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Abstract—In today’s world of high tech manufacturing and 

computer-aided design simulations of models is at the heart of the 

whole manufacturing process. Trying to represent and study the 

variables of real world models using simulation computer 

programs can turn out to be a very expensive and time 

consuming task. On the other hand advancements in modern 

multi-core CPUs promise remarkable computational power. 

Modern modeling environments provide different optimization 

and parallelization options to take advantage of the available 

computational power. Some of these parallelization approaches 

are based on automatically extracting parallelism with the help of 

the model compiler or translator. Another approach is to provide 

the model programmers with the necessary language constructs 

to express any potential parallelism in their models. 

In this paper we present an automatic parallelization 

approach for Modelica models using Transmission Line 

Modeling (TLM). TLM is suitable for parallel simulations 

because larger models can be partitioned into smaller 

independent sub-models. TLM introduces parallelism into the 

system by decoupling subsystems using delays greater than the 

step size of the numerical solver. A prototype has been 

implemented in the OpenModelica Compiler (OMC)  

framework. Our approach re-uses the dependency analysis from 

the sequential translation step of OMC. With the help of the 

dependency analysis information the set of equations for a model 

is partitioned into a number of sub-systems. The resulting 

independent sub-systems are scheduled and executed in parallel. 

The run-time system for OMC has been improved to provide 

thread safety and handle parallelism while keeping the 

introduced overhead to minimum for normal sequential 

operation and maintaining portability.  
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I.  INTRODUCTION  

With the advent of multi-core computers an important way 
of creating efficient simulations and computations is to use 
parallel computing where the computational work is divided 
between the processors of a multi-core system. Since multi-
core processors are becoming more mainstream than single-
core processors, it is very important to utilize the resulting 
parallel computing power. This requires some kind of support 
in compilers and development environments. 

The process of compiling and simulating Modelica models 
to sequential code is described in detail in [1] and [2]. The 
handling of equations is rather complex and involves symbolic 
index reduction, topological sorting according to the causal 
dependencies between the equations, conversion into 
assignment statement form, etc. Simulation corresponds to 
"solving" the compiled equation system with respect to time 
using a numerical integration method.  

The rest of the paper is organized as follows. Section II 
provides some background information on the language and 
tools used in this work. Section III describes parallelization 
approaches and opportunities to parallelize a Modelica model. 
In section IV we describe Transmission Line Modeling which 
is at the core of this work. Section V describes how partitioning 
to sub-systems is handled. Section VI explains modifications 
done to the OpenModelica run-time system to handle parallel 
simulations and thread safety. Finally, in Section VII we 
present some measurements and results and in Section VIII a 
general discussion and conclusions are presented. 

II. BACKGROUND 

A. Modelica 

Modelica [3] is a non-proprietary, object-oriented, equation 
based, multi-domain modeling language for component-
oriented modeling of complex physical systems, e.g.,  
containing mechanical, electrical, electronic, hydraulic, 
thermal, control, electric power, and/or process-oriented 
subcomponents. 

The development and standardization of the Modelica 
language is overseen and supported by the non-profit Modelica 
Association [4]. The Modelica Association also develops the 
open source Modelica Standard Library. 

Modelica is an equation-based language. Equations, in 
Modelica, represent equality rather than assignment relations 
and have no predefined causality. Unlike assignment 
statements equations can contain expressions on both right-
hand and left-hand sides of the equation. Such equations are 
manipulated symbolically and sorted in data dependency order 
by a Modelica compiler to determine their relative order of 
execution in the solution process.  
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Modelica compilation results in an Ordinary Differential 
Equation system or a Hybrid Differential Algebraic Equation 
system, depending on the specific Modelica model. The 
Modelica compiler typically performs symbolic optimizations 
on this system of equations to reduce its size and make it more 
stable for numerical computation. The optimized code mostly 
consists of simple arithmetic operations, assignments, function 
calls, and function definitions. 

B. The OpenModelica Compiler (OMC) 

OpenModelica [5] is an open-source Modelica-based 
modeling and simulation environment intended for industrial 
and academic usage. Its long-term development is supported by 
a nonprofit organization – the Open Source Modelica 
Consortium (OSMC) [6]. 

