PDE extension
Changes over Levon’s extension

Jan Silar
jan.silar@Ifl.cuni.cz

November 3, 2014

New extension is compared to Levon’s work ([2]), mostly chapter 4

Domains Geometry Definition

Originally
see [2] -- 4.3.1.1 and 4.3.1.2

Saldamli defines domain shape by listing its boundaries. Individual boundaries (points in 1D, curves
in 2D resp. surfaces in 3D) are describes by shape-functions. Shape-function maps intervals ([0,1] for
curves, [0,1]x[0,1] for surfaces) onto the boundary.

Example half-circular domain according to [2]:

class Arc
extends Boundary(ndims=2);
parameter Point c = {0,0};
parameter Real r = 1;
parameter Real a_start = O;
parameter Real a_end = 2%Pi;
redeclare function shape

input Real tau; //tau in [0,1]
output Real coord[2];
algorithm
coord := c + r * { cos(a_start + (a_end - a_start) * tau),
sin(a_start + (a_end - a_start) * tau) };
end shape;
end Arc;

Figure 0.1: Boundary in 3D

class Line
extends Boundary(ndims=2);
parameter Point pl = {0,03};
parameter Point p2 = {1,0};
redeclare function shape
input Real h; //h in [0,1]
output Real coord[2];
algorithm
coord := pl + (p2 - pl) * h;
end shape;
end Line;

type Half-circularDomain

extends Cartesian2D(boundary = {arc, linel});

parameter Arc arc (¢ = {0,0}, r = 2, a_start = Pi/2, a_end =
Pix3/2);

parameter Line line (pl = {0,-2}, p2 = {0,2});
end Half-circularDomain;

Problem

This approach doesn’t work well in 3D: if boundaries of the whole domain are composed of several
surfaces, parameters (arguments) of shape-functions of these surfaces must be bounded not just in
[0,a] x [0,b] interval but in some more complex set for each boundary surface so that they form a
continuous boundary, e.g. see fig. 0.1. And there is no way to write this in Levon’s extension.

Even if the syntax allowed this, it would be difficult for the user to determine these sets where
parameters are bounded.

There is also no simple way to generate grid points during translation/solution.

Alternative approach We define explicitely both interior and boundaries of the domain (these
elements are called regions here).
We have new built-in type Coordinate:

type Coordinate = Real;

Another new built-in type is Domain. It contains also type Region to represent interior and boundaries
of the domain. Region is nested in Domain to prevent instantiating Region outside a Domain.

type Domain

type Region
parameter Integer ndim; //dimension of the region
parameter Real[ndims][2] interval;

end Region;

replaceable function shapeFunc
input Real u[ndim];
output Real coord[ndim];

end shapeFunc;

parameter Integer ndimD; //dimension of the domain

Coordinate coord[ndimD];

replaceable Region interior; //main region of the domain
end Domain;

type Domain is extended by domain types for particular dimensions, e.g. in 2D:

type Domain2D
extends Domain(ndimD = 2);
type RegionOD = Region(ndim = 0); //for points
type RegionlD = Region(ndim = 1); //for boundaries
type Region2D = Region(ndim = 2); //for interior
end Domain2D;

These types are extended by particular domains, e.g.:

type DomainRectangle2D
extends Domain2D;
parameter Real 1x = 1; //length in x dir.
parameter Real 1y = 1; //lenght in y dir.
Coordinate x(name = "cartesian") = coord[1]; //alias for the first coordinate
Coordinate y(name = "cartesian") = coord[2]; //alias for the second coordinate
Region2D interior(x in {0,1x}, y in {0,1y});
RegionlD top(x in {0,ly}, y = ly); //boundaries
RegioniD right(x = 1x, y in {0,1y});
RegionlD bottom(x in {0,ly}, y = 0);
RegioniD left(x = 0, y in {0,1y});
end DomainRectangle2D;
New syntax (x in {0,1x}) is used here to specify the interval for the coordinate x within the
region.
If the domain geometry is more complex than just cartesian product of intervals we define all regions
of the domain using one common shape-function (or assignment or equation) and for each region we

specify intervals for the shape-function arguments (idea from Peters Book [1]). This approach isn’t
more general (actualy less), but is consistent in 1, 2 and 3D and (to me) si more natural. Example
half-circular domain:

type DomainHalf-circle //1. variant
extends Domain2D;
Coordinate x(name = "cartesian") = coord[1];
Coordinate y(name = "cartesian") = coord[2];

parameter Real radius = 2;

parameter Real[2] ¢ = {0,0};

