
Design Document for the comments and

indentation preservation

Sbastien Combel

February 21, 2011

Contents

1



1 Introduction

The aim of this project is to support Modelica code refactoring with the minimal
disruption of user-defined comments and indentation. Currently, only the decla-
ration comments are handled. The C-like comment and user-defined indentation
are discarded or moved.

2 Context / Overview

The lexer and the parser are generated by ANTLR3. All the generated code
must be done in C (no C++).

The lexer convert a stream of character into a stream of tokens. The parser
then convert that stream of token into an Abstract Syntax Tree (AST). Cur-
rently, only an AST is generated by the parser.

The refactoring operations use the AST (or a similar intermediate represen-
tation) to calculate the modifications to be done on the source code. Those
modifications are stored as a list of new AST nodes, with AST position to
unparse and buffer (or file) positions. Once the modifications are known, the
specific part of the AST involved is unparsed, the modifications are applied
on the buffer. Finally, the code is parsed again to update the data about the
current source code.

3 Steps

First, the informations about the tokens must be stored in a seperate list, during
the parsing of the source code.

Once it’s done, the list will be used to generate a hashtable with MetaMod-
elica code.

During refactoring (and/or unparsing ?) whenever the source code will have
to be modified, the compiler will refer to the hashtable to know where the
modification must be done. A modification can only occur within a token string,
to avoid disruption of the surrounding code.

4 Idea to keep

Refactoring Down-top way, in order to not disrupt the coordinates of the next
nodes.

5 Confused things/Problems

A refactoring example is the renaming of a component. Aim of the function,
renaming a component at its declaration and calls. Since the modification gen-
erated by this example will take place in several places in the code, I suspect

2



that an ordered list of those modifications must be done before (or else the
down-top way will be a waste).

Q :
Once the refactoring has taken place, shall the hastable be regenerated from

scratch, or shall we try to update it ?
If multiples refactoring ¡¡ functions ¿¿ are called in the same ¡¡ step ¿¿, shall

we try to apply all of them at the same time (i.e. calculate everything and sort
all of the modification before appliance), or shall we execute them one by one,
updating/regenerating the hashtable between each function ?

3