The Programming Environments Laboratory (PELAB) [7] 
at Linköping University, together with OSMC, is developing 
the OpenModelica modeling and simulation environment 
including the OpenModelica Compiler (OMC) for the 
Modelica language (including the MetaModelica extensions). 
There is also an Eclipse plug-in called Modelica Development 
Tooling (MDT) which includes a debugger. A Template Code 
Generation language called Susan [8] [9] is also used to 
simplify code generation and further developed. 

III. PARALLEL SIMULATION OF MODELICA MODELS ON 

MULTI-CORE COMPUTERS  

Compiling Modelica models for efficient parallel 
simulation on multi-core architectures requires additional 
methods compared to the typical approaches described in [1] 
and [2]. The parallel methods can be roughly divided into the 
following groups: 

 Explicit parallelism in the language: With this approach 
the language can be extended to provide additional 
constructs for explicitly stating potential parallelism in 
the model code. This approach has been explored in 
[10] and [11]. 

 Automatic parallelization: In this approach the compiler 
itself is responsible for analyzing the program or model, 
extracting potential parallelism, partitioning the 
computational work and automatically produce parallel 
code. This approach has been explored in [12] [13] and 
[14]. 

Automatic parallelization is a preferred way of 
parallelization from the users’ perspective since users and 
programmers do not need to be familiar with parallel 
programming which is usually time consuming and error 
prone. This is even more advantageous in areas of equation-
based modeling languages where modelers are often 
application field experts rather than programming experts.  

There can be different approaches to automatic 
parallelization of equation-based languages like Modelica.  

In this paper we present two automatic parallelization 
approaches. The first is based on Transmission Line Modeling 
(TLM) in which the modeler can introduce additional 
parallelism into the system by inserting delay elements into the 
model. Such subsystems can be de-coupled using delays 

greater than the step size of the numerical solver. The second is 
based on a set of recursive decompositions of model equations 
into independent subsystems of equations and computing the 
subsystems in parallel. The prototypes have been implemented 
in the OpenModelica Compiler (OMC). In this context 
automatic means that the extraction and parallelization is done 
by OMC rather than the modeler or programmer.  

OMC takes an object-oriented Modelica representation of a 
model, translates the model descriptions and provides a set of 
flat equations representing the model and then solves these sets 
of equation. Our approach re-uses the dependency analysis 
from the sequential translation step. Scheduling the 
computations of these sub-systems ensures that the data-
dependencies are obeyed and computational load is balanced 
between subsystems. With the help of the dependency analysis 
information the set of equations for a model is partitioned into 
a number of sub-systems. The resulting independent sub-
systems are scheduled and executed in parallel. Finally, parallel 
C source code is generated for these subsystems instead of the 
normal sequential C source code.  

The current implementation uses OpenMP [15] as parallel 
runtime platform. The implementation is done partially in the 
code generator of OMC and partially in the runtime system. 

IV. TRANSMISSION LINE MODELING (TLM) 

A computer simulation model is basically a representation 
of a system of equations that model some physical phenomena. 

The goal of simulation software is to solve this system of 
equations in an efficient, accurate and robust way. In order to 
achieve such a goal the by far most common approach is to use 
a centralized solver algorithm which puts all equations together 
into a DAE or an ODE system of equations. The system is then 
solved using matrix operations and numeric integration 
methods. 

One disadvantage of this approach is that it often introduces 
data dependencies between the central solver and the equation 
system, making it difficult to parallelize the equations for 
simulation on multi-core platforms. Another problem is that the 
stability of the numerical solver depends on the simulation step 
size. 

The fundamental idea behind the TLM method is to model 
a system in a way such that components can be somewhat 
numerically isolated from each other. This allows each 
component to solve its own equations independently of the rest 
of the system. This is achieved by replacing capacitive 
components (for example volumes in hydraulic systems) with 
transmission line elements of a length for which the physical 
propagation time corresponds to at least one simulation time 
step. In this way a time delay is introduced between the 
resistive components (for example orifices in hydraulic 
systems). The result is a physically accurate description of 
wave propagation in the system [16]. 

One noteworthy property with this method is that the time 
delay represents a physically correct separation in time 
between components of the model. Since the wave propagation 
speed (speed of sound) in a certain liquid can be calculated, the 
conclusion is that the physical length of the line is directly 



proportional to the delay time used when simulating the 
component, see Equation 1. Note that this delay time is a 
parameter in the component and can very well differ from the 
time step used by the simulation engine. Keeping the delay in 
the transmission line larger than the simulation solver time step 
is important, to avoid extrapolation of delayed values. This 
means that a minimum time delay of the same size as the 
maximum time step is required, introducing a modeling error 
for very short transmission lines. 
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TLM isolates/decouples model components, making them 
largely independent from other subsystems. This property 
makes it very suitable to prepare models for parallel 
simulations .  

