
kForth-64
User’s Guide

Ver. 0.2

Copyright © 2021 Krishna Myneni

Table of Contents
Overview..3

Credits...4
1. Installation..5

1.1 Installation under GNU/Linux...5
1.1.1 Required Packages...5
1.1.2 Build and Configuration..6

2. Using kForth..8
2.1 Basics...8
2.2 More Words...8
2.3 Using Forth’s Stacks..10

2.3.1 The Data Stack...10
2.3.2 The Floating Point Stack..11

2.4 Variables and Constants...12
2.5 Stack Diagrams..15
2.6 Simple Word Examples...16
2.7 Acting on Conditions...18
2.8 The Return Stack...21
2.9 Factoring a Forth Program..23
2.10 Using Memory...24

2.10.1 Data Types...24
2.10.2 CREATE and ALLOT...24
2.10.3 Viewing Memory with DUMP..26

3. Dictionary...28
3.1 Dictionary Maintenance..29
3.2 Word Lists and Search Order...29
3.3 Compilation and Execution Words..31
3.4 Defining Words...32
3.5 Control Structures..33
3.6 Stack Operations..35

3.6.1 Data Stack Operations...35
3.6.2 Return Stack Operations..35
3.6.3 Floating Point Stack Operations..36

3.7 Memory Operations...36
3.8 String Operations...39
3.9 Logic and Bit Manipulation Operations..39
3.10 Arithmetic and Relational Operations...40

3.10.1 Single and Double Integer Operations...40
3.11 Floating Point Operations..42

3.11.1 Arithmetic and Relational Words...42
3.11.2 Floating Point Functions..43

3.12 Number Conversion..44
3.13 Input and Output..45
3.14 File Access...47

1

3.15 Operating System Interface...49
3.16 Miscellaneous..50

4. Technical Information..51
4.1 Forth-2012 Compliance...51
4.2 Threading Model...51
4.3 Signed Integer Division...52
4.4 Double Numbers..53

4.4.1 Double Number Entry..53
4.4.2 kForth Method...53
4.4.3 Forth-2012 Compatible Method..54

4.5 Floating Point Implementation..54
4.6 Special Features...55
4.7 Benchmarks and Tests...58
4.8 Exceptions...59
4.9 Source Code Map..60
4.10 Embedding kForth...60

References..61

2

Overview

kForth is a computer program that may be used in various ways:

1. It may be used as a calculator.
2. It may be used to run computer programs written in the Forth language.
3. It may be embedded into another computer program to give that program the ability to

understand and run Forth programs.

kForth, in its simplest mode of use, can evaluate arithmetic expressions typed in by the user.
Expressions are entered in a manner similar to that used for RPN (reverse Polish notation) calculators,
such as for Hewlett-Packard scientific calculators. kForth permits arithmetic for single integer (64-bit),
double integer (128-bit), and double-precision (64-bit) floating point numbers. It also provides built-in
transcendental functions and other common number operations. Logic and bit operations may be
performed, and the number base may be changed – numbers may be entered and displayed in decimal
(base 10), hexadecimal (base 16), binary (base 2), or another base.

kForth is an implementation of the Forth programming language and environment. The user may write
Forth programs with an editor, load these program files from kForth, and run them. kForth, like other
implementations of Forth, provides an interactive environment, allowing the user to examine or define
variables and define and execute individual words. Interactive use is one of the main advantages in
using a Forth environment for writing and testing computer programs.

kForth provides a large subset of the Forth-2012 specification for the Forth language. It also provides
some extensions and non-standard features which its authors have found to be useful. Experienced
Forth users should consult the Technical Information section of the User’s Guide for specific
information on the differences between kForth and Forth-2012.

Some notable features of kForth are:

• It is reasonably fast for many applications.

• It detects and reports many kinds of programming mistakes, providing useful feedback to aid
the user in correcting his/her Forth program.

• It includes this User’s Guide containing a beginner's tutorial on using Forth, describes the
function of each of kForth's intrinsic words, and provides technical details about kForth for
intermediate and advanced users.

• It comes with a large collection of example Forth programs, many of which are complete and
useful programs.

• It provides a set of Forth source libraries for productive programming, including

3

http://en.wikipedia.org/wiki/Forth_programming_language

• String manipulation, standard file access, and console output control,
• Structures, lists, simple objects, and a portable modular programming framework,
• A tested, precision numerical computing library, comprised of modules from the Forth

Scientific Library with many extra modules, and scientific computing examples,
• Operating system calls, sockets, signals, and communication with device drivers.

• It provides a low level operating system interface for Linux, making it possible to write Forth
programs for instrument control and data acquisition. Examples include communication via RS-
232 serial interface and IEEE 488.2 (GPIB) interfaces.

• It simplifies using the large amounts of memory available to the computer, through its dynamic
dictionary design.

• It provides a large amount of test code, written in Forth, to validate its own operation. Tests for
compliance to Forth-2012 specified behavior and validation of its floating point arithmetic are
among the provided system tests.

In addition to being as a stand-alone computing environment, kForth was designed to be easily
embedded into another program. Advanced programmers, typically programming in the C and C++
languages, can use the kForth source code to make their own programs user extensible. In fact the 32-
bit version of kForth was originally developed to allow users of XYPLOT for Linux to customize and
add their own functions to the program. They can do this without modifying the XYPLOT program
itself. Instead, they may write separate Forth modules and load them to extend the program’s
capabilities.

Credits

kForth was developed over several decades by its principal author, Krishna Myneni, with programming
and technical contributions by the following people: David P. Wallace, Matthias Urlichs, Guido
Draheim, Brad Knotwell, Alaric B. Snell, Todd Nathan, Bdale Garbee, Christopher M. Bannon, David
N. Williams, and Iruatã M. S. Souza. Others have graciously permitted porting of their work to kForth.
If I have inadvertently omitted mention of anyone who has made technical contributions to kForth,
please let me know at krishna.myneni@ccreweb.org.

4

mailto:krishna.myneni@ccreweb.org?subject=kForth%20Credits
https://github.com/mynenik/XYPLOT-32
http://www.taygeta.com/fsl/sciforth.html
http://www.taygeta.com/fsl/sciforth.html

1. Installation

kForth-64 is provided under the terms of the GNU Affero General Public License (AGPL). New
releases of this software will be posted at GitHub as they become available. This manual provides a
tutorial and reference for using kForth-64.

The source package is distributed as compressed tar (Unix Tape Archive) files:

• kForth-64-x.y.z.tar.gz (Linux/x86_64 version)

where x.y.z is the current version number, such as 0.2.2. The source package unpacks to a

directory of source files and a Makefile for building the executable(s). Difficulties with installation

should be reported to: krishna.myneni@ccreweb.org

1.1 Installation under GNU/Linux

1.1.1 Required Packages

The following packages are required to build and maintain kForth-64 from its source package on a
GNU/Linux system:

• binutils
• gcc
• gcc-c++
• glibc
• glibc-devel
• libstdc++-devel
• make
• readline
• readline-devel
• patchutils

Some of the package names may be slightly different, depending on your GNU/Linux distribution.
Some or all of these packages may already be installed on your GNU/Linux system, but if they are not,
you can install them manually for your distribution. You may use your system's graphical package
manager to check for installation of the required packages, or use a command line query. For example,

if your GNU/Linux system is rpm-based, you may verify that these packages have been installed by

using the rpm command in the following way:

rpm -q package-name

The above command will return the version number of the package if it has been installed. We

5

https://github.com/mynenik/
mailto:krishna.myneni@ccreweb.org
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

recommend using GNU C/C++ version 4.9.0 or higher. On a Debian package-based system, the
following command line query may be used:

aptitude search package-name

While it may seem tedious to determine the necessary package names and install any needed packages
on your system, this is a one-time procedure which will enable your system to be used for building
future releases from source code, and for software development.

1.1.2 Build and Configuration

Assuming your Linux system has the required packages, follow these steps to unpack, build, and install
kForth:

1. Create a directory for the kForth source files, typically in your home directory, e.g.

mkdir ~/kforth

2. Move the kForth archive file into this directory:

mv kForth-64-x.y.z.tar.gz ~/kforth

3. Change to the ~/kforth directory and extract the files:

cd ~/kforth

tar -zxvf kForth-64-x.y.z.tar.gz

After this step, a subdirectory will be created with the name kForth-64-x.y.z. This
directory will contain all of the kForth source files, the Makefile(s), as well as a README file
with these same instructions.

4. Change to the kForth-64-x.y.z directory:

cd kForth-64-x.y.z

5. Build the kForth executable. There are several options for building kForth, but the simplest is to
type:

make

6

All of the source files will be compiled/assembled and the executable file, named kforth64

will be generated.

6. At this point you should be able to run the executables from your ~/kforth/kforth-64-

x.y.z directory. If you wish to make kforth64 available to all users or to place the

programs in the default search path, move the executable to a suitable directory

(/usr/local/bin/ is recommended) using:

sudo mv kforth64 /usr/local/bin/

Any user should then be able to execute kforth64. You must have superuser privilege to do

this last step.
7. Sample source code files are included in the archive. These files have extension .4th. Users

may copy the example programs to their own directories.

8. You may specify a default directory in which kforth will search for .4th files not found in the

current directory. The environment variable KFORTH_DIR must be set to this directory. For

example, under the BASH shell, if you want the default directory to be ~/kforth/kForth-

64-x.y.z/forth-src, add the following lines to your .bash_profile file:

 KFORTH_DIR=~/kforth/kForth-64-x.y.z/forth-src
 export KFORTH_DIR

7

2. Using kForth

2.1 Basics

Type kforth64 to start the program. Upon startup, kForth will inform you that it is ready to accept input
by displaying

Ready!

You may type commands, a sequence of words, and press Enter. kForth will respond with the prompt

ok

after it finishes executing each line of input. To illustrate, try typing the following

2 5 + .

and press Enter. kForth will respond with

7 ok

You may now enter another sequence of words. One particularly useful word to know is

bye

kForth will respond by saying

Goodbye

and exiting. kForth is not case sensitive – you may enter words in lower case or upper case.

2.2 More Words

The word

words

8

displays a list of defined words currently available in the dictionary. You may define your own words
by typing them at the kForth prompt. For example, a word that counts from one to ten and displays
each number counted may be defined by entering

: count_to_ten 10 0 do i 1+ . loop ;

The symbols “:” and “;” mark the beginning and ending of the definition of the word, called
count_to_ten in this example. Later you will learn that “:” and “;” are actually words which you

may use to write a word which can define new words. kForth will display the prompt ok after the new

word has been compiled into the dictionary.

You can verify that our newly defined word has been added to the dictionary by using words. Now,
execute the word by typing

count_to_ten

and pressing Enter. kForth will display the output

1 2 3 4 5 6 7 8 9 10 ok

If you are entering a definition that requires several lines of typing, the ok prompt will not be displayed

until the end of the definition has been entered, i.e. until the compiler encounters a semicolon.

Although you can write Forth programs this way, it is much easier to create the definitions in a separate
source file and then load them into kForth by issuing the command

include filename

For example, the definition of count_to_ten could have been entered into a plain text file called

prog1.4th. Once kForth has been started, you can simply issue the command

include prog1

kForth will read the input from the specified file as though it was being entered from the keyboard. You
may have noticed that the full file name was not entered in the include command. If no extension is
specified, the file is assumed to have an extension of .4th.

You may also load a source file upon startup of kForth by typing

kforth64 filename

9

2.3 Using Forth’s Stacks

Forth provides reserved memory regions, called stacks, in which certain types of data may be placed
and operated upon by defined words. One of these stacks is the data stack, often referred to as just the
“stack”. Another is called the return stack, and a third stack is called the floating point stack. We will
discuss use of the data stack and floating point stack for performing computations. The return stack will
be discussed in a later section.

2.3.1 The Data Stack

You may enter integer numbers onto the data stack simply by typing them and pressing Enter. You

can use the word .S to list the contents of the stack. For example, type the following and press Enter.

