesn’t hurt to fine-tune the compilation result of the C compiler. “As provided”
MinForth does not apply code optimization through compiler flags (anyhow, for gcc a simple -O
seems to work well).

For starters, take one typical time-critical function from your application domain, write a short
wrapper routine including a loop that executes your function x-thousand (or million) times, and
measure the spent runtime with TIMER-RESET and .ELAPSED. Then draw your conclusions
whether
- the algorithm could be improved
- MinForth or your function should be rebuilt and tested with different compiler flags
- the function should be reformulated in C instead of Forth
- (parts of) the function should be reformulated in CPU assembly language.

If you intend to go for C or even assembly just for the sake of optimization, there are two highly
recommended books by Agner Fog that you should really study before you begin:

Optimizing software in C/C++: An optimization guide for Windows, Linux and Mac platforms
https://www.agner.org/optimize/optimizing_cpp.pdf

4.4 Forth Scientific Library

Somewhat more serious, and providing another good test platform, is the code collection of the Forth
Scientific Library, which is provided in the ./fsl directory.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 42 / 52

5 Sample Applications

The ./demo directory contains some little Forth program examples.

Special MinForth programming aspects:

5.1 Reducing transpiled Code Size

When the transpiler encounters the command #REDUCE in a MinForth source file, mf2c tries a
recursive elimination of all unneeded words, descending the dictionary from the word MAIN.

See the included example in the ./demo/reduce directory. Descriptions are in file
mfreadme.txt.

Use #REDUCE with care because of two limitations:

1. It processes only Forth words. If the words use or call user C functions/declarations directly,
the resulting C file may be incomplete and the compiled program may not work.

2. Of course it cannot predict which words might be searched in the dictionary later by the
application. Therefore mf2c stops with an error when outer interpreter words appear in the
reduce process.

But in the end this is no tragedy because modern C compilers do dead-code elimination anyhow.

5.2 Overlays

Overlays are binary copies of an actual MinForth dataspace mapped to a disk file (see § 2.7.13).
Overlay files are binary files; they present an alternative to open source text files that could be read by
any unauthorized person.

See the included example in the ./demo/overlay directory. Descriptions are in file
mfreadme.txt.

5.3 Creating Turnkey Applications

Auto-inclusion of an overlay when booting a MinForth system can be used to create turnkey
applications.

See the included example in the ./demo/turnkey directory. Descriptions are in file
mfreadme.txt.

5.4 Dynamic Linking with Windows DLLs

Windows’ Dynamic Link Libraries (DLLs) can be linked dynamically (as the name goes) at runtime
without prior static compilation into application programs. This can provide a very convenient way to
access precompiled libraries instead of revealing data or algorithms.

See the included example in the .\demo\windll directory. Descriptions are in file
mfreadme.txt.

The simple example demonstrates how one can evoke a standard Windows message box through
dynamic linking with a function in the user32.dll Windows library. By the way, Windows
comprises also a number of C runtime libraries msvcrxxx.dll (within

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 43 / 52

C:\Windows\System32) which contain many useful C functions that can be linked with
dynamically.

Note: an annoying peculiarity of Microsoft Windows is that a 32-bit process can only link with
functions in a 32-bit DLL, and a 64-bit process with an 64-bit DLL.
https://docs.microsoft.com/en-us/windows/win32/winprog64/process-interoperability
When you stumble over this “feature” it might be advisable to create a 32- or 64-bit MinForth system
for your application, i.e. suitable to the bitness of your DLL.

5.5 Experimental Core

The MinForth ./ecore directory comprises a minimal MinForth system with only the standard Core
wordset plus some elementary words to define a usable kernel program.

It can be used as starting point to develop own application wordsets, or for experimenting with new
transpiler words, without being dependent on a fat full-fledged Forth system.

The directory contains also some simple usage examples as described in file mfreadme.txt.

5.6 Working with BigFloats

The MinForth ./bigfloat directory includes a comprehensive word set for comfortable
calculations with arbitrary length numbers (see § 2.7.14).