The Modelica delay-operator will break any equation-
variable direct dependency and thus also makes the adjacency 
matrix contain independent subsystems. Finding independent 
subsystems (i.e., strongly connect components of a graph) in an 
adjacency matrix is an operation that can be performed using 
fast algorithms from graph theory given that the adjacency 
matrix is sparse.  

V. PARTITIONING 

The main reason for using TLM is that a coarse-grained 
parallelization of the system is implicitly gained. We present a 
general approach to partitioning a system of equations that 
utilizes the time-delay introduced by TLM [17]. 

Each partition of the equation system will be independent 
from any other within the current time step. This means they 
can be parallelized by synchronizing between time steps. 

The common data-structure used for sorting and matching 
equations uses the dependences between variables and 
equations, usually stored as a sparse adjacency matrix (See [1] 
chapter 17). We can assume that any Modelica compiler will 
have this structure readily available. 

The equation system is transformed into block lower 
triangle (BLT) form, where each BLT block corresponds to 
either a single equation from the original system of equations 
or a strongly connected component (several equations) in the 
strongly connected components dependency graph of the 
system of equations. This means that the system can be solved 
sequentially. What happens when TLM is used to model the 
system is that some entries in the adjacency matrix disappear 
since delay expressions are allowed to decouple the system if 
they only access data in former time steps. 

The basic data structure needed to perform the partitioning 
analysis is the adjacency matrix. Neither the BLT matrix nor 
the sorted system is needed since it is possible to use the 
adjacency matrix alone to determine if two equations are totally 
connected in the graph. The benefit of only looking at the 
adjacency matrix is that the equation system can be partitioned 
before optimizations are performed, some of which are costly 

to perform on large systems since they do not have linear time 
complexity. 

Since not all nodes are connected to each other, the graph is 
not a tree, but a forest. The goal is to find all trees in the forest 
since these are possible to run in parallel. There are many ways 
to do this operation fast. Which one to choose depends mostly 
on the data representation that is used. Cormen [18] contains an 
interesting algorithm using disjoint sets. Our approach instead 
uses a depth-first search, marking all reachable nodes then 
choosing the next unmarked vertex and repeating the algorithm 
until all trees have been found. The algorithm has a complexity 

of (|V| + |E|), as any connected components algorithm should. 

VI. RUNTIME SYSTEM AND THREAD SAFTY 

The OpenModelica runtime system is quite complex and 
provides a lot of functionality. It has to provide support for 
simulations which can use different solvers, interactive 
simulations, external features like FMI etc. It has to support 
different mathematical operations, optimization features and so 
on. It has to provide different interfaces for specific purposes, 
for e.g. Java, FORTRAN interfaces. Support for MetaModelica 
compilation and execution is also part of the runtime system.  

To provide efficient performance and implementations of 
this functionality the runtime system needs to have a flexible 
and efficient memory management system. 

Among many things this should include support for smart 
arrays. Smart, in the sense that, the array representations should 
be aware of the number of dimensions as well as the sizes of 
each dimension. Since the runtime system is mainly 
implemented using C this is not available out of the box. This 
means that there needs to be a custom array container 
implementation that can work hand in hand with the memory 
management system. The OpenModelica runtime achieved this 
by representing Modelica arrays as C structures with additional 
information about the array.  

The actual data of each array is located in a global memory 
pool. The global memory pool operates in a very similar way to 
a traditional stack implementation of last in first out. Each 
array structure has a pointer pointing to its own specific data. 
There are two main reasons for using a global memory pool 
instead of raw allocations (malloc()) per need. The first reason 
is that using a global memory pool the runtime system can 
avoid potential memory leaks which can be very troublesome 
for simulations which take relatively longer time. 