2 5

You have placed two numbers onto the “stack”. Now, type

.S

and press Enter. kForth will respond by listing the items on the stack:

5
2

Notice that 5 is on the top of the stack – items are placed into the stack in a first-in, last-out order. Stack
operators (words) are a part of the Forth language. Examples include the arithmetic operators

+ - * /

These operate on the top two items on the stack and replace them with the result. Other words change
the order of items on the stack or copy or remove items from the stack:

SWAP ROT DUP OVER TUCK DROP NIP

Each data stack cell holds a single integer number. The data stack is also used to hold other types of
data, which can be represented by integer(s) within a single cell or within multiple cells. Examples
include flags, memory addresses, and large integers.

10

2.3.2 The Floating Point Stack

The floating point stack is distinct from the data stack. It is used to hold representations of real
numbers, known as floating point numbers. Such numbers must be input in a special format, known as
exponential notation, for Forth’s interpreter to recognize them as floating point numbers and place
them onto the floating point stack. For example, to place the computer representation of the real
number 3.14 onto the floating point stack, type

3.14e0

and press Enter. The zero following the 'e' indicates the power of ten that is multiplied to the number

(10 raised to the zero power is equal to 1). Therefore, 3.14e0 corresponds to the real number,
3.14×100. If the exponent is zero, as in this example, the entry can be shortened to simply

3.14e

Exponential format allows you to enter very small and very large numbers easily. To enter the
fractional number representing one-billionth, 0.000000001, or 1×10-9, you may type

1e-9

and press Enter.

The word F.S may be used to display the contents of the floating point stack, in much the same way
that .S lists the contents of the data stack, on which integer numbers are entered. You may print the
number occupying the top cell of the floating point stack with the word, F. (“f-dot”). Like “dot”, its
counterpart for the data stack, F. will also remove the number from the top of the floating point stack.

Use the words

F+ F- F* F/

to perform arithmetic on floating point numbers which have been placed onto the floating point stack.
For example,

3.14e 6.28e f+ f.

will print the result 9.42.

Similar to the operations for manipulating numbers on the data stack, corresponding words to
manipulate floating point numbers on the floating point stack include

11

FSWAP FROT FDUP FOVER FDROP

Computer users should be aware that floating point representations of real numbers are rarely exact
representations, and arithmetic with floating point numbers will likely produce errors from the ideal
mathematical result with real numbers. The precision with which real numbers are represented by
floating point numbers affects the numerical accuracy of a floating point calculation on the computer.
In kForth, the default precision for floating point numbers is that given by the IEEE 754 double-
precision representation, which provides about 16 significant decimal digits for representing a real
number.

2.4 Variables and Constants

An integer variable may be declared as follows:

variable name

Numbers may be stored and retrieved from the variable using the “store” (!) and “fetch” (@) operators.

For example, if we want to define a variable called counter and initialize its value to 20, we enter the

following:

variable counter
20 counter !

When you define a variable, memory is reserved at some address to hold an integer value, and the
name of the variable becomes part of the dictionary. Typing the name counter at the Forth prompt
and pressing enter will cause the memory address of counter to be placed onto the data stack. Try the
following:

counter
.s

You will see a memory address on top of the stack.

To examine the number stored in the variable counter, we place the address of counter on the stack,

then use the “fetch” operator to retrieve the number from that address onto the stack, as follows.

counter @

12

The number 20 will be on top of the stack. Of course to see the number, we must print it using the word
“dot” (.), so entering

counter @ .

will print “20”. Forth also has a built-in word, ?, that performs the sequence “@ . ”.

Now, let's say we want to increment the value of counter by ten. First we fetch the value stored in
counter onto the stack, then add ten, and finally store the new value into the variable. This can be
accomplished by the sequence,

counter @ 10 + counter !

However, Forth provides a shorter way of doing the same thing:

10 counter +!

Floating point variables are defined in a similar way:

fvariable name

The corresponding operators for storing a floating point number into the variable and retrieving a
number from the variable are F!and F@. Let's define a floating point variable called velocity and
initialize it to zero.

fvariable velocity
0e velocity f!

Note that a floating point value of zero is entered as 0e and we used the operator f! to store the value
into velocity. If we now want to increment the value of velocity by 9.8, we can enter

velocity f@ 9.8e f+ velocity f!

Standard Forth does not provide a word called f+!, but you may easily define such a word and use it!
To print a number on the floating point stack, use the word F. as explained previously. For example,

velocity f@ f.

will remove and print the value 9.8.

13

Another word which also prints a number from the floating point stack is FS. (“f-s-dot”). FS. always
ouputs the number in scientific notation, and outputs the number with a precision (number of decimal
places) which may be set using the word, SET-PRECISION.

Integer constants are defined as follows

number constant name

To define a constant called megabyte, for example, type

1048576 constant megabyte

I often can't remember how many bytes there are in a megabyte, so I may have written instead

1024 1024 * constant megabyte

Now, type the name of the constant and print the top item on the stack

megabyte .

and you will see printed the value 1048576. Typing the name of the constant retrieves its value (not

its address) onto the stack.

Floating point constants are defined in a similar fashion

fnumber fconstant name

To define a constant containing the acceleration due to gravity, 9.8 meters per second squared, type

9.8e fconstant g

The name of the constant is g. Typing

g f.

will print 9.8. Now, let's add the value of g to the value of velocity and print the result to illustrate
the use of floating point variables and constants.

14

velocity f@ g f+ f.

2.5 Stack Diagrams

The kForth dictionary contains many words that you may execute simply by typing them at the ok

prompt. Some words expect values to have been placed on the stack when they begin executing. During
execution of the word, these values may be removed from the stack and other values may be placed
onto the stack. The values that are expected on the stack at the beginning of execution and those values
that are returned on the stack at the end of execution are stated in the form of a stack diagram for the
word. For example, the stack diagram for the word NEGATE is written as follows:

(n -- m)

This diagram indicates that a single integer n must be on the stack prior to executing NEGATE. After
NEGATE finishes executing, the original value n has been removed from the stack and is replaced by a
new single integer m. Try typing

3 negate

Now, list the items on the data stack using .S.

A stack diagram is simply a comment which allows the programmer to understand the expectations for
the stack(s) before and after a word is executed. Their presence is ignored by the Forth interpreter.
Words that do not expect any items to be on the stack, and which do not return anything on the stack
(e.g. CR and DECIMAL) have a stack diagram that looks like

(--)

The word @ has the data stack diagram

(a -- n)

with the meaning that @ expects an address a on the stack and returns a single integer n on the stack. In
contrast the word ! has the data stack diagram

(n a --)

with the meaning that ! expects two items to be on the data stack, a single integer n and an address a,
with “a” being the top item on the stack. During execution, both n and a are removed from the stack,
the word ! using and dispensing with them. Nothing is returned on the stack.

15

../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html

The stack diagram for the floating point stack is similar:

(F: r1 r2 – r3)

The “F:” is not a Forth word, just an indicator that the diagram represents the contents of the floating
point stack, before and after a word is executed. The above diagram shows that the word expects two
floating point numbers on the fp stack, r1 and r2, and it will remove and replace them with a single
floating point number, r3. Some words may operate on numbers from both the data stack and floating
point stack. Such words should be accompanied by both a diagram for the data stack and a diagram for
the floating point stack.

2.6 Simple Word Examples

Now let us practice writing some simple and useful words.

Example 1: Compounding Interest

Suppose we invest $1000 and we expect that it will grow with a yearly interest of 6%, which is
compounded annually. What will be the final amount after 10 years?

We can determine the amount of interest accumulated after each year by taking 6% of the current
amount and adding that to the current amount. For example, you can type the following to compute and
print the amount at the end of the first year:

1000 dup 6 * 100 / + .

We placed the starting amount on the stack, then duplicated this value on the stack to compute 6%
interest. Finally we add the top two numbers on the stack, the starting amount and the interest, and print
the sum. If you are confused by the above example, it will help to print the contents of the stack using
.S after you enter each word on a separate line,

1000 .S
dup .S
6 .S
* .S
100 .S
/ .S
+ .S
.

16

To solve the problem for 10 years, we simply need to repeat this calculation ten times. However, we
must skip the first word, 1000 and the last word, ., in between years so that we can use the
compounded amount from one year as the starting amount for the next year. The final result may be
printed at the end.

Performing a repetetive calculation is easy in Forth – it is done with a DO … LOOP. The word DO
expects two numbers on the stack. The difference between the two numbers is the number of times that
the words between DO and LOOP will be executed. The smaller number should be on top of the stack
The following word illustrates using the DO … LOOP to solve this problem:

\ compound 6% interest on $1000 for 10 years and print answer

: compound10 (--)
 1000 \ starting amount
 10 0 do \ do this for ten years
 dup 6 * 100 / \ compute 6% interest of current amount
 + \ add interest to current amount
 loop \ loop to next year
 . \ finally print the result
;

Executing the word compound10 will display the answer 1786.

Now let's generalize our word so that it is more useful. We want to be able to specify the starting
amount, the interest, and the number of years to compound the interest. Finally, we want to print the
result as before. The following word takes inputs from the stack, computes the final amount, and prints
the answer:

: compound (nstart npercent nyears --)
 0 do \ do this for nyears
 2dup * 100 / \ compute interest on current amount
 rot + \ add interest to current amount
 swap \ swap items on stack to keep same order
 loop \ loop to next year
 drop . \ drop interest and print final amount
;

The word compound assumes that we have entered the starting amount, the percent interest per year,
and the number of years onto the stack, as indicated in its stack diagram. Therefore, to solve the
problem of our previous example using the more general word we would type

1000 6 10 compound

and press Enter. The same answer found previously will be displayed. But with our new word we can

also determine the compounded growth after any number of years (except zero), at any interest rate,
and for any starting amount. To see what our investment will grow to after 20 years, type:

1000 6 20 compound

17

To conclude this example, let's modify the word compound so that it prints a table of the accumulated
amount at the end of each year:

: compound (nstart npercent nyears --)
 0 do
 2dup * 100 /
 rot +

 i 1+ 2 .r \ print year right-justified in 2 character field
 9 emit \ print a tab
 dup 6 .r \ print year-ending amount right justified in 6 char field
 cr \ advance to the next line
 swap
 loop
 2drop ;

Notice that we made use of the word I in the above example. I gets the loop index and places it on
the stack. The loop index starts at the number on top of the stack when DO executes, which is 0 in this
example. The loop index increments by one after each LOOP. You can look up in the dictionary other

words that may not be familiar to you in this example, such as 1+, .R, EMIT, and CR.

Finally, it is easy in kForth to send the output from the last example to a file instead of printing it on the
screen. This is done by typing

>file interest.txt
1000 6 20 compound
console

The word >FILE redirects output from the screen (console) to the file name specified subsequently,

interest.txt in the above example. The word CONSOLE closes the file and redirects output back

to the screen. We used >FILE and CONSOLE to send the results of our interest calculations to a file,
which can then be imported into a spreadsheet to make a chart!

2.7 Acting on Conditions

Nearly all computer programs, except for the simplest, will check to see if a specified condition is
either true or false, and carry out different instructions based on the result. We have already seen how a
DO … LOOP works in Forth. In this special case, the word LOOP adds one to the loop counter and then
checks whether or not the condition that the loop counter is equal to the ending count of the loop is true
or false. Often, we will want to instruct the computer to check conditions that are not related to loops
and then execute one sequence of words if the condition is true, or another sequence of words if the
condition is false. Let's see how we can do this in Forth.

18

To start, let's look at how to test a condition and how the result of the test is represented. As an
example, our condition to be tested is whether or not the variable X is greater than 2. In Forth, such a
test would be written as

X @ 2 >

We fetch the value of X onto the stack, next place the integer 2 on the stack, and then use the word >
to check whether or not the number buried one cell deep into the stack is greater than the number on the
top of the stack. The stack diagram for > is

n1 n2 -- b

Therefore, > removes both numbers from the stack and leaves a boolean flag, written as “b” in the
stack diagram above. The flag b is itself another number, but it is a number that is always either 0 or -1.
The value of the flag represents one of two states: true, corresponding to the value -1 and false,
corresponding to the value 0. For convenience, Forth provides two predefined constants TRUE and
FALSE. Try the following.

