
PDE extension -- simplified version
example models and comparison to Saldamli

Jan Šilar
jan.silar@lf1.cuni.cz

October 14, 2014

Simplified extension is introduced by example models first. It is than compared to Levon’s work
([1], mostly chapter 4). Restrictions of this simplified extension are

• 1D models only

• only first derivative in both time and space

Simplified extension is subset of full proposed extension described in [2]
(https://openmodelica.org/svn/OpenModelica/trunk/doc/PDEInModelica/doc/comparisonToSaldamli.pdf)

Support for this simple extension in OM should be implemented within my PhD.

1 Example models
1.1 Advection equation

model advect ion " advect ion equat ion "
import PDEDomains . ∗
parameter Real L = 1 ; // l ength
parameter Real c = 1 ;
parameter DomainLineSegment1D omega (l = L) ;
f i e l d Real u(domain = omega , s t a r t = 0) ;

equat ion
der (u) + c∗ der (u , x) = 0 ; //by d e f a u l t in omega . i n t e r i o r
u = s i n (2∗3 .14∗ time) in omega . l e f t ;

end advect ion ;

Listing 1: Advection equation in Modelica

• class DomainLineSegment1D from package PDEDomains

1

1.2 String equation

model s t r i n g " model o f a v i b r a t i n g s t r i n g "
import PDEDomains . ∗ ;
parameter Real L = 1 ; // l ength
parameter Real c = 1 ; // t en s i on /(l i n e a r dens i ty)
parameter DomainLineSegment1D omega (l = L) ;
f i e l d Real u(domain = omega , s t a r t = s i n (−2∗3.14/ sq r t (c) ∗omega . x)) ;
f i e l d Real v (domain = omega) ;

i n i t i a l equat ion
der (u) = 0 ;

equat ion
der (u) − c∗ der (v , x) = 0 ;
der (v) − der (u , x) = 0 ;
u = s i n (2 . 0 ∗ 3 . 1 4 ∗ time) in omega . l e f t ;
pder (u , x) = 0 in omega . r i g h t ;

end s t r i n g ;

Listing 2: String model in Modelica

• system of two equations avoiding second derivatives

• Dirichlet and Neumann BC

2 Comparison to Saldamli
2.1 Domain definition
Originally
see [1] -- 4.3.1.1 and 4.3.1.2

Saldamli defines domain shape by listing its boundaries. Individual boundaries (points in 1D, curves
in 2D resp. surfaces in 3D) are describes by shape-functions. Shape-function maps intervals ([0,1] for
curves, [0,1]×[0,1] for surfaces) onto the boundary.

This approach is unnecessarily complicated in 1D. Other problems come in higher dimensions and
are discussed in [2].

Alternative approach
We have several new built-in types.

Built-in type Coordinate:

type Coordinate = Real;

Built-in type Domain contains type Region to represent interior and boundaries of the domain. Region
is nested in Domain to prevent instantiating Region outside a Domain.

2

type Domain

type Region
parameter Integer ndim; //dimension of the region

end Region;

parameter Integer ndimD; //dimension of the domain
Coordinate coord[ndimD];
replaceable Region interior; //main region of the domain

end Domain;

type Domain is extended by domain types for particular dimensions, e.g. in 1D:

type Domain1D
extends Domain(ndimD = 1);
type Region0D = Region(ndim = 0); //for boundaries
type Region1D = Region(ndim = 1); //for interior

end Domain1D;

These types are extended by particular domains, e.g.:

type DomainLineSegment1D
extends Domain1D;
parameter Real l = 1; //length
Coordinate x(name = "cartesian") = coord[1]; //alias for the coord
Region1D interior(x in {0,l});
Region0D left(x = 0); //boundaries
Region0D right(x = l);

end DomainLineSegment1D;

New syntax (x in (0,l)) is used here to specify the range for the coordinate x within the region.
I’m not sure about it, may be something better could be proposed.

Differential operators
4.3.2

Partial derivatives
Higher order derivatives are discussed here even though not supported for now.

Originally
see 4.3.2.1

e.g. ∂u
∂t .. der(u), ∂2u

∂x∂y .. der(u,x,y)
this is kept.

Further specification
der(u,time) is also possible and is equivalent to der(u) for field u

3

However for mixed time and space derivative, we write e.g.
der(u,x,time).

Accessing coordinates in der() operator
Originally
not discussed

Problem
Coordinates are defined within the domain type, but they are used in equations that are written outside
domains. Thus they should be accessed using domainName. prefix (e.g. omega.x), which is tedious.

In the example in 4.3.2.2 in [1] the normal vector n is reached outside the domain class without
domainName. prefix even thou it is defined in the domain. It is not explained how this is enabled.

Solution
Fields are differentiated with respect to coordinates only. Thus in place of second and following
operands of pder() operator may be given only coordinates. So variables in this positions may be
treated specially: coordinates of the domain of the field being differentiated may be accessed without
the “domainName.” prefix here. If a variable of the same name exists in the model, they wont be in a
conflict as the model variable can not appear in place of the second or following operand of pder().

Perhaps usage of this shortened notation was intended even in the original extension but was not
mentioned.

In operator
Just a remark: All equations containing a field variable (defined on a domain) hold on particular region
of the domain. If the region is not specified (using “in domain.region”) region interior is assumed
implicitly.

Field literal constructor
originally
see 4.2.2, e.g.:

u = field(2*a+b for (a,b) in omega)
where iterator variables (a,b) exist only in constructor expression and represent coordinates in omega
(probably coord, but may be cartesian, it is not clear from the document.)

problem

4

This syntactic feature is redundant (explained in next paragraph). It also has some problems in the
full extension (see [2]). And the syntax suggested below is shorter and simpler anyway.

solution

Coordinate variables are also fields. (Coordinates vary their value over space as other fields.) Thus
any expression depending on coordinates should be evaluated to another field. So we can write just

u = 2*omega.x+omega.y;
If coordinates are used often (not only in pder()), an alias for it may be defined to avoid “omega.”

prefix, e.g.

coord Real x = omega.x;
But this would need new keyword coord.

References
[1] Levon Saldamli. A High-Level Language for Modeling with Partial Differential Equations. PhD

thesis, Department of Computer and Information Science, Linköping University, 2006.

[2] Jan Šilar. Pde extension -- changes over levon’s extension.
https://openmodelica.org/svn/OpenModelica/trunk/doc/PDEInModelica/doc/comparisonToSaldamli.pdf.

5