Calculation with big integer numbers (so-called BigNums) is also possible. However the Double
Number word set in a 64-bit MinForth system already works with up to 128 bit integer numbers, so
there has been no real requirement for wider BigNums up to now.

As of today, bigfloats have been built and tested only with 64-bit gcc compilers in Windows 10 and
Debian Linux.

5.6.1 BigFloat Internals

Standard Forth words use numbers in CPU registers or in memory locations directly. Addresses like in
@ or ! are slim pointers to memory locations. Very easy.

Not so easy with Bigfloats. Every bigfloat number is a compound set of three data objects:

 a fat pointer (bf_t structure) to the number’s dynamic payload (mantissa table)
 a mantissa table allocated somewhere in computer memory (it can grow or shrink or be

reallocated to other memory addresses)
 a common shared context (bf_context_t structure) serving also as calculation cache

So Bigfloat numbers are indirectly handled through their fat pointers. Calculations with Bigfloats are
handled through libbf library functions that get the pointers and other things as parameters.

Before usage bigfloats have to be initialized. MinForth does this automatically. After usage Bigfloat
memory should be freed to avoid memory leakage (e.g. through invocation of a MARKER word).
MinForth provides some memory management words for releasing Bigfloat payloads.

Anyhow when MinForth (or any process) ends and priority is given back to the OS, all of its allocated
memory is released automatically though an internal OS function (very old or exotic OS should be
checked nevertheless).

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 44 / 52

5.6.2 Performance Optimization

As explained before BigFloats carry an opaque memory payload. With small precision lengths this is
not very noticeable on modern computers with fast CPUs and big memories. However above several
hundred decimal digits computation can become sluggish.

Copying Bigfloats should be avoided whenever possible because it involves allocation of new memory
and copy of the large payload to its new twin.

The MinForth Bigfloat stack is an array of bf_t pointers. Moving the stack pointer costs virtually
nothing, swapping and rotating stack elements is cheap (because only the pointers are moved, not their
payloads), but BDUP and BOVER are expensive and should be avoided.

This conflicts to some degree with Forth’s principle that words should generally consume their inputs
(there are some exceptions to that rule). Forth programs use DUP, OVER etc. a lot for preparation of
input arguments on the stack. A classic example is

 : MIN 2dup < IF drop ELSE nip THEN ;

that involves copying of two stack elements within 2DUP.

MinForth Bigfloats can do this completely without copying:

 : BMIN1 b< bup not IF bflip THEN ;

By design practically all Bigfloat operators place their output value under the input value(s) that
remain preserved hidden above the actual top-of-stack TOS position. By BUP the stack pointer can be
moved up to make the ‘old’ input values visible again. BFLIP is a handy word to free the output TOS
position from an input parameter.

But following the “principle of least surprise” BigFloat words can also be used just like their
corresponding fp-number words, of course:

 : BMIN2 bover bover b< IF bdrop ELSE bnip THEN ;

works just as well, although somewhat slower.

5.6.3 Active Memory Management

BigFloat memory payload should not pose problems on modern hardware. Even with 100,000 decimal
digits calculation precision, a Bigfloat number needs just about 42k memory. So under normal
circumstances you have sufficient space for Bigfloat numbers until you fill up your machine.

Nevertheless for some memory housekeeping you can use BPAYLOAD to inspect a number’s payload
size. FREE-BSTACK frees the payloads of invisible BF stack elements. FREE-BVALUE can be used
to free the payload of no longer used BVALUEs.

Some more caution is required when using MARKER below BVALUEs. Carelessly used, executing the
marker-word could leave orphaned payloads behind (memory leakage). To avoid this put the marker
word into another definition with the same name, along with FREE-BVALUEs as required (for this
purpose FREE-BVALUE is an immediate word).

Should you ever use the hidden word _B, you are on your own.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 45 / 52

5.6.4 Library Compilation

MinForth’s Bigfloat wordset is based on the LibBF library by Fabrice Bellard. LibBF is a small
library to handle arbitrary precision floating point numbers. It is available from his web site
https://bellard.org/libbf/

The author released the software under the MIT license from
https://opensource.org/licenses/MIT

Please observe the license conditions when you use the software for non-private usage.