TRUE .

FALSE .

Now we have learned that the result of a test is a flag value, either true or false, placed on top of the
stack. Although our example used the word >, other words in Forth can test for equality of two
numbers, a less than condition, and perform several other comparisons.

A flag on top of the stack is used by the word IF to cause the computer to jump to different locations
inside the executing word, based on the flag's value. This process is called conditional branching and
all programming languages provide a way to do this. The word IF is part of a control structure made
up of the words IF … ELSE … THEN, where … represents some arbitrary word sequences. Many
other programming languages have a structure similar to this, but in Forth its use is slightly different.
The word IF assumes the conditional test has already been performed and that there is a flag on top of

the stack. Let's illustrate the use of the IF … ELSE … THEN structure with an example. Suppose we

want to write a word that prints whether a number given to it is “even” or “odd”. We could define this
word as follows

: parity (n -- | print whether a number is even or odd)
 2 MOD 0=
 IF
 ." even"
 ELSE
 ." odd"
 THEN ;

19

In our definition of the word parity, the conditional test is given by the line

2 MOD 0=

The word MOD performs a division, except that it returns the remainder instead of the quotient. An
“even” number divided by 2 has a zero remainder, so we check to see if the value returned by MOD, on
top of the stack, is equal to zero. The word 0= returns a true flag when the number on top of the stack
is zero, a false flag otherwise. When IF examines this flag, if it finds the flag to be true, execution
jumps to the word following IF. On the other hand, if the flag is false, execution branches to the word
following ELSE. To see how it works, try typing a number followed by the word parity, e.g.

4 parity

A few other points to note about the IF … ELSE … THEN structure:

• When the word IF examines the flag on top of the stack, it treats any non-zero value as
representing true. A zero value always corresponds to false. Therefore, we could define the
word parity as:

: parity (n --) 2 MOD IF ." odd" ELSE ." even" THEN ;

Notice the exchange of ." odd" and ."even" in the new version of parity.

• In some cases we may not want to do anything when the condition is false. For example,
suppose we want to write a word that prints “odd” only when the number we give it is odd, but
does nothing if the number is even. Then we can omit the ELSE … portion of the structure. For
example, we can define

: odd? (n --) 2 MOD IF ." odd" THEN ;

Try passing different numbers to the word odd?, such as

5 odd? .

• When the condition flag is true, the words enclosed between IF and ELSE are executed; when
the flag is false, the words enclosed between ELSE and THEN are executed. After either branch
is executed, the computer resumes execution after the word THEN. The two branches come back
together again following THEN – this is a feature of structured programming, which makes it
easier for a person to trace the possible paths a computer may take through a sequence of
instructions.

20

• An IF … ELSE … THEN structure can be placed inside a branch of another IF … ELSE …
THEN structure. This is called nesting, and you will see an example of nested structures in the
next section.

2.8 The Return Stack

Forth uses the return stack to store the return location within a program after a word finishes executing.
Therefore, modifying the data on the return stack can alter the behavior of program, usually resulting in
the program crashing. However, Forth permits use of the return stack, with care, for temporary storage
by words written by the user. Indeed, standard Forth words often use the return stack for temporary
storage of parameters. For example DO may store the current and ending loop count, in addition to the
starting location of the loop on the return stack, while LOOP increments the loop count and decides
whether to branch back to the start of the loop or to terminate the loop. On loop termination, LOOP
removes exactly the same number of items from the return stack as placed on it by DO, so that the
return stack is, overall, unchanged when the word finishes executing.

Forth words usually take input values from the data stack and store intermediate results of the
computation on the data stack. You may have difficulty keeping items ordered exactly as needed during
the computation, especially when more than two input values are required. Even though Forth provides
data stack manipulation words such as DUP SWAP ROT, etc., sometimes the most convenient method
is to make use of the return stack. An item on the data stack can be “pushed” onto the return stack by
using the word >R. The item may be “popped” from the return stack onto the data stack with the word
R>.

The following example also illustrates the use of the return stack.

: this_date (-- day month year)
 time&date >r >r >r 2drop drop r> r> r> ;

The word this_date returns today's date on the stack with the year on top. It does this by calling
kForth's built-in word, TIME&DATE, which has the following stack diagram:

time&date (-- secs mins hours day month year)

We want our word this_date to only return the day, month, and year, so we must remove secs,
mins, and hours left on the stack by TIME&DATE. However, day, month, and year are on top and the
three numbers we want to drop (secs, mins, and hours) are buried underneath. Using >R three times,
we remove the year, month, and day from the stack, in that order. These numbers are pushed onto the
return stack. Now we use 2DROP and DROP to remove hours, mins, and secs from the stack. Finally,

21

we use the word R> three times to pop the day, month, and year from the return stack back onto the
data stack.

A word of caution to the novice Forth user: the return stack must be used with the following restrictions
because, as discussed previously, the Forth system itself places items on the return stack at the
beginning of executing a word and also when executing DO loops:

• Inside the definition of a word, every item pushed onto the return stack with >R must be popped
from the return stack with a corresponding R> before the end of the definition.

• There must also be a matching R> for every >R inside of a DO … LOOP.
• Inside of DO loops, the loop index words I and J must not be used when items have been

pushed onto the return stack but not yet popped.

Example 2: Calculating Age

In this example, we will make use of what we have learned up to now to compute the age of a person
given their birth date. Following good Forth practice, we will first define a few simple words which we
anticipate will be helpful for writing the actual age calculator:

: this_year (-- year)
 this_date >r 2drop r> ;

: this_month (-- month)
 this_date drop nip ;

: this_day (-- day)
 this_date 2drop ;

The words this_year, this_month, and this_day all use this_date, defined previously,
and remove any extra items from the stack. A couple more words will be helpful in our calculation:

: date< (day1 month1 day2 month2 -- flag)
 rot swap
 2dup \ is month1 less than month2?
 < if
 2drop 2drop \ remove items on stack -- no further test needed
 true \ leave true flag on the stack
 else
 = if \ is month1 equal to month2?
 < \ flag represents day1 less than day2
 else
 2drop \ remove items on stack -- month1 > month2
 false \ so return false flag
 then
 then ;

22

Notice that we used two nested IF … ELSE … THEN structures in our definition of DATE<. The first
IF examines the flag returned by <, which tests whether or not month1 is less than month2. If
month1 is not less than month2, we must then check to see if month1 is equal to month2. The word
= tests this condition and returns the appropriate flag, which is examined by the second IF.

\ test whether day and month are in future

: after_today (day month -- b)
 this_day this_month 2swap date< ;

We are ready now to calculate a person's age, given their birth date.

: age (day month year -- age | calculate age given birth date)
 this_year swap - \ number of years between birth year and this year
 -rot \ move top item to bottom of stack
 after_today if \ is birthday later than today?
 1- \ yes, subtract one from number of years
 then ;

We may test our definition of AGE by typing

day month year age .

where day, month, and year are the numbers for your birth day, month, and year. kForth will respond
by printing your current age.

2.9 Factoring a Forth Program

You may have noticed that in our example of the age calculator, we defined several words, not just one.
Breaking the calculation into individual short words is a way to make writing a program simpler, easier
to understand, and easier to test when, as is inevitable, a program doesn't work like you imagined.
Previously defined words can be used to write higher level words, making the higher level words more
readable.

Well-written Forth programs will often have short low-level words, each of which performs a single
and simple computation matching well the name of that word. As an example, consider the game

tetris.4th written in Forth (see forth-src/games/). Notice how the words defined towards

the beginning of the program, such as DRAW-PIT and UPDATE-SCORE are short words with well-
defined functions matching their names. Near the end of the program, various words are combined to
define the higher level word, PLAY-GAME. Although the working of the lower level words may not be
immediately apparent from reading their definitions, in a properly factored Forth program, the high
level word(s), such as PLAY-GAME, are very readable and often resemble a natural language

23

description of the actions performed by the word. Good factoring is a skill acquired through practice
with writing programs in any programming language, and results in programs which are more easy to
diagnose and repair when things don't work as expected.

2.10 Using Memory

2.10.1 Data Types

Earlier, in section 2.4, we learned how to create named integer and floating point variables using
VARIABLE and FVARIABLE. These words define new words, which when executed, return the
starting location (address) of the memory region containing their value. Different data types such as
integers and floating point numbers require different amounts of memory for storing their values, and
the words VARIABLE and FVARIABLE automatically reserve (ALLOT) the appropriate sized region.

In addition to the VARIABLE and FVARIABLE data types, Forth also provides 2VARIABLE for a
double length integer. Thus, VARIABLE will allot one cell (8 bytes on a 64-bit system) and
2VARIABLE will allot two cells of memory. To find out how many bytes of memory represent one
cell in a Forth system, type

1 cells .

We use 2VARIABLEs, for example, when we want to store integer numbers that are too large, or will
become too large in the course of executing our program, to be represented by single length
VARIABLEs. The largest signed single length integer representable on a 32-bit Forth system can
sometimes be limiting, necessitating the use of double length integers. However, keep in mind that
single length integers on a 64-bit system can represent a much larger range of integers than on a 32-bit
system. On a 64-bit system, the range of signed whole numbers which can be represented by a single
stack cell is

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

For double length integers, the range of signed numbers which can be represented is

−170,141,183,460,469,231,731,687,303,715,884,105,728 to

+170,141,183,460,469,231,731,687,303,715,884,105,727

Should you need to perform arithmetic which results in integers within that range, kForth provides
double length integer arithmetic operators such as, D+ and D−, as well as a number of mixed length
arithmetic operators between single and double length integers.

2.10.2 CREATE and ALLOT

In writing our own Forth programs, we may need to store and retrieve data of different size than the
sizes given by the data types discussed above. Examples are a paragraph of text, or an array of

24

integers. How do we go about reserving memory for, say, 100 single length integers? In addition to
reserving the memory, we need to assign a name with which to refer to the memory region. These tasks
are accomplished through the use of the words CREATE and ALLOT:

CREATE iarray 100 CELLS ALLOT

The above statement will create a new word in the dictionary, called iarray, and reserve 100 cells
(800 bytes on a 64-bit system). Executing the word iarray will return the starting address of the
memory region. The words CREATE and ALLOT are, in fact, primitive Forth words which may be used
to define words such as VARIABLE, e.g.

: VAR CREATE 1 CELLS ALLOT ;

Example 3: Initializing and Printing an Array of Integers

In our example above, we reserved a memory region of 100 cells in size using ALLOT. Simply
alloting this memory does not specify what is initally stored in this region. We might need to set the
initial values of the 100 integers in iarray before using it in our computation. A word to set all of the
100 integers to zero could be defined in the following way.

: init-iarray (-- | initialize iarray to zeros)
 iarray 100 0 DO 0 over ! cell+ LOOP drop ;

Study the above example to see how the word performs the action of storing a zero in each of the 100
cells. You may look up the action of the word CELL+ in the dictionary. A word to print the 100 integers
stored in iarray may be defined as follows.