Simulations involve computations over many simulation 
time steps. This means that a small memory leak can build up 
over time to a considerable amount. By using a custom 
memory pool the runtime achieves a better and safe memory 
model. The second reason is more related to the nature of 
physical models, specifically those which are usually modeled 
with Modelica. Most Modelica models (at least so far) do not 
have large arrays. This means that the amount of memory 
allocated per array is relatively small, in other words the 
memory allocated per malloc call is relatively small. Now 
keeping in mind that a certain array allocation will most 
probably be done at every time step, it would be expensive to 
call malloc at each time-step compared to the actual operations 
performed on the array elements. 



Having a global memory pool as explained above is 
suitable for normal sequential operations of the run-time 
system. However it adds certain issues for multi-threaded 
execution. Having all threads share the common memory pool 
and update it properly will require an extensive amount of 
tracking of allocations and de-allocations to ensure that 
memory is not left locked. In addition this will require extra 
measures to ensure that proper synchronization is achieved to 
avoid data races and conflicts.  

A rather relaxed approach is to let threads have their own 
representations of the memory model which they keep updated 
between themselves. Memory pools are created based on the 
number of threads specified for the simulation. Each thread 
uses its own memory pool to perform any allocations and de-
allocations as needed. These memory pools act as private 
data/memory spaces for each thread. Anything that needs to be 
shared between threads is allocated directly (not using the 
memory pools) and is shared directly.  

Of course not the whole run-time system needs multiple 
threads for its execution. More specifically we are using 
multiple threads right now for computing the different 
partitions or subsystems generated by the compiler backend. 
Currently this includes algebraic equations and ODE equations. 
These equations are solved on every time step.  

 

       Fig. 1. Simplified thread guidance example through run-time system. 

This means that the implementation can launch threads 
when needed, for example when it needs to solve a set of 
algebraic independent subsystems. It will synchronize them as 
needed and continue with the sequential execution when it is 
done. 

However launching threads at every time-step will incur a 
quite unnecessary overhead. For example if a simulation 
involves 1000 time steps then this means the run-time system 
will have to launch and join threads 1000 times. To work 
around this issue we have decided to create a pool of threads at 
the start of simulation and guide them through the execution 
environment to the desired location. All threads except one will 
be available but idle until the exact point where they are 
needed. Then each thread will operate on an individual 
subsystem until there are no subsystems left as shown in        
Fig. 1. 

Once the computations on independent subsystems is 
finished the master thread continues with the rest of the 
execution with the rest of the threads going back to idle state. 
This process is repeated whenever there are independent 
computations to be performed. 

VII. MEASUREMENTS AND RESULTS 

To be able to evaluate the relative performance gains of the 
implementation we have used a simple hydraulic system model 
consisting of a volume with a pressure relief valve as shown in        
Fig. 2. 

 

       Fig. 2.  A volume with a pressure relief valve. 

A pressure relief valve is a safety component. It has a 
spring at one end of the spool and the upstream pressure, that 
is, the pressure at the side of the component where the flow is 
into the component, is acting on the other end. 

The preload of the spring will make sure that the valve is 
closed until the upstream pressure reaches a certain level, when 
the force from the pressure exceeds that of the spring. The 
valve then opens, reducing the pressure to protect the system. 

The results of performance measurements with the volume 
split into different number of segments using an RK4 integrator 
and a step size of 5*10

-6
 are shown in       Fig. 3 and       Fig. 4. 

The measurement does not include the model instantiation, 
flattening and back-end specific operations. Only the 
computation time for the simulation executable to complete is 
measured and compared. 

The simulation is performed on an Intel Xeon W3565 quad-
core CPU with clock frequency of 3.2GHz. 

 

 

      Fig. 3.  Simulation time vs. number of segments. 
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      Fig. 4. Gained Speedup for different number of segments. 

VIII. DISCUSSION AND CONCLUSION 

From the results it can be seen that doubling the number of 
cores does not necessarily reduce the simulation time by half. 
Of course parallelism is rarely close to the ideal expectation. If 
a computation is complex and involves a number of algorithms, 
the parallelization efficiency can be degraded to some extent 
due to the inherently sequential parts of the computation. This 
applies to most if not all simulations of physical systems. 

The reason that the performance gains for this specific 
model are not proportional to the number of threads or cores 
used is that a typical simulation involves a considerable 
amount of setup, sanity checks and other miscellaneous 
operations which have to be performed within each time step. 
Some of these operations cannot be or are not yet parallelized. 