The libbf sources can be found in subdirectory ./bigfloat/libbf. To (re)build linkable object

files under a POSIX development environment, use the Makefile as usual with
 % make all
Adapt compilation flags as needed within the Makefile. For more information read the enclosed file
readme.txt.

On a 64-bit Windows OS (tested only with Windows 10 64-bit) with installed MinGW-W64 compiler
it is easier to just run the enclosed batch file gc64libbf.bat. It will compile the required libraries

and some small test programs. For more information read the enclosed file readme.mf.

MinForth directory ./bigfloat comprises the sources to build a MinForth system with the optional

Bigfloat word set. To change the default BF stack size, adapt build parameter MFBSTSIZE within

header file mf3bf.h. Adapt the path setting to your own MinGW-W64 location within batch file

gc64bf.bat.

To build and run MinForth with Bigfloats under Windows enter
 > mf2c
 > gc64bf mf3
 > mf3

Similarly on Debian Linux
 ~$./mf2c
 ~$./lmakebf mf3
 ~$./mf3

Within MinForth you should now be able to pass the Bigfloat tests by entering
 # include bftest.mf

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 46 / 52

6 Work Environment

By design, a typical MinForth work environment is very minimalistic. Everything can be done from
the command line. You just need a text editor and a C compiler.

A two-pane file commander is helpful for easy navigation and code viewing / editing.
Free Commander for Windows or Midnight Commander for Linux can be recommended.

6.1 Operating Systems

MinForth runs on Windows and Linux operating systems. It should not be difficult to port it to other
operating systems like BSD or DOS, but so far it hasn’t been tested.

OS-specific functions are concentrated within the source file mf3.sys. It comprises two separate
sections for Windows and Linux terminal primitives, plus some internal MinForth routines e.g. for
dictionary search or the tracing debugger for primitives.

The MinForth distribution can be ‘installed’ (copied) anywhere into the file hierarchy to which the
user has full access. For instance in a new empty desktop folder MF34. There the file structure should
look similar to:

~/Desktop/MF34
├───bigfloat \ bigfloat library
├───demo \ many examples
├───doc \ Forth standard and user documentation
├───ecore \ experimental core sources
├───fsl \ Forth Scientific Library
└───src \ MinForth sources
 ├───2012-tests \ Forth standard test suite
 │ └───fp \ floating-point number tests
 ├───linux \ (not in windows)
 ├───mf-tests \ MinForth tests not covered by standard tests
 ├───tcc \ (not in linux)
 └───windows \ (not in linux)

Building/adapting MinForth takes place within the ./src directory, where two new executable files
mf2c.exe and mf3.exe (or mf2c and mf3 in Linux) are created.

MinForth does not impose any environment settings on the user. Depending on preferences a user can
execute mf3 through scripts or symbolic links, or just copy mf3 to his/her work directory.

However many users prefer to have mf3 available as system-wide program. Then the search path to
mf3 must be known to the terminal or console program.

In Windows the easiest way to set use user paths goes through the command (hit winkey+R)
 rundll32.exe sysdm.cpl,EditEnvironmentVariables
that opens a system properties panel. The upper list is for the current user only, the lower list requires
administrator privilege. Edit the user PATH variable and add a new line
 %USERPROFILE%\Desktop\MF34\src
(or whatever installation path you have).

In Linux the easiest way is to edit the user’s .bashrc script file within his/her home directory
(enable ‘show hidden files’ in your file manager). Then edit and add to the bottom of the file
 PATH=$PATH:$HOME/Desktop/MF34/src
(or whatever installation path you have).

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 47 / 52

6.1.1 Windows

MinForth runs in Windows 10 consoles with direct provision of VT100 terminal escape sequences.
Virtual Terminal mode is enabled automatically (VT ON) at MinForth start. See also
https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences

Some earlier Windows versions - namely Windows 7 – did not support ANSI terminal or VT100
escape sequences. To enable these it is possible to use an external program: ANSICON created by
Jason Hood;
https://github.com/adoxa/ansicon/releases
A copy is included in the .\src\windows directory. You’ll want the x86 version for 32-bit
Windows 7.