: print-iarray (--)
 cr iarray
 100 0 DO
 dup @
 6 .R i 1+ 8 mod 0= IF cr THEN \ nice output formatting
 cell+
 LOOP drop ;

Forth also provides the words, FILL, BLANK, and ERASE, to set all of the bytes in a memory region to
a single byte value. Using ERASE, the word init-iarray may also be defined as

: init-iarray (--) iarray 100 cells erase ;

Exercise: Try modifying our first definition of init-iarray so that it stores a running count from 1
to 100 in iarray, instead of initializing all the values to zero. The following output should be
produced by print-iarray.

print-iarray

25

 1 2 3 4 5 6 7 8
 9 10 11 12 13 14 15 16
 17 18 19 20 21 22 23 24
 25 26 27 28 29 30 31 32
 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48
 49 50 51 52 53 54 55 56
 57 58 59 60 61 62 63 64
 65 66 67 68 69 70 71 72
 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88
 89 90 91 92 93 94 95 96
 97 98 99 100 ok

Exercise: Write a more general version of init-iarray which takes the array and the number of
elements which may be stored in the array as arguments. The new word and its stack diagram will be,

init-array (a n --)

where a is the starting memory address of the array and n is the number of elements in the array. Write
a similarly generalized word to print any specified array or arbitrary length,

print-array (a n –)

2.10.3 Viewing Memory with DUMP

In some applications, particularly those involving sending and receiving data between the computer and
another device, it is often very useful to be able to view the individual bytes stored in a region of
memory. Forth provides the word DUMP to allow the user to view the individual byte contents of a
memory region. In kForth, the word DUMP is provided as a source definition, that is, a word defined

using more primitive Forth words, within the file dump.4th. To use the word DUMP, we must first

include this file with

include dump

Then, typing IARRAY 128 DUMP should output something like

56211A784B70 : 01 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00
56211A784B80 : 03 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00
56211A784B90 : 05 00 00 00 00 00 00 00 06 00 00 00 00 00 00 00
56211A784BA0 : 07 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00
56211A784BB0 : 09 00 00 00 00 00 00 00 0A 00 00 00 00 00 00 00
56211A784BC0 : 0B 00 00 00 00 00 00 00 0C 00 00 00 00 00 00 00
56211A784BD0 : 0D 00 00 00 00 00 00 00 0E 00 00 00 00 00 00 00
56211A784BE0 : 0F 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 ok

At first glance, the above output does not seem too useful; however, if we look closely, the data stored
previously in iarray may be seen – the running count starting from one can be seen in the successive
groups of eight bytes. Also, DUMP displays the individual bytes in base 16, or hexadecimal. This is not
immediately apparent, until we see that the number 10 in iarray is displayed as the eight-byte

26

sequence " 0A 00 00 00 00 00 00 00". Engineers trying to debug programs communicating
with hardware often find “hex” output to be more useful than the ordinary decimal representation
because it allows them to visualize the bit-pattern represented by each hex character.

DUMP also shows the address of the first byte of each line on the left hand side, and shows additional
characters on the right hand side. When the bytes in memory represent printable characters, also known
as ASCII codes, the corresponding character is displayed on the right hand side. To see this, try
IARRAY 64 CELLS + 128 DUMP. The following output will be shown by DUMP:

56211A784D70 : 41 00 00 00 00 00 00 00 42 00 00 00 00 00 00 00 A.......B.......
56211A784D80 : 43 00 00 00 00 00 00 00 44 00 00 00 00 00 00 00 C.......D.......
56211A784D90 : 45 00 00 00 00 00 00 00 46 00 00 00 00 00 00 00 E.......F.......
56211A784DA0 : 47 00 00 00 00 00 00 00 48 00 00 00 00 00 00 00 G.......H.......
56211A784DB0 : 49 00 00 00 00 00 00 00 4A 00 00 00 00 00 00 00 I.......J.......
56211A784DC0 : 4B 00 00 00 00 00 00 00 4C 00 00 00 00 00 00 00 K.......L.......
56211A784DD0 : 4D 00 00 00 00 00 00 00 4E 00 00 00 00 00 00 00 M.......N.......
56211A784DE0 : 4F 00 00 00 00 00 00 00 50 00 00 00 00 00 00 00 O.......P....... ok

27

3. Dictionary
1. Dictionary Maintenance
2. Word Lists and Search Order
3. Compilation and Execution Words
4. Defining Words
5. Control Structures
6. Stack Operations
7. Memory Operations
8. String Operations
9. Logic and Bit Manipulation Operations
10.Arithmetic and Relational Operations
11.Floating Point Words
12.Number Conversion
13.Input and Output
14.File Access
15.Operating System Interface
16.Miscellaneous

All of the words provided by kForth-64 version 0.2.x are documented in this chapter. The notation used
to express their stack diagrams is shown in the table below.

Arg
Prefix

Data Type Stack Stack Cells

a address data 1
n signed single integer data 1
u unsigned single integer data 1
d signed double length integer data 2
ud unsigned double length integer data 2
t signed triple length integer data 3
ut unsigned triple length integer data 3
b boolean flag: true or false (-1 or 0) data 1
r double precision floating point value floating point 1

^str counted string address data 1
x value of any single cell type data 1
xt execution token data 1
nt name token data 1
wid word list identifier data 1

28

../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Miscellaneous
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Operating%20System%20Interface
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#File%20Access
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Input%20and%20Output
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Number%20Conversion
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Floating%20Point%20Functions
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Floating%20Point%20Functions
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Arithmetic%20and%20Relational%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Logic%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#String%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Memory%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Stack%20Operations
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Control%20Structures
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Defining%20Words
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Compilation%20and%20Execution%20Words
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Word%20Lists%20and%20Search%20Order
../../Dropbox/%E0%B0%95%E0%B1%83%E0%B0%B7%E0%B1%8D%E0%B0%A3/archive/ccreweb.org/public_html/software/kforth/kforth3.html#Dictionary%20Maintenance

Word names which are UNDERLINED are either not part of the Forth-2012 specification, or have usage
with additional constraints than specified in Forth-2012. The few words which may have non-standard
behavior in kForth rarely cause any difficulty for writing programs which run on both kForth and on
strictly Forth-2012 compliant systems; however, the differences should be noted when attempting to
run the programs on other systems.

Pleas refer to the Forth-2012 standards document for definitions of special terms. Examples are
execution token, name token, interpretation semantics, and compilation semantics.

3.1 Dictionary Maintenance

FORGET --
parse the next word in the input stream and remove the word and
all subsequently defined words from the dictionary

COLD -- restore the Forth environment to the startup state
WORDS -- list the defined words in the current search order

The word FORGET may be used to remove words from the dictionary. Typing

FORGET name

will remove name and all words defined after name from the dictionary.

The word COLD deletes all non-intrinsic wordlists, definitions, and strings, resets the search order and
all stacks, and restarts the Forth environment in interpretation state – this is useful when you want to
start over with the Forth system in a known state.

3.2 Word Lists and Search Order

Words in the dictionary may be grouped into word lists. kForth provides the following built-in word
lists:

Root Forth Assembler

New definitions are added to the current compilation word list, which is initially the Forth word list.

When the compiler searches the dictionary for a word name, the search proceeds in a specified order
through a specified series of word lists. This set of ordered word lists is known as the search order. The

Root word list must always be a part of the search order; however, any other word lists may be added

29

or removed from the search order. The user may create custom word lists to group new words added to
the dictionary, and control their visibility to the Forth compiler.

ORDER --

display the word lists in the search order. The
word list at the beginning of the search order
is displayed to the left, and the compilation
word list is shown in brackets

GET-ORDER -- widn ... wid1 n
return the word list address identifiers, and the
number of word lists; wid1 is the first word
list in the search order.

SET-ORDER widn ... wid1 n --
set the search order to the specified sequence
of word lists, where wid1 identifies the first
word list in the search order

ONLY --
remove all word lists from the search order,
except the minimal Root word list

FORTH --
replace the first word list in the search order
with the Forth word list

ASSEMBLER --
replace the first word list in the search order
with the Assembler word list.

GET-CURRENT -- wid
return the word list identifier for the current
compilation word list.

SET-CURRENT wid --
set the compilation word list to be the word
list identified by wid

FORTH-WORDLIST -- wid
return the word list identifier for the Forth
word list.

ALSO --
duplicate the word list at the beginning of the
search order.

PREVIOUS -- remove the first word list in the search order

DEFINITIONS --
set the first word list in the search order as the
compilation word list.

WORDLIST -- wid
create a new empty word list and return its
identifier

VOCABULARY --
create a new named word list which, when
executed, will replace the first word list in the
search order.

SEARCH-WORDLIST a u wid -- 0 | xt n

search the word list identified by wid for the
word name in the string, a u. Return n=0 if
the word is not found in the word list, n=1 if
the word is found and is an immediate word,
n=-1 if the word is found and is not an
immediate word.

TRAVERSE-
WORDLIST

i*x xt wid –- j*x execute xt for every word in wordlist wid,
passing each word’s nt to xt, until the

30

wordlist is exhausted or until xt returns false.
See Forth 2012 spec. for additional
information on TRAVERSE-WORDLIST.

FIND ^str -- xt n search all the word lists in the search order for
the word specified by the counted string;
n is 0 if not found,
n is 1 if found and the word is an
IMMEDIATE word,
n is -1 if found and the word is not an
immediate word, and xt is a valid execution
token if the word is found

[DEFINED] -- b

parse a word name from the input stream,
search for the name in the search order, and
return a flag indicating whether or not the
name was found (TRUE if found).

[UNDEFINED] -- b

parse a word name from the input stream,
search for the name in the search order, and
return a flag indicating whether or not the
name was found (FALSE if found).

NAME>STRING nt –- a u Return name string for word nt
NAME>COMPILE nt -- x xt Return compilation semantics of word nt
NAME>INTERPRET nt –- xt | 0 Return interpretation semantics for word nt

3.3 Compilation and Execution Words

IMMEDIATE -- set the precedence of the most recently defined word

NONDEFERRED --
set the interpretation precedence of the most recently
defined word (see Technical Info)

POSTPONE --
parse the next word in the input stream and append its
compilation semantics to the current definition

LITERAL x --
compile a single cell value from the stack into the
current definition

2LITERAL d --
compile a double length number from the stack into the
current definition

SLITERAL a u --
compile a string address and count from the stack into
the current definition

FLITERAL F: r --
compile a floating point number from the floating point
stack into the current definition

' -- xt
parse the next word in the input stream and returns its
execution token.

31

['] --
parse the next word in the input stream and compile its
execution token into the current definition

>BODY xt -- a convert the xt of a word to its body address (pfa)
COMPILE, xt -- append execution semantics for xt to current definition
COMPILE-NAME nt -- append execution semantics of word nt to current def.
EXECUTE xt -- perform the execution semantics specified by xt
EXECUTE-BC a -- execute kForth byte code starting at address a
EVALUATE a u -- interpret and execute source code contained in a string

: --
parse a word name from the input stream, begin a new
definition for the word, and enter compilation state

; -- | -- xt
Terminate a named or unnamed definition and return to
interpretation state. For unnamed definition, return xt.

:NONAME -- begin an unnamed definition and enter compilation state
[-- enter interpretation state
] -- enter compilation state

STATE -- a
return address contains a flag: true if compiling,
false if interpreting

The words ' (TICK), and ['] may be used to search the dictionary for a specified word. ' (TICK)
parses the next word and returns an execution token on the stack, while ['] is an immediate word
used in compilation state to parse the next word and compile its execution token as a literal into the
current definition. The word EXECUTE may be used to execute code specified by an execution token
on the stack. The word NONDEFERRED is a non-standard word which is used to set the enhanced
precedence state of a word in kForth. For more information on the concept of precedence in kForth,
refer to the Technical Information section of the user's guide.

The following standard compilation words are provided in Forth source in ans-words.4th :

TO --
determine the body address of the next word and append the run-
time semantics to store a value at that address

3.4 Defining Words

In addition to ordinary “colon definitions” of the form,

: NAME … ;

the following defining words are also provided:

32

CREATE name
VARIABLE name
n CONSTANT name
2VARIABLE name
d 2CONSTANT name
FVARIABLE name
f FCONSTANT name

Both : and CREATE may be used inside a word definition to make your own defining words. The word
DOES>, as part of a CREATE … DOES> expression, allows you to specify the run time behavior of
words created by the defining word.

The following common Forth defining words have source code definitions, provided in ans-

words.4th:

n VALUE name
DEFER name

An existing word may be referred to by another name, using the standard word SYNONYM, defined in

Forth source in the file, ans-words.4th. Another way is to use the built-in non-standard word

ALIAS.