Region2D interior(interval = {{0,1},{0,1}});
RegionlD arc(interval = {1,{0,1}});
RegionlD line(interval = {{-1,1},0});

redaclare function shapeFunc
input Real r,v;
output Real coordinate[2];
algorithm
coordinate := ¢ + radius * r * { cos(Pi*(1/2 + v),
sin(Pi*x(1/2 + v) };
end shapeFunc;
end DomainHalf-circle;

Shape-function is not a pure function (here parameters ¢ and radius are defined outside the function
body) and thus it is not supported in current Modelica. The shape-function may be replaced by just
algorithm inserted directly into the domain class to avoid this problem. Parameters of shape-function
are replaced by new general auxiliary coordinate system (r,v here) (that may not have a good physical
meaning in some cases):

type DomainHalf-circle //2. variant
extends Domain2D;
Coordinate x(name = "cartesian") = coord[1];
Coordinate y(name = "cartesian") = coord[2];

parameter Real radius = 2;

parameter Real[2] c = {0,0};

Coordinate r,v;

Region2D interior(r in {0,1}, v in {0,1});

RegionlD arc(r = 1, v in {0,1});

RegionlD line(r in {-1,1}, v = 0);
algorithm

coord := ¢ + radius * r * { cos(Pi*(1/2 + v), sin(Pi*(1/2 + v) };
end DomainHalf-circle;

Probably the algorithm is not needed and may be replaced by equations:

type DomainHalf-circle //3. variant
extends Domain2D;
Coordinate x(name = "cartesian") = coord[1];
Coordinate y(name = "cartesian") = coord[2];
parameter Real radius = 2;
parameter Real[2] c = {0,0};
Coordinate r,v;
Region2D interior(r in {0,1}, v in {0,1});
RegionlD arc(r = 1, v in {0,1});
RegionlD line(r in {-1,1}, v = 0);
equation
coord = ¢ + radius * r * { cos(Pi*(1/2 + v), sin(Pi*(1/2 + v) };
end DomainHalf-circle;

One of these approches should be chosen. I prefare the third one.

More complex geometries

May be more complex geometries could be defined using Constructive Solid Geometry - it is applying
union, intersection and difference on previously defined shapes. The syntax is not designed already. It
should be also possible to define domain in external file from some CAD app.

Differential operators

4.3.2

Partial derivatives

Originally

see 4.3.2.1
eg. 2 der(w), L% . der()
8 5t - der(w), z5- .. der(u,x,y

Further specification

for higher order time derivative and mixed time and space derivative, we write time explicitly, e.g.
der(u,time,time) for %
and

2
der(u,x,time) for O u

oxot "

Normal derivative and normal vector

Originally
see 4.3.2.2

normal vector is implicit member of domain

Problem

Normal vector makes sense only in regions of dimension n-1 in n-dimensional domain (i.e. surface in
3D, curve in 2D and point in 1D). There is no normal vector in n dimensional region and infinitely
many in less than n-1 dimensional regions.

Alternative approach
normal vector n is implicit member of all n-1 dimensional regions in n-dimensional domain. So we
write

pder(u,omega.boundary.n) = O in omega.boundary;

A shorten notation is suggested in next section.
Using normal vector outside differential operators should be also possible e.g.:

field Real[3] flux;
flux*omega.boundary.n = 0 in omega.boundary;

Accessing coordinates and normal vector in der() operator

Originally
not discussed

Problem
Coordinates and normal vector are defined within the domain class, but they are used in equations that
are written outside domains. Thus they should be accessed using domainName. prefix (e.g. omega.x),
which is tedious.