If you don’t use C much otherwise and don’t want to fill your hard drive with zillions of seldomly
used files, the Tiny C compiler is recommended (see § 6.2.5) for MinForth compilation. It is already
included in MinForth’s distribution for Windows (see .\src\tcc directory)

Note: consider to set a directory exclusion to your on-line virus scanner for your development
directory; it makes a real difference in compile times (and possible false alerts).

6.1.2 Windows Subsystem for Linux

The Windows Subsystem for Linux (WSL) is an emulated GNU/Linux environment within Windows
10. WSL provides many Linux command-line tools, utilities, and applications. See
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Microsoft actually provides two versions of WSL. WSL1 is recommended over WSL2 when you want
easy file access from WSL Linux to your Windows files.

For example to get a minimal MinForth environment on Debian Linux, continue with the usual

~$ sudo apt-get update <confirm with your user password>
~$ sudo apt-get upgrade
~$ sudo apt clean

followed by

~$ sudo apt install gcc <build-essentials are not required>
~$ sudo apt install mc <recommended file commander>

Start Midnight Commander with

~$ mc (use ctrl-o to toggle between command line and file panes)

With mc create a ~/Desktop/MF34 folder in your home directory.

On WSL1 you can use mc’s other file pane (press tab) to move to root directory /mnt/ from where
you have access to your Windows drives and folders from within Debian. If you have MinForth files
already on your Windows drives, you can copy those from there to Debian through the F5 key.

Vice versa, to access a running Debian session from Windows press <Winkey+R> and enter \\wsl$ to
open an Explorer window showing the Linux file system. User directories are grouped under the
/home/ directory.

After you have copied all Minforth files to your home directory move to ~/MF34/src and open a
command line to enter

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 48 / 52

~$ cc mf2c.c -o mf2c
~$./mf2c
~$ cc mf3.c -o mf3 -Wall -std=gnu99 -funsigned-char -lm
~$./mf3

Similarly, MinForth transpiles, compiles with gcc and runs with OpenSUSE Linux on WSL.

Note: consider to set a directory exclusion to your on-line virus scanner for the WSL directory in
c:\Users\<account>\AppData\Local\Packages\<linuxpackage>
to improve operation times.

6.1.3 Linux

Screenshot showing a MinForth build session on MX Linux 32-bit:

Linux distributions are similar but not alike, particularly there is a plethora of desktop environments.
Additionally, Linux terminals can have different default settings varying between distributions.
Getting keyboard scan or key codes right can be a challenge because keyboard signals are processed
through various layers deep within the OS, and desktop manager, and terminal program. F.ex. some
function keys may be reserved for terminal commands, and thus are not available to MinForth.

Otherwise MinForth transpiles, compiles and runs fine with Debian Linux and OpenSUSE. Other
Linux distributions should be okay too, but have not been tested yet.

6.1.4 DOS

The special MinForth DOS distribution comprises all required source files, a batch file dj32.bat to
call the djgpp compiler, and test suites with adapted short file names. Extended memory should be
enabled in the autoexec.bat file by cwsdpmi -p.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 49 / 52

To build and statz MinForth enter:

> dj32 mf2c
> mf2c
> dj32 mf3
> mf3

While this process takes just few seconds in Windows and Linux, unfortunately compilation in DOS
can take minutes. MinForth has been tested on FreeDOS running in a VirtualBox virtual machine,
where it compiles and runs with acceptable performance (hint: use a fixed size drive, not a dynamic
drive). However a test compilation in a DOSBox was too slow to be acceptable. Other options could
be cross-compilation with OpenWatcom, but this has not been tested.

6.2 Supported C Compilers

Practically all Linux distributions already provide a C/C++ compiler, mostly gcc or clang. If it is not
already installed on your machine (check with ./cc) consult your documentation how to install a
compiler (package build-essential or gcc on Debian derivates). Thereafter you should be able to build
and run MinForth as shown in § 1.2.