SYNONYM -- create a new word which has the same behavior as existing word
ALIAS xt -- create a new word which has the same execution behavior as xt

They may be used as follows,

SYNONYM name2 name1
' name1 ALIAS name2

where name1 is the name of an existing word in the search order, and name2 is the new name.

3.5 Control Structures

The following control structures are provided in kForth:

DO … LOOP
DO … +LOOP
?DO … LOOP

33

?DO … +LOOP
IF … THEN
IF … ELSE … THEN
BEGIN … AGAIN
BEGIN … UNTIL
BEGIN … WHILE … REPEAT
CASE … OF … ENDOF … ENDCASE

All control stuctures may be nested. For DO loops the number of levels of nesting is limited only by
return stack space. The following execution control words are also defined:

RECURSE
LEAVE
EXIT
QUIT
ABORT
ABORT"

RECURSE appends the execution semantics of the current definition to the current definition. It allows
for recursive execution of a word. Note that other languages provide recursion by using a call to the
same name as the function/procedure being described; however, this is not possible in standard Forth
since the same name may exist within the search order. In standard Forth, the use of name within the
definition of name is prescribed to refer to the prior definition of name within the search order. A
classic example of using recursion is

: gcd (n1 n2 -- gcd) \ find greatest common divisor

 ?DUP IF SWAP OVER MOD RECURSE THEN ABS ;

LEAVE removes the current loop parameters from the return stack, by calling UNLOOP, and jumps out
of the current loop. Execution resumes at the instruction following the loop.

EXIT returns from the word currently being executed. EXIT from within a loop requires that the loop
parameters be discarded from the return stack explicitly with UNLOOP.

QUIT empties the return stack, terminates execution of the current word and returns kForth to the
interpreter mode.

ABORT empties the data stack and executes QUIT.

ABORT" examines the flag on top of the stack and if the flag is true, prints the message delimited by ",
then executes ABORT.

34

The exception handling words CATCH and THROW are defined in source in ans-words.4th.

3.6 Stack Operations

3.6.1 Data Stack Operations

DUP x -- x x duplicate
?DUP x -- x x | 0 dup if not zero
SWAP x1 x2 -- x2 x1 swap
OVER x1 x2 -- x1 x2 x1 over
ROT x1 x2 x3 -- x2 x3 x1 rotate cw
-ROT x1 x2 x3 -- x3 x1 x2 rotate ccw
DROP x -- drop
NIP x1 x2 -- x2 nip
TUCK x1 x2 -- x2 x1 x2 tuck
PICK i*x n -- i*x xn copy item n cells deep to the top of stack

ROLL i*x n -- (i-1)*xx xn
rotate item n cells deep to the top of
stack

DEPTH i*x -- i*x u return data stack depth
2DUP x1 x2 -- x1 x2 x1 x2
2SWAP x1 x2 x3 x4 -- x3 x4 x1 x2

2OVER x1 x2 x3 x4 -- x1 x2 x3 x4
x1 x2

2ROT x1 x2 x3 x4 x5 x6 -- x3 x4
x5 x6 x1 x2

2DROP x1 x2 --

3.6.2 Return Stack Operations

>R x -–
R: –- x push x onto return stack

R> -- x
R: x -- pop x from return stack

R@ -- x
R: x –- x copy x from top of return stack

2>R d –-
R: -- d push two stack cells onto return stack

35

2R> -- d
R: d -- pop two cells from return stack

2R@ -- d
R: d -- d

copy two cells from top of return
stack

I -- n current loop index
J -- n next outer loop index

UNLOOP
--
R: ... x1 x2 x3
-- ...

discard loop parameters from return
stack

Note that 2>R is not equivalent to the sequence >R >R. The order of the two single length elements on
top of the return stack is different for the two cases. 2>R pushes two items from the top of the stack so
that they have the same order on the return stack. The sequence 2>R 2R>, however, is identical to the
sequence >R >R R> R>.

3.6.3 Floating Point Stack Operations

FDEPTH ... -- ... u return the floating point stack depth

FDUP F: r -- r r
duplicate a floating point number on top of the
fp stack

FSWAP F: r1 r2 -- r2 r1 swap two floating point numbers on the stack

FOVER F: r1 r2 -- r1 r2 r1
copy the floating point number one deep onto
top of the fp stack

FROT F: r1 r2 r3 -- r2 r3 r1
rotate the order of three fp numbers on the fp
stack

FDROP F: r -- drop a floating point number from the fp stack

FPICK n --
F: i*r -- i*r rn

copy fp number n numbers deep to the top of
the fp stack

F2DROP F: r1 r2 -- drop two fp numbers from the fp stack
F2DUP F: r1 r2 -- r1 r2 r1 r2 duplicate a pair of fp numbers on the fp stack

3.7 Memory Operations

@ a -- n fetch single length number (64-bit number)
! n a -- store single length number n to address a
2@ a -- d fetch double number (128-bit number) from address a

36

2! d a -- store double number (128-bit number) to address a
A@ a1 -- a2 fetch address from address a
C@ a -- n fetch byte
C! n a -- store byte
W@ a -- n fetch signed word (this word is deprecated – use SW@)
SW@ a -- n fetch word (16-bit) as signed number
UW@ a –- u fetch word (16-bit) as unsigned number
W! n a -- store word (16-bit) at address a
SL@ a –- n fetch dword (32-bit) as a signed number
UL@ a -– u fetch dword (32-bit) as an unsigned number
L! n a –- store dword (32-bit) at address a

SF@ a --
F: –- r fetch single precision (32-bit) float

SF!
a –-
F: r –- store r as single precision (32-bit) float

DF@ a --
F: -- r fetch double precision (64-bit) float

DF! a –-
F: r –- store r as double precision (64-bit) float

F@ a --
F: -- r same as DF@

F! a –-
F: r -- same as DF!

SP@ -- a fetch data stack pointer
RP@ -- a fetch return stack pointer
F P@ –- a fetch floating point stack pointer
SP! a -- set data stack pointer
RP! a -- set return stack pointer
F P! a –- set the floating point stack pointer
? a -- fetch and print single length number; equivalent to @ .
ALLOT u -- allocate u bytes in the dictionary

ALLOT? u -- a
allocate u bytes in the dictionary and return starting
address a of the allocated region

ALLOCATE u -- a n
allocate u bytes of system memory and return starting
address a of the allocated region and error code n

FREE a -- n
release memory previously reserved with ALLOCATE and
return error code (0 = success)

RESIZE a1 u -- a2 ior
change size of previously ALLOCATEd region to u bytes;
ior = 0 if success

C" -- ^str
parse a string, delimited by ”, from the input stream,
compile it into the string table, and return the address ^str
of the counted string (first byte is the count byte)

37

S" -- a u
parse a string, delimited by ”, from the input stream,
compile it into the string table, and return the starting
character address and count for the string

COUNT ^str -- a u
convert counted string address to character buffer address a
and character count u

MOVE a1 a2 u --
move u bytes from source a1 to dest a2 ; handle
overlapping region

FILL a u n -- fill u bytes with byte value n starting at a
ERASE a u -- fill u bytes with zero starting at a

The following standard memory words are provided in Forth source in ans-words.4th and in

dump.4th:

PAD -- a return address of a scratch-pad in memory for temporary use
ans-
words.4th

DUMP a u -- output hexadecimal display of u bytes starting at address a dump.4th

The non-standard word A@ is needed because kForth performs type-checking for operands involved in
memory access. A@ performs @ and sets the type field in the hidden type stack to represent an address
for the retrieved value. Addresses may be stored in ordinary variables using !; however they should be
retrieved with A@.

The behavior of ALLOT is more limited than allowed by the standard. ALLOT dynamically allocates
the requested amount of memory and sets the parameter field address (PFA) of the last created word to
the address of the alloted region. Thus, in kForth, ALLOT should always be preceded by CREATE .
Attempting to ALLOT without first creating a named dictionary entry, using CREATE, will result in a
virtual machine error. Thus, kForth limits the use of ALLOT, but code written for kForth will still be
portable to standard Forth systems.

The non-standard word ALLOT? is provided because kForth contains no HERE address. ALLOT? both
reserves the requested memory and returns the starting address of the allotted memory region.

ALLOT? should be preceded by CREATE as described above. All memory is dynamically allocated,
and freed upon exiting kForth.

38

3.8 String Operations

-TRAILING a u1 -- a u2 reduce string length to ignore trailing spaces
/STRING a1 u1 n -- a2 u2 a2 = a1 + n, u2 = u1 - n
BLANK a u -- fill u bytes with the blank-space character starting at a
CMOVE a1 a2 u -- move u bytes from source a1 to dest a2
CMOVE> a1 a2 u -- move u bytes from a1 to a2 in descending order

COMPARE a1 u1 a2 u2 -- n
compare the strings a1 u1 and a2 u2. Return zero
if they are equal.

SEARCH a1 u1 a2 u2 -- a3
u3 b

search for the string a2 u2 within the string a1 u1;
return true if found and the substring a3 u3

SLITERAL a u --
compile a string address and count from the stack into
the current definition

The following useful string words, and more, are provided in strings.4th.

SCAN a1 u1 n -- a2 u2
search for first occurrence of character value n in the string
specified by a1 u1. Return the substring a2 u2 starting
with the search character

SKIP a1 u1 n -- a2 u2 search for first occurrence of character value not equal to n

See also Memory Operations.

3.9 Logic and Bit Manipulation Operations

AND x1 x2 -- x3 bitwise AND of x1 and x2
OR x1 x2 -- x3 bitwise OR of x1 and x2
XOR x1 x2 -- x3 bitwise exclusive OR of x1 and x2
NOT x1 -- x2 one's complement of x1
INVERT x1 -- x2 same as NOT in kForth
LSHIFT x1 u -- x2 x2 is x1 shifted left by u bits
RSHIFT x1 u -- x2 x2 is x1 shifted right by u bits
BOOLEAN? x -– b return TRUE if x is either TRUE or FALSE
.AND. b1 b2 -– b3 logical AND of b1 and b2
.OR. b1 b2 –- b3 logical OR of b1 and b2

39

.XOR. b1 b2 -– b3 logical XOR of b1 and b2

.NOT. b1 -– b2 b2 is the logical NOT of b1

The strict Boolean logic operators .AND. , .OR. , .XOR. , and .NOT. will throw an error if the
input operand(s) are not Boolean. They can be useful in testing a program to ensure strict Boolean
values are passed to logic predicates.

3.10 Arithmetic and Relational Operations

3.10.1 Single and Double Integer Operations

1+ n1 -- n2 increment: n2 = n1 + 1
1- n1 -- n2 decrement: n2 = n1 - 1
2+ n1 -- n2 n2 = n1 + 2
2- n1 -- n2 n2 = n1 - 2

2* n1 -- n2 arithmetic left shift: n2 = n1*2
2/ n1 -- n2 arithmetic right shift: n2 = n1/2
CELLS n1 -- n2 n2 is n1 times size in bytes of a cell
CELL+ n1 -- n2 n2 is n1 plus the size in bytes of a cell
FLOATS n1 -- n2 n2 is n1 times size of a floating point number
FLOAT+ n1 -- n2 n2 is n1 plus the size of a floating point number
DFLOATS n1 -- n2 n2 is n1 times size of double precision fp number
DFLOAT+ n1 -- n2 n2 is n1 plus size of double precision fp number
SFLOATS n1 -- n2 n2 is n1 times size of single precision fp number
SFLOAT+ n1 -- n2 n2 is n1 plus size of single precision fp number
CHAR+ n1 -- n2 same as 1+
+ n1 n2 -- n3 add
- n1 n2 -- n3 subtract: n3 = n1 - n2
* n1 n2 -- n3 multiply
/ n1 n2 -- n3 divide: n3 = n1 / n2
+! n a -- add n to value at address a
MOD n1 n2 -- n3 modulus or remainder
/MOD n1 n2 -- n3 n4 n3 = remainder and n4 = quotient for n1/n2
*/ n1 n2 n3 -- n4 n4 = n1*n2/n3; intermediate value is 64 bit

*/MOD n1 n2 n3 -- n4 n5 n4 and n5 are remainder and quotient for
n1*n2/n3

M+ d1 n -- d2 add single to double integer
M* n1 n2 -- d multiply two singles and return signed double

40

M*/ d1 n1 +n2 -- d2
multiply d1 by n1 to obtain triple cell result; then
divide result by n2>0 to give signed double d2

UM* u1 u2 -- ud multiply unsigned singles and return unsigned double

UM/MOD ud u1 -- u2 u3
divide unsigned double number by unsigned single and
return remainder (u2) and quotient (u3). Returns -1 -1
for u2 and u3 on division overflow.