In the example in 4.3.2.2 in [2] the normal vector n is reached outside the domain class without
domainName. prefix even thou it is defined in the domain. It is not explained how this is enabled.

Solution
Fields are differentiated with respect to coordinates or normal vector only (or may be also some other
vector for directional derivative??). Thus in place of second and following operands of der () operator
may be given only coordinates or normal vector. So variables in this positions may be treated specially
and coordinates and normal vector of the domain of the field being differentiated may be accessed
without the domainName. prefix here.

If coordinates or normal vector is used in different context (not in place of second and following
operands of der()), an alias for it may be defined in the model, e.g.

Coordinate x = omega.X;

Perhaps usage of this shortened notation was intended even in the original extension but was not
mentioned.

Start values of derivatives

Originally
not discussed

problem
Higher derivatives are allowed for fields thus we need to assign initial values to its derivatives sometimes.

solution
New attribute startTD for field variables to assign its first time derivative start value is introduced.
Usage e.g.:

field Real u(start = 0, startDer = sin(omega.x*omega.y));
Initial values for higher time derivatives or space derivatives must be assigned in initial equation
section.

In operator

Just a remark: All equations containing a field variable (defined on a domain) hold on particular region
of the domain. If the region is not specified (using "in domain.region") region interior is assumed
implicitly.

Accessing field values

Originally
see 4.2.4, in function-like style

problem
It is not consistent with curent Modelica -- to access values of regular variables in particular time in
this function-like style is also not allowed.

If more then one coordinate system are defined in a domain (discussed later), it is not clear which
coordinates are used in the function-like expression.

solution
Regions consisting of one point and the in operator will be used instead to represent the particular
point. E.g.

model heatPID

record Room extends DomainBlock3D;

RegionOD sensorPosition(shape = shapeFunc, range = {{1, 1}, {0.5, 0.5}, {0.5,

0.5}1);

end Room

Room room(...)

field Real T(domain = room);

Real Ts;
equation

Ts = T in room.sensorPosition;

end heatPID;
in operator will be probably used also to match regions from different domains and to write

equations (boundary conditions) relating fields from different domains. The syntax is not developed
yet.

Modifications presented below are not so important and are questionable.

Coordinates

Originally
see 4.3.1.1 and 4.3.1.3

There are two arrays for coordinates predefined in the built-in Domain type. cartesian for cartesian
coordinates and coord for arbitrary coordinates specified by the user. No other coordinates may be
defined except aliases to elements of these predefined arrays.

Problem
May be this is not flexible enough. User may need more different coordinate systems.

Solution
new type Coordinate to define coordinates. Usage e.g.

Coordinate coordName;

The array coord in the built-in Domain type may be left out then.

Field literal constructor

originally
see 4.2.2, e.g.:
u = field(2*a+b for (a,b) in omega)
where iterator variables (a,b) exist only in constructor expression and represent coordinates in omega
(probably coord, but may be cartesian, it is not clear from the document.)

problem

This syntactic feature is redundant (explained in next paragraph). Another problem is that it enables to
define the field values in terms of only one coordinate system. There may be two (or more) coordinate
systems defined and it may be useful to be able to define fields using any of them.

solution Coordinate variables are special kind of fields. (Coordinates vary their value over space as
other fields.) Thus any expression depending on coordinates should be evaluated to another field. So
we can write just

u = 2*omega.x+omega.y;

According to the section “‘In operator” this is equivalent to u = 2%omega.x+omega.y in omega.interior;
If coordinates are used often (not only in pder()), an alias for it may be defined to avoid "omega."
prefix, e.g.

Coordinate x = omega.X;

Further problems

How to write equations (mainly BC) connecting fields defined in different domains (some kind of
distributed connectors)?

References

[1] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

[2] Levon Saldamli. A High-Level Language for Modeling with Partial Differential Equations. PhD
thesis, Department of Computer and Information Science, Linképing University, 2006.