Performance gains for simulations can be improved further 
as more and more of the static or dynamic (model dependent) 
run-time gets parallelized. Since the OpenModelica run-time 
system is now thread safe for most parts, it is relatively easy to 
add parallelism according to need. The current thread and 
memory management implementation can be used to direct 
computations in parallel when possible and needed in other 
parts of the run-time system. 

 

REFERENCES 

[1] Peter Fritzson, Principles of Object-Oriented Modelling and Simulation 
with Modelica 2.1, 1st ed.: Wiley-IEEE Press, 2004. 

[2] François E., Kofman, Ernesto Cellier, Continuous System Modeling., 
2006. 

[3] Modelica. [Online]. [Last accessed: 2013-06-09]. Available from: 
https://www.modelica.org/. 

[4] Modelica Association. [Online]. [Last accessed: 2013-06-09]. Available 
from: https://www.modelica.org/association. 

[5] OpenModelica. [Online]. [Last accessed: 2013-06-09]. Available from: 
http://www.openmodelica.org/. 

[6] Open Source Modelica Consortium (OSMC). [Online]. [Last accessed: 
2011-06-09]. Available from: 
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsort
ium.html. 

[7] PELAB. [Online]. [Last accessed: 2013-06-09]. Available from: 
http://www.ida.liu.se/~pelab/. 

[8] Rickard Lindberg, "A TemplateBased Code Generator for the 
OpenModelica Compiler," Linköping University, LIU-IDA/LITH-EX-
A--10/006--SE, 2010. 

[9] Peter Fritzson. Modelica Text Template Language Susan. [Online]. 
[Last accessed: 2013-06-09]. Available from: 
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1
_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf. 

[10] Christoph Kessler, Peter Fritzson, and Mattias Eriksson, 
"NestStepModelica – Mathematical Modeling and Bulk-Synchronous 
Parallel Simulation," in PARA'06 Proceedings of the 8th international 
conference on Applied parallel computing: state of the art in scientific 
computing., Linköping, Sweden, 2006, pp. 1006-1015. 

[11] Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritzson, and 
Kristian Stavåker, "A Data-Parallel Algorithmic Modelica Extension for 
Efficient Execution on Multi-Core Platforms," in Proceedings of the 9th 
International Modelica Conference, Munich, Germany, Sept 3-5, 2012. 

[12] Peter Aronsson, "Automatic Parallelization of Equation-Based 
Simulation Programs," Linköping University, Dissertation No. 1022, 
2006. 

[13] Håkan Lundvall, "Automatic Parallelization using Pipelining for 
Equation-Based Simulation Languages," Linköping University, 
Linköping, Sweden, Licentiate Thesis 1381, 2008. 

[14] Per Östlund, "Simulation of Modelica Models on the CUDA 
Architecture.," Linköping Univeristy, Linköping, Sweden, Master 
Thesis LIU-IDA/LITH-EX-A--09/062--SE, 2009. 

[15] openmp.org. [Online]. [Last accessed: 2013-06-09]. Available from: 
http://openmp.org. 

[16] Petter Krus, "Robust System Modelling Using Bi-lateral Delay Lines," 
in Proceedings of the 2nd Conference on Modeling and Simulation for 
Safety and Security (SimSafe), Linköping, Sweden, 2005. 

[17] Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus, 
"Towards Efficient Distributed Simulation in Modelica using 
Transmission Line Modeling," in Proceedings of the 3rd International 
Workshop on Equation-Based Object-Oriented Modeling Languages 
and Tools, (EOOLT'2010), Oslo, Norway, Oct 3, 2010. 

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, and 
Clifford Stein, Introduction to Algorithms, 3rd ed.: The MIT Press, 
2009. 

 

100 150 200 250

2 Threads 1,05095174 1,359465447 1,396815778 1,491812328

4 Threads 1,394921526 1,64644279 1,819388634 1,939017099

0

0,5

1

1,5

2

2,5
sp

ee
d

u
p

 

https://www.modelica.org/
https://www.modelica.org/association
http://www.openmodelica.org/
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.ida.liu.se/~pelab/
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf
http://openmp.org/

	I.  Introduction
	II. Background
	A. Modelica
	B. The OpenModelica Compiler (OMC)

	III. Parallel Simulation of Modelica Models on Multi-Core Computers
	IV. Transmission Line Modeling (TLM)
	V. Partitioning
	I. Runtime system and Thread Safty
	VI.
	VII. Measurements and Results
	VIII. Discussion and Conclusion
	References