FM/MOD d n1 -- n2 n3
divide double by single to give floored quotient n3 and
modulus n2

SM/REM d n1 -- n2 n3
divide double by single to give symmetric quotient n3
and remainder n2

DS* d n -- t
multiply double and single to give signed triple length
product

UDM* ud u -- ut
multiply unsigned double and unsigned single to give
unsigned triple length product

UTM/ ut u -- ud
divide unsigned triple by unsigned single to give
unsigned double quotient

UTS/MOD ut1 u1 -- ut2 u2
Divide unsigned triple ut1 by unsigned single u1 to
give unsigned triple quotient ut2 and unsigned single
remainder u2

STS/REM t1 n1 -- t2 n2
Divide signed triple t1 by signed single n1 to give
signed triple quotient t2 and signed remainder n2

D+ d1 d2 -- d3 double number addition
D- d1 d2 -- d3 double number subtraction
ABS n1 -- n2 absolute value
NEGATE n1 -- n2 n2 = -n1

DABS d1 -- d2 double number absolute value
DNEGATE d1 -- d2 double number negation
MIN n1 n2 -- n1 | n2 minimum of n1 and n2
MAX n1 n2 -- n1 | n2 maximum of n1 and n2
DMIN d1 d2 -- d1|d2 minimum of d1 and d2
DMAX d1 d2 -- d1|d2 maximum of d1 and d2
= n1 n2 -- b test n1 equal to n2
<> n1 n2 -- b test n1 not equal to n2
< n1 n2 -- b test n1 less than n2
> n1 n2 -- b test n1 greater than n2
<= n1 n2 -- b test n1 less than or equal to n2
>= n1 n2 -- b test n1 greater than or equal to n2
U< u1 u2 -- b test unsigned u1 less than u2
U> u1 u2 -- b test unsigned u1 greater than u2
D= d1 d2 -- b test d1 equal to d2
D< d1 d2 -- b test d1 less than d2

41

DU< ud1 ud2 -- b test ud1 less than ud2
0< n -- b test n less than zero
0> n -- b test n greater than zero
0= n -- b test n equal to zero
0<> n -- b test n not equal to zero
D0= d -- b test d equal to zero

D0< d -- b test d less than zero
D2* d1 -- d2 d2 is the arithmetic left shift of d1
D2/ d1 -- d2 d2 is the arithmetic right shift of d1

WITHIN n1|u1 n2|u2 n3|u3
-- b

return TRUE if n2|u2 <= n1|u1 < n3|u3, given
n2|u2 < n3|u3

kForth provides pre-defined constants TRUE (-1) and FALSE (0).

3.11 Floating Point Operations

3.11.1 Arithmetic and Relational Words

F+ F: r1 r2 -- r3 add
F- F: r1 r2 -- r3 subtract: r3 = r1 - r2
F* F: r1 r2 -- r3 multiply
F/ F: r1 r2 -- r3 divide: r3 = r1/r2
FABS F: r1 -- r2 absolute value
FNEGATE F: r1 -- r2 r2 = -r1

FROUND F: r1 -- r2 round to nearest whole number
FTRUNC F: r1 -- r2 truncate, towards zero, to whole number
FLOOR F: r1 -- r2 truncate, towards minus infinity, to whole number
FMIN F: r1 r2 -- r1 | r2 minimum of r1 and r2
FMAX F: r1 r2 -- r1 | r2 maximum of r1 and r2

F0= -- b
F: r -- test r equal to zero

F0< -- b
F: r -- test r less than zero

F0> -- b
F: r -- test r greater than zero

F= -- b
F: r1 r2 -- test r1 equal to r2

F<> -- b
F: r1 r2 -- test r1 not equal to r2

F< -- b
F: r1 r2 -- test r1 less than r2

F> -- b test r1 greater than r2

42

F: r1 r2 --

F<= -- b
F: r1 r2 -- test r1 less than or equal to r2

F>= -- b
F: r1 r2 -- test r1 greater than or equal to r2

The following standard word is provided as Forth source in ans-words.4th:

F~ -- b
F: r1 r2 r3 --

test r1 approximately equal to r2, within uncertainty r3; if r3 =
0e, r1 and r2 must be exactly equal in their binary representation

3.11.2 Floating Point Functions

F** F: r1 r2 -- r3 r3 = r1 raised to power of r2
FSQRT F: r1 -- r2 square root
FLOG F: r1 -- r2 r2 = log base 10 of r1
FALOG F: r1 -- r2 r2 = 10 raised to power of r1
FEXP F: r1 -- r2 r2 = exp(r1)
FEXPM1 F: r1 –- r2 r2 = exp(r1) - 1
FLN F: r1 -- r2 r2 = log base e of r1
FLNP1 F: r1 -- r2 r2 = loge(r1) + 1
DEG>RAD F: r1 -- r2 degrees to radians
RAD>DEG F: r1 -- r2 radians to degrees
FSIN F: r1 -- r2 r2 = sin(r1)
FCOS F: r1 -- r2 r2 = cos(r1)
FSINCOS† F: r1 -- r2 r3 r2 = sin(r1); r3 = cos(r1)
FTAN F: r1 -- r2 r2 = tan(r1)
FASIN F: r1 -- r2 arc sine
FACOS F: r1 -- r2 arc cosine
FATAN F: r1 -- r2 arc tangent

FATAN2 F: r1 r2 -- r3
r3 is arc tangent of r1/r2 with proper
quadrant

FSINH F: r1 -- r2 r2 = sinh(r1)
FCOSH F: r1 -- r2 r2 = cosh(r1)
FTANH F: r1 -- r2 r2 = tanh(r1)
FASINH F: r1 -- r2 inverse hyperbolic sine
FACOSH F: r1 -- r2 inverse hyperbolic cosine
FATANH F: r1 -- r2 inverse hyperbolic tangent

43

† In kForth-64, FSINCOS always uses the x87’s native FSINCOS instruction. The returned sine and
cosine values from FSINCOS may differ in accuracy from those returned by kForth’s FSIN and FCOS
words. FSIN and FCOS words will provide higher accuracy over a large range of angles (in kForth-64
v >= 0.2.0), while FSINCOS will be faster, in general.

3.12 Number Conversion

S>D n -- d convert single integer to double length integer
D>S d -- n convert signed double integer to signed integer

S>F n --
F: -- r convert single integer to floating point number

D>F d --
F: -- r convert double length integer to fp number

FROUND>S -– n
F: r -- convert floating point to integer by rounding†

FTRUNC>S -- n
F: r --

convert floating point to integer by truncating
towards zero†

F>D -– d
F: r --

convert fp number to double integer by
truncating towards zero

>FLOAT a u -- TRUE | FALSE
F: –- r

convert string to floating point number; return
fp number and TRUE if successful, FALSE
otherwise

>NUMBER ud1 a1 u1 -- ud2 a2 u2

convert digits of string a1 u1 and add this
number to ud1 in the current base; result is
ud2, and a2 u2 point to remaining part of
string

NUMBER? ^str -- d b
convert counted string to signed double number
in the current BASE; b is TRUE if successful

<# ud -- ud begin conversion of unsigned double to a string

ud1 -- ud2
convert the least significant digit of ud1 to a
character; concatenate character to conversion
string.

#S ud -- 0 0 convert all significant digits in ud to string
SIGN n -- attach minus sign to conversion string if n < 0

HOLD n --
attach character with ASCII code n to the
conversion string

#> ud -- a u
drop the double number and return the string
address and count

44

Other useful, non-standard conversion words for number to string conversion and vice-versa, such as

F>FPSTR, are given in Forth source in strings.4th.

†The word FTRUNC>S has the same behavior as the Forth-2012 word F>S ; however, F>S has
previously been implemented in some Forth systems, prior to the 2012 standard, with rounding or
truncating to single length signed integer behavior as well. Therefore, we have not implemented F>S in
kForth, preferring instead that the rounding mode for conversions from floating point to single length
signed integer be explicitly specified using either FROUND>S or FTRUNC>S . Both Forth-94 and
Forth-2012 specifications call for F>D conversions to be truncating, and kForth’s F>D conversion is
compliant with those specifications. Explicit words to perform rounding to nearest and truncating
conversions from floating point to double length signed integer may be defined as

: FROUND>D FROUND F>D ;

: FTRUNC>D F>D ;

3.13 Input and Output

BASE -- a
return the address containing current number
base

DECIMAL -- set the number base to ten
BINARY -- set the number base to two
HEX -- set the number base to sixteen

KEY? -- b
return TRUE if a character from a key press is
available (use KEY to obtain the character)

KEY -- n wait for key press and return key code

ACCEPT a n1 -- n2
read up to n1 characters into buffer a from
keyboard. n2 is actual number input.

BL -- 32
return the ascii value for a blank space
character

WORD n -- ^str
parse text from the input stream, delimited by
character with ascii value n and return the
address of a counted string containing the word

PARSE n -- a u
parse text from the input stream, delimited by
character n and return the parsed string

PARSE-NAME -- a u
skip leading spaces and parse text delimited by
a space. Return the parsed string.

45

CHAR -- n
parse the next word, delimited by a space and
return the ascii value of its first character

[CHAR] --
parse the next word, delimited by a space, and
compile a character literal into the current
definition

. n -- display top item on the stack in the current base

.R n u -- display n in the current base in u-wide field
U. u -- display unsigned single u in current base
U.R u1 u2 -- display u1 in the current base in u2-wide field
D. d -- display signed double length number d
D.R d u –- Display signed double d in u-wide field
UD. ud -- display unsigned double length number ud
UD.R ud u -- Display unsigned double ud in u-wide field

PRECISION -- u
return the number of significant digits output
by FS.

SET-PRECISION u -- set the numer of significant digits output by
FS.

FS. F: r --
display the floating point number using
scientific notation, with the number of
significant digits specified by PRECISION

F. F: r --
display the floating point number on top of the
stack, using an automatic format

.S i*x -- i*x non-destructive display of the stack

F.S r1 r2 … -- r1 r2 …
non-destructive display of the floating point
stack

." --
parse text from the input stream, delimited by "
and append the execution semantics to display
the string within the current definition

.(--
parse and display text, delimited by ')', from
the input stream. The word is executed
immediately in compilation state.

CR -- output carriage return
SPACES n -- output n spaces
EMIT n -- output character with ascii value n
TYPE a u -- display u characters from buffer at a
SOURCE -- a u return address and count of the input buffer

REFILL -- b
attempt to read another line from the input
source and return flag

>FILE --
parse the filename from the input stream
and change output stream from the console to
the file

CONSOLE -- reset output stream to the console

46

The following non-standard output word is provided in strings.4th.

F.RD u1 u2 --
F: r --

print a floating point number r in fixed point format with u2
decimal places, right justified in a field of width u1

The following standard terminal control words, and more, are provided in Forth source in ansi.4th:

PAGE -- clear the screen and put cursor at top left
AT-XY n1 n2 -- position cursor at column n1 and row n2, origin is (0, 0)

Standard words from the xchars wordset, for UTF-8 encoded character handling, are provided in

xchars.4th.

3.14 File Access

OPEN ^name n1 -- n2

open file specified by counted string ^name in mode n1,
which can be the following:
 0 read-only (R/O)
 1 write-only (W/O)
 2 read-write (R/W)
n2 is the file descriptor, a non-negative integer if
successful.