Windows does not provide a C compiler out-of-the-box. But there are many options:

6.2.1 GCC

The Gnu C Compiler is undoubtedly the most versatile C/C++ compilers available for a wide range of
target architectures. It is also the standard C compile for most Linux distributions.

For Windows 64-bit operating systems its mingw-w64 derivate is recommended.
https://mingw-w64.org/doku.php

MingW does not require any cygwin library to build and run MinForth.

You must use the -D__USE_MINGW_ANSI_STDIO argument with MingW because the underlying
Windows C runtime library does not support extended fp-number output well.

The MinForth distribution comprises two batch files gc32.bat and gc64.bat to compile 32-bit or
64-bit MinForth versions from the command line. Move them up from ./scr/windows to ./src
directory. Within the batch files you will have to edit the compiler path to your own installation
location and build tools version thereafter.

6.2.2 Clang for Windows

Clang is the most prominent compiler in the LLVM toolchain. It is of more modern design than gcc
and seems meanwhile on par with gcc, in some aspects even superior. Pre-built binaries can be
downloaded from
https://releases.llvm.org/download.html

Note that clang-cl for Windows ‘more or less officially’ requires the Microsoft Visual Studio Build
Tools (see § 6.2.3), but with some manual tweaking some people managed to make it work with
MingW-W64.

The MinForth distribution comprises a batch file cl64.bat to compile MinForth from the command
line. Move it up from ./scr/windows to ./src directory. Within the batch file you will have to
edit the compiler path to your own installation location and build tools version thereafter.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 50 / 52

6.2.3 MSVC

Microsoft’s Visual C++ compiler (VC) for Windows is widely used together with the huge Visual
Studio development toolchain.

Luckily to build MinForth you don’t need to install the huge overhead of the Visual Studio IDE. The
Visual C++ Build Tools suffice, f..ex.
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

This will install the Visual Studio installer from where you can choose to install the C++ build tools.
You’ll need about 1.4 GB free disk space though….

The MinForth distribution comprises two batch files vc32.bat and vc64.bat to compile 32-bit or
64-bit MinForth versions from the command line. Move them up from ./scr/windows to ./src
directory. Within the batch files you will have to edit the compiler path to your own installation
location and build tools version thereafter.

6.2.4 Pelles C

Pelles C provides a nice light-weight IDE and C compiler for Windows programs. It can be found at:
http://www.smorgasbordet.com/pellesc/

The MinForth distribution comprises project workspace files MF3.ppw, mf2c.ppj, mf3.ppj.
that can be loaded into the IDE. Move them up from ./scr/windows to ./src directory. Double-
click on MF3.ppw to start the IDE:

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 51 / 52

6.2.5 Tiny C

Tiny C is a lightning-fast although non-optimizing C compiler. It can be found at:
http://download.savannah.gnu.org/releases/tinycc/
You should use version 0.9.27 (or later) which is nearly C99-compatible.

The repository comprises 32-bit and 64-bit variants. The MinForth distribution already includes a 64-
bit tcc compiler for Windows in the .\src\tcc directory. It won’t work on a 32-bit Windows
system.

If you are using a 32-bit Windows version, you’ll need the 32-bit tcc variant. After unzipping it into
the .\src directory, you should have a .\src\tcc subdirectory with the tcc.exe file.

The MinForth distribution for Windows comprises two batch files tc32.bat and tc64.bat to
compile 32-bit or 64-bit MinForth versions from the command line. Move them up from
.\scr\windows to .\src directory. Within the batch files you will have to edit the compiler path
to your own installation location and build tools version thereafter.

To build and start MinForth in one go, you can use the make32.bat or make64.bat scripts.

Note: if you get the error message ‘unknown constraint t in math.h’, replace all occurrences of “=t” by
“=q” within TCC’s <math.h> header file.

MinForth V3.4 User Documentation 2021-09-21

Version 3.4.8 Page 52 / 52

7 MinForth User License

MinForth is free software subject to a MIT license:

===
| MinForth V3 Software License |
===

 Copyright (c) 2020, Andreas K. Kochenburger

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