LSEEK n1 n2 n3 -- n4

change current position in opened file; n1 is the file
descriptor, n2 is the offset, and n3 is the mode with the
following meaning:
 0 offset is relative to start of file
 1 offset is relative to current position
 2 offset is relative to end of file
n4 is the resulting offset from the beginning of the file, or
-1 if error.

READ n1 a n2 -- n3
read n2 bytes into buffer address a, from file with
descriptor n1. n3 is the number of bytes actually read.

WRITE n1 a n2 -- n3
write n2 bytes from buffer address a to file with
descriptor n1. n3 is the number of bytes actually written.

CLOSE n1 -- n2
close file with descriptor n1 and return status n2 (0 if
successful, -1 if error).

FSYNC n1 – n2
flush all buffered data written to file/device with descriptor
n1. Returns error code n2.

INCLUDE -- i*x
parse the Forth source filename from the input stream
and interpret the file

47

INCLUDED a u -- i*x
set the input stream for the interpreter to the specified file
and process it line by line

The following standard file access words are provided as Forth definitions in files.4th:

R/O -- n "read-only" file access method
W/O -- n "write-only" file access method
R/W -- n "read-write" file access method
BIN n1 -– n2 modify file access method for binary mode

CREATE-FILE a u n1 -- n2 n3
create a file with name specified by string address
and count a u, and access method n1. Return file
descriptor n2 and result code n3

OPEN-FILE a u n1 -- n2 n3
open an existing file, specified by string address and
count a u, using access method n1, and return file
descriptor n2 and result code n3

CLOSE-FILE n1 -- n2
close the file with descriptor n1 and return result
code n2

READ-FILE a u1 n1 -- u2 n2
read u1 bytes into buffer at address a from file with
descriptor n1and return actual number of bytes read
u2 and result code n2

WRITE-FILE a u n1 -- n2
write u bytes from buffer a to file with descriptor
n1; return result code n2

FILE-POSITION n1 -- ud n2 return current file position ud and result code n2

REPOSITION-
FILE ud n1 -- n2

set file position to ud for file with descriptor n1
and return result code n2

FILE-SIZE n1 -- ud n2 return the file size ud and the result code n2

FLUSH-FILE n1 -- n2
force buffered info for file with descriptor n1 to be
written to disk; n2 is the result code.

FILE-EXISTS ^str -- b return TRUE if the specified file exists

DELETE-FILE a u -- n
delete the file specified by string a u, and return
result code n

RENAME-FILE a1 u1 a2 u2 –-
ior

existing file name is given by the string a1 u1;
new file name is specified by string, a2 u2.

READ-LINE a u1 n1 -- u2 b
n2

read a line of text, with at most u1 bytes, from file
with descriptor n1 into the buffer a; return actual
bytes read u2, success flag b, and result code n2

WRITE-LINE a u n1 -- n2
write a line of text having u bytes from buffer a
into file with descriptor n1; return result code n2

48

3.15 Operating System Interface

SYSTEM ^str -- n

execute a shell command; ^str is the
command line passed to the shell. Return code
n is -1 on error, or the return value from the
command.

SYSCALL n1 ... nm m ncall --
nerr

perform system call ncall, with arguments
n1 to nm, where 0<= m <=6

BYE --
close the Forth environment and exit to the
system.

CHDIR ^path -- n
change the current directory to the one specified
in the counted string ^path; return code n is
OS dependent

IOCTL n1 n2 a -- n3

send device control request n2 to file with
descriptor n1. Additional parameters are passed
through buffer at address a. n3 is the status (0
if successful, -1 if error).

TIME&DAY -- sec min hr day mo
yr return the local time

MS u -- wait for u milliseconds

MS@ -- u
return number of milliseconds elapsed since
start of kForth

US u -- wait for u microseconds

US2@ -- ud
return number of microseconds elapsed since
start of kForth

DLOPEN azstr bflag --
nhandle load the dynamic library file

DLERROR -- azstr return address of null terminated error string
DLSYM nhandle azsym -- a return address of symbol in library
DLCLOSE nhandle -- nerr close the dynamic library
FORTH-SIGNAL xt n -- xtold install Forth word as handler for signal n
RAISE n -- ior assert signal n
SET-ITIMER n1 a1 a2 -- n2 set up timer signals
GET-ITIMER n a -- n2 get timer countdown count
USLEEP u -- wait for at least u microseconds

Numerous operating system functions are defined as Forth words in syscalls.4th. The use of

FORTH-SIGNAL for handling signals is illustrated in the example Forth source files, signals-

ex.4th and sigfpe.4th. The use of IOCTL for communicating with a device driver is illustrated

in the Forth source file, serial.4th. The Forth source file, dltest.4th, provides an example of

49

importing an external C library function, from a shared object file, into kForth using DLOPEN, etc. and
calling the function from a Forth word.

3.16 Miscellaneous

kForth’s CALL word provides a means for calling machine language procedures placed in protected

memory (read-executable memory). The Forth source file, mc.4th, provides words for placing

machine code into protected memory. See the file, fcalls-x86.4th, for an example of defining a

Forth word to call machine code.

CALL a -- call machine language subroutine at address a

50

4. Technical Information

1. Forth- 2012 Compliance
2. Threading Model
3. Signed Integer Division
4. Double Numbers
5. Floating Point Implementation
6. Special Features
7. Benchmarks and Tests
8. VM Error Codes
9. Source Code Map
10. Embedding kForth

4.1 Forth-2012 Compliance

kForth is specified as a subset of the Forth-2012 standard. Code written for kForth-64 is largely
portable to Forth-2012 systems with the use of trivially defined extensions (see the Special Features
section below). Compliance with Forth-2012 may be checked using automated tests found in the folder,

forth-src/system-test/ . These include John Hayes' suite of tests for the core words of a

Forth-94 system: tester.4th and core.4th. Tests involving unsupported words such as HERE

and , and C, have been commented out, as well as tests involving the BEGIN ... WHILE ...
WHILE ... REPEAT ... THEN structure, and some weird variants of CREATE and DOES>
usage. Compliance with the Forth-2012 extension words for working with double length numbers may

be checked using dbltest.4th. Tests are commented out for words which are not implemented in

kForth.

4.2 Threading Model

kForth is an indirect threaded code (ITC) system. The kForth compiler/interpreter parses the input
stream into a vector of pseudo op-codes or Forth Byte Code. Upon execution, the vector of byte codes
is passed on to a virtual machine which looks up the execution address of the words and performs
either a call or an indirect jump to the next execution address. The type of threading used in the virtual
machine is a hybrid of indirect call threading and indirect jump threading. The kForth virtual machine
is implemented as a mixture of assembly language, C, and C++ functions. Only the assembly language
portion of the virtual machine utilizes indirect jump threading.

51

http://mips.complang.tuwien.ac.at/forth/threaded-code.html

4.3 Signed Integer Division

kForth implements symmetric integer division. An alternative form of signed integer division is called
floored integer division. Both symmetric and floored division yield identical results when the two
operands, dividend and divisor, are either both positive integers or both negative integers. However,
when the two operands differ in sign, symmetric and floored integer division can give different results.
For example,

Floored Division: -8 3 / . -3 ok

Symmetric Division: -8 3 / . 2 ok

Similarly, the word MOD yields different results on floored and symmetric division systems. Under
floored division, MOD is truly a modulus operator (i.e. the result of n1 n2 MOD is a number in the range
[0, n2)), while under symmetric division, MOD simply returns a remainder. The following paper
provides a discussion of integer division in computing languages: Division and Modulus for Computer
Scientists by Daan Leijen.

Floored integer division was guaranteed by the Forth-83 standard. However, the Forth-94 standard
revoked this guarantee and allowed system implementers to choose either symmetric or floored integer
division. The rationale in revoking a fixed standard was to allow Forth systems to implement whatever
form of integer division was best supported by the microprocessor hardware. Most microprocessors
which provide signed integer division implement symmetric division. In kForth, the original rationale
for using symmetric division was simply to maintain consistency with the GNU C implementation,
which mandates the use of symmetric integer division per the ISO C99 standard (the symmetric version
of MOD corresponds to the % operator in C). In general, floored division is considered by computer
scientists and mathematicians to be the more useful form of signed integer division.

A significant issue with the Forth-94 standard is that, in practice, implementors of compliant Forth
systems for a single hardware platform such as Intel x86 have chosen to use different forms of division.
Consider the behavior of the Forth systems below, all running under Linux on a Intel PII:

gforth: -8 3 MOD . -2 ok
pfe: -8 3 MOD . 1 ok
kforth: -8 3 MOD . -2 ok
iforth: -8 3 MOD . -2 ok
bigforth: -8 3 MOD . 1 ok

Therefore, a Forth program using signed integer division words (/ MOD /MOD */MOD) may produce
different outputs under two different Forth-94-compliant systems. The Forth-94 standard addresses the
portability issue by calling for use of the explicit floored and symmetric division words FM/MOD and

52

http://research.microsoft.com/pubs/151917/divmodnote.pdf
http://research.microsoft.com/pubs/151917/divmodnote.pdf

SM/REM whenever it is important to explicitly specify the type of division. However, it is highly likely
that Forth programmers will casually use signed integer division words such as MOD without always
remembering the portability issue.

4.4 Double Numbers

kForth supports working with signed and unsigned double length numbers, and implements nearly all
of the optional double number word set specified by Forth-94, either intrinsically or in the form of

Forth source definitions (see ans-words.4th for the latter). In addition to the Forth-2012 tests

involving double numbers given in core.4th, further tests of double number words implemented in

kForth are given in system-test/dbltest.4th.

4.4.1 Double Number Entry

One significant departure in kForth from typical Forth systems which provide double numbers is the
method of entry of double length numbers. Traditional Forth recognizes the decimal point as a marker
for a double number, e.g.

234.

is interpreted as a double number. kForth does not permit double number entry in this manner. The
rationale behind this restriction is that such entries may easily be confused with floating point numbers.
Such confusion will likely be common for new Forth users who have previously used other computer
languages such as C. Even experienced Forth users who make frequent use of floating point
calculations are also susceptible to such confusion.

4.4.2 kForth Method

The prohibition on standard double number entry in kForth demands that an alternate method be
provided for entry of double numbers. This may be easily accomplished by using a string to double
number conversion word. There are two ways to accomplish this. The first method is simple, but it is
specific to kForth, while the second is more complex, but portable to other Forth-2012 systems. In the
simple method, we may make use of the non-standard word, NUMBER?, to convert a counted string to a
signed double length number, as follows.

c" -20123456789" NUMBER? DROP

NUMBER? actually returns a flag indicating whether or not the conversion succeeded, but we drop the
flag in the above example for simplicity. If the conversion did not succeed, a double length zero will
result.

53

4.4.3 Forth-2012 Compatible Method

The second method should be used if it is desired to port the code to other Forth systems. Forth-94
provides >NUMBER for converting a string to an unsigned double number. A more general string to
double number conversion word, handling both signed and unsigned double numbers, may be written
as follows.

variable dsign

: >d (a u -- d|ud | convert string to a signed/unsigned double)
 0 0 2SWAP
 \ skip leading spaces and tabs
 BEGIN OVER C@ DUP BL = SWAP 9 = OR WHILE 1 /STRING REPEAT
 ?DUP IF
 FALSE dsign !
 OVER C@
 CASE
 [char] - OF TRUE dsign ! 1 /STRING ENDOF
 [char] + OF 1 /STRING ENDOF
 ENDCASE
 >NUMBER 2DROP
 dsign @ IF DNEGATE THEN
 ELSE DROP THEN ;

Using the above definition of >D, examples of double number entry are:

 s" 20123456789" >d
 s" -20123456789" >d
 s" +20123456789" >d

Note that the method used above is not needed if the double number being entered fits within the
bounds of a signed single number. Most cases of double number entry fit this scenario. In such a case,
we may simply enter the single number, followed by S>D, e.g.

-234 S>D
 2147483647 S>D
-2147483649 S>D

4.5 Floating Point Implementation

Earlier Forth standards such as Forth-94 allowed floating point numbers to be stored either on the data
stack or on a separate floating point stack. The Forth-2012 specification disallows the use of the data
stack for holding floating point number operands – Forth-2012 requires that standard words assume the
existence of, and use of, a separate floating point stack to operate upon floating point numbers. kForth-
64’s floating point implementation complies with Forth-2012. Each cell in kForth-64’s floating point
stack is capable of holding a double-precision (IEEE 754-format, 64-bit) value.

54

The quality of the floating point arithmetic and conformance to IEEE 754 standard in kForth may be

checked using the program, paranoia.4th, and other floating point tests provided in forth-
src/system-test.

4.6 Special Features

Special features of kForth are described in a two-part article in Forthwrite magazine, issues 116 and
117.These features are:

• The kForth dictionary is dynamically allocated as new definitions are added. Thus kForth does
not implement a monolithic, fixed size dictionary, but can use as much memory as provided by
the host operating system. Several side effects result from using dynamic memory allocation to
grow the dictionary:

• There is no HERE address in kForth.
• There is no , (“comma”) operator in kForth.
• There is no C, (“C-comma”) operator in kForth.

Owing to the fact that HERE does not exist, the word ALLOT not only allocates the requested
amount of memory, but also has the non-standard behavior that it assigns the address of the new
memory region to the parameter field address (PFA) of the last defined word. In kForth, the use
of ALLOT must always be preceded by the use of CREATE. A variant of ALLOT, named
ALLOT? is also provided. ALLOT? has the same behavior as ALLOT plus it returns the start
address of the dynamically allocated region on the parameter stack. ALLOT? has the following
equivalent definition under standard Forth:

: ALLOT? (u -- a) HERE SWAP ALLOT ;

ALLOT? is particularly useful in writing defining words in the absence of HERE and the comma
operators. For example, to write your own integer constant defining word:

: CONST (n --) CREATE 8 ALLOT? ! DOES> @ ;

or to write an address constant defining word (see below):

: PTR (a --) CREATE 8 ALLOT? ! DOES> A@ ;

55

http://www.figuk.plus.com/articles.htm

• kForth maintains type stacks corresponding to both the data and return stacks. The type stacks
contain a type code for each corresponding data stack cell or return stack cell. This allows
kForth to perform some rudimentary type checking, for example when an address is being
accessed kForth verifies that the value's type is that of an address. Address values that are stored
in variables must be retrieved with the word A@ instead of @ so that the type can be validated.
Code written for kForth may be ported to other ANS Forth implementations by defining A@ as
follows:

: A@ @ ;

• Unlike a conventional Forth interpreter which executes each token as it is interpreted, kForth
continues to build up a vector of byte codes, until a keyword or end of line in the input stream
necessitates execution. Deferred execution in interpretation state is implemented by extending
the normal concept of precedence in Forth. Instead of a single precedence-bit associated with
each word, kForth uses a precedence-byte having two significant bits to describe the behavior of
each word in both compiled and interpreted modes. Thus, a word may have one of four possible
precedence values:

0 not IMMEDIATE Deferred execution
1 IMMEDIATE Deferred execution
2 not IMMEDIATE NONDEFERRED execution
3 IMMEDIATE NONDEFERRED execution

To understand the execution behavior of a word in each of these states, it is helpful to view a
table of execution modes for each precedence value and for the two compilation states: interpret
and compile. We define the following execution modes:

• E0 – no execution, the opcode for the word is compiled into the opcode vector.
• E1 – execute current opcode vector up to and including current opcode.
• E2 – execute only current opcode and remove it from the opcode vector.

Precedence Interpret Compile
0 E0 E0
1 E2 E2
2 E1 E0
3 E1 E2

The ability to defer execution in interpreter mode allows “one-liners” to be executed from the

56

kForth prompt without having to define a word. For example, the following line can be typed
directly at the kForth prompt:

10 0 do i . loop

Ordinary Forth interpreters do not allow do-loop, begin-while-repeat, and if-then

structures to occur outside of word definitions. kForth can interpret and execute such structures
as long as they are completed on a single line of input.

Words which are nondeferred are those for which interpretation of the rest of the input line will
depend on the execution of the word. Thus, the following intrinsic words in kForth have the
nondeferred precedence attribute:

\ .(: :NONAME CREATE
] ' WORD PARSE PARSE-NAME
ALLOT CHAR CONSTANT 2CONSTANT FCONSTANT
VARIABLE 2VARIABLE FVARIABLE FORTH ASSEMBLER

WORDLIST DEFINITIONS SET-ORDER SET-CURRENT ALSO

ONLY PREVIOUS [DEFINED] [UNDEFINED] FORGET
DECIMAL HEX SET-PRECISION COMPILE, INCLUDE
INCLUDED SYNONYM TO VALUE DEFER
IS VOCABULARY >FILE CONSOLE BINARY
COLD COMPILE-NAME #! ALLOT? ALIAS

Only in very special cases will it be necessary for a programmer to use the NONDEFERRED
keyword to set explicitly the interpretation precedence of a word. This is due to the automatic
inheritance of the nondeferred attribute: if a word definition includes a nondeferred word, then
the new word is automatically nondeferred also. Thus, for example, any word which has a
definition including WORD is also a nondeferred word. Another example is a defining word, i.e.
one which uses CREATE. Since CREATE is nondeferred the new defining word is also
nondeferred.

The most common case in which the NONDEFERRED keyword should be explicitly used is in
the definition of a word which changes the number base. For example,

DECIMAL

: BASE3 3 BASE ! ; NONDEFERRED
BASE3 21

57

If BASE3 was not declared to be a nondeferred word, then 21 in the above line would be

interpreted as decimal 21 rather than as decimal 7 (which is 21 in base 3).

• kForth can be started up in debug mode using the command line switch -D. Compiled op-codes

and other debugging information are displayed in this mode. It is useful primarily for
programmers interested in extending and debugging their own versions of kForth.

4.7 Benchmarks and Tests

Versions of standard benchmark programs for measuring kForth execution speed may be found in the

subdirectory, forth-src/benchmarks. Forth source files in forth-src/system-test

provide tests for compliance of core and standard extension words in Forth-2012, for words which are
specific to kForth, and for IEEE 754 floating point arithmetic. Tests require one of the following test

harnesses: ttester.4th or tester.4th.

asm-x86-test.4th
core.4th
coreexttest.4th
coreplus.4th
dbltest.4th
divtest.4th
facilitytest.4th
fatan2-test.4th
filetest.4th
fpio-test.4th
fpzero-test.4th
ieee-arith-test.4th
ieee-fprox-test.4th
memorytest.4th
paranoia.4th
regress.4th
searchordertest.4th
stringtest.4th
to-float-test.4th

58

4.8 Exceptions

Non-zero return codes from the virtual machine (VM) follow the standardized throw codes specified in
Forth-94 and Forth-2012 (see Table 9.1 in the specification). Reserved throw codes in Forth-2012 fall
within the range -1 to -255. System-specific throw codes are allowed in the range, -256 to -4095.
kForth-64 uses the system-specific throw codes shown in the table below.

Code Exception

-256 Value on the stack did not have expected type addr

-257 Value on the stack did not have expected type ival

-258 Return stack was corrupted

-259 VM encountered invalid opcode

-260 ALLOT failed – cannot reallot memory for a word

-261 Failed on CREATE

-262 End of string not found

-263 No matching DO

-264 No matching BEGIN

-265 ELSE without matching IF

-266 THEN without matching IF

-267 ENDOF without matching OF

-268 ENDCASE without matching CASE

-269 Address outside of stack space

-270 Division overflow

-271 Unsigned double number overflow

-272 Incomplete IF … THEN structure
-273 Incomplete BEGIN structure

-274 Incomplete LOOP structure

-275 Incomplete CASE structure

-276 End of definition with no beginning

59

-277 Not allowed inside colon definition

-278 Unexpected end of input stream

-279 Unexpected end of string

-280 VM returned unknown error

4.9 Source Code Map

Source code for kForth-64 consists of the following C++, C, and assembly language files:

kforth.cpp
ForthCompiler.cpp
ForthVM.cpp
vmc.c
vm64-common.s
vm64.s
fbc.h
ForthWords.h
ForthCompiler.h
ForthVM.h
kfmacros.h
VMerrors.h

A Makefile is provided to build the executables. kForth source code is made available to users under

the GNU Affero General Public License (AGPL). The Linux version is provided as source code only
and must be built locally on the user's machine (see installation). Under Linux, the standard GNU
assembler, GNU C and C++ compilers, and the C++ Standard Template Library (STL) are required to
build the executable.

4.10 Embedding kForth

The file kforth.cpp serves as a skeleton C++ program to illustrate how the kForth compiler and

virtual machine may be embedded in a standalone program. XYPLOT is a more complex GUI program

60

https://github.com/mynenik/XYPLOT-32
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

which embeds kForth to allow user extensibility. The file xyplot.cpp shows how to set up hooks for

calling C++ functions in the host program from the embedded kForth interpreter and vice-versa.

References

1. American National Standard for Information Systems – Programming Languages – Forth
(ANSI X3.215-1994), American National Standards Institute, Inc., Approved March 24 1994.

2. Forth Standard 2012, Forth 200x Standardisation Committee, 10 November 2014.

3. Starting Forth, Leo Brodie / Forth Inc., Second Edition, Prentice-Hall, 1987.

4. Scientific Forth, a modern language for scientific computing, J. V. Noble, Mecham Banks
Publishing, 1992.

5. UR/Forth Manual, Laboratory Microsystems Inc., 1990.

6. K. Myneni and D. P. Wallace, Special Features of kForth, Forthwrite Magazine, 116 and 117.

7. K. Myneni and D. N. Williams, A Forth Modules System with Name Reuse, 15 February 2012.

8. K. Myneni, Introduction to Forth for Scientists and Engineers, LibreOffice Presentation,
January 2004.

61

	Overview
	Credits

	1. Installation
	1.1 Installation under GNU/Linux
	1.1.1 Required Packages
	1.1.2 Build and Configuration

	2. Using kForth
	2.1 Basics
	2.2 More Words
	2.3 Using Forth’s Stacks
	2.3.1 The Data Stack
	2.3.2 The Floating Point Stack

	2.4 Variables and Constants
	2.5 Stack Diagrams
	2.6 Simple Word Examples
	2.7 Acting on Conditions
	2.8 The Return Stack
	2.9 Factoring a Forth Program
	2.10 Using Memory
	2.10.1 Data Types
	2.10.2 CREATE and ALLOT
	2.10.3 Viewing Memory with DUMP

	3. Dictionary
	3.1 Dictionary Maintenance
	3.2 Word Lists and Search Order
	3.3 Compilation and Execution Words
	3.4 Defining Words
	3.5 Control Structures
	3.6 Stack Operations
	3.6.1 Data Stack Operations
	3.6.2 Return Stack Operations
	3.6.3 Floating Point Stack Operations

	3.7 Memory Operations
	3.8 String Operations
	3.9 Logic and Bit Manipulation Operations
	3.10 Arithmetic and Relational Operations
	3.10.1 Single and Double Integer Operations

	3.11 Floating Point Operations
	3.11.1 Arithmetic and Relational Words
	3.11.2 Floating Point Functions

	3.12 Number Conversion
	3.13 Input and Output
	3.14 File Access
	3.15 Operating System Interface
	3.16 Miscellaneous

	4. Technical Information
	4.1 Forth-2012 Compliance
	4.2 Threading Model
	4.3 Signed Integer Division
	4.4 Double Numbers
	4.4.1 Double Number Entry
	4.4.2 kForth Method
	4.4.3 Forth-2012 Compatible Method

	4.5 Floating Point Implementation
	4.6 Special Features
	4.7 Benchmarks and Tests
	4.8 Exceptions
	4.9 Source Code Map
	4.10 Embedding kForth

	References

