
Parallelizing Equation-Based Models for Simulation

on Multi-Core Platforms by Utilizing Model

Structure.

Martin Sjölund Mahder Gebremedhin Peter Fritzson
Department of Computer and Information Science

 Linköping University, Sweden

{martin.sjolund, mahder.gebremedhin, peter.fritzson}@liu.se

Abstract—In today’s world of high tech manufacturing and

computer-aided design simulations of models is at the heart of the

whole manufacturing process. Trying to represent and study the

variables of real world models using simulation computer

programs can turn out to be a very expensive and time

consuming task. On the other hand advancements in modern

multi-core CPUs promise remarkable computational power.

Modern modeling environments provide different optimization

and parallelization options to take advantage of the available

computational power. Some of these parallelization approaches

are based on automatically extracting parallelism with the help of

the model compiler or translator. Another approach is to provide

the model programmers with the necessary language constructs

to express any potential parallelism in their models.

In this paper we present an automatic parallelization

approach for Modelica models using Transmission Line

Modeling (TLM). TLM is suitable for parallel simulations

because larger models can be partitioned into smaller

independent sub-models. TLM introduces parallelism into the

system by decoupling subsystems using delays greater than the

step size of the numerical solver. A prototype has been

implemented in the OpenModelica Compiler (OMC)

framework. Our approach re-uses the dependency analysis from

the sequential translation step of OMC. With the help of the

dependency analysis information the set of equations for a model

is partitioned into a number of sub-systems. The resulting

independent sub-systems are scheduled and executed in parallel.

The run-time system for OMC has been improved to provide

thread safety and handle parallelism while keeping the

introduced overhead to minimum for normal sequential

operation and maintaining portability.

Keywords— Transmission Line Modeling; Parallel Computing;

Simulation; Modelica; Compiler; Multi-Core

I. INTRODUCTION

With the advent of multi-core computers an important way
of creating efficient simulations and computations is to use
parallel computing where the computational work is divided
between the processors of a multi-core system. Since multi-
core processors are becoming more mainstream than single-
core processors, it is very important to utilize the resulting
parallel computing power. This requires some kind of support
in compilers and development environments.

The process of compiling and simulating Modelica models
to sequential code is described in detail in [1] and [2]. The
handling of equations is rather complex and involves symbolic
index reduction, topological sorting according to the causal
dependencies between the equations, conversion into
assignment statement form, etc. Simulation corresponds to
"solving" the compiled equation system with respect to time
using a numerical integration method.

The rest of the paper is organized as follows. Section II
provides some background information on the language and
tools used in this work. Section III describes parallelization
approaches and opportunities to parallelize a Modelica model.
In section IV we describe Transmission Line Modeling which
is at the core of this work. Section V describes how partitioning
to sub-systems is handled. Section VI explains modifications
done to the OpenModelica run-time system to handle parallel
simulations and thread safety. Finally, in Section VII we
present some measurements and results and in Section VIII a
general discussion and conclusions are presented.

II. BACKGROUND

A. Modelica

Modelica [3] is a non-proprietary, object-oriented, equation
based, multi-domain modeling language for component-
oriented modeling of complex physical systems, e.g.,
containing mechanical, electrical, electronic, hydraulic,
thermal, control, electric power, and/or process-oriented
subcomponents.

The development and standardization of the Modelica
language is overseen and supported by the non-profit Modelica
Association [4]. The Modelica Association also develops the
open source Modelica Standard Library.

Modelica is an equation-based language. Equations, in
Modelica, represent equality rather than assignment relations
and have no predefined causality. Unlike assignment
statements equations can contain expressions on both right-
hand and left-hand sides of the equation. Such equations are
manipulated symbolically and sorted in data dependency order
by a Modelica compiler to determine their relative order of
execution in the solution process.

This work has been supported by Serc, by Elliit, by the Swedish Strategic
Research Foundation in the EDOp and HIPo projects and by Vinnova in the
RTSIM and ITEA2 MODRIO projects. The Open Source Modelica
Consortium supports the OpenModelica work.

Modelica compilation results in an Ordinary Differential
Equation system or a Hybrid Differential Algebraic Equation
system, depending on the specific Modelica model. The
Modelica compiler typically performs symbolic optimizations
on this system of equations to reduce its size and make it more
stable for numerical computation. The optimized code mostly
consists of simple arithmetic operations, assignments, function
calls, and function definitions.

B. The OpenModelica Compiler (OMC)

OpenModelica [5] is an open-source Modelica-based
modeling and simulation environment intended for industrial
and academic usage. Its long-term development is supported by
a nonprofit organization – the Open Source Modelica
Consortium (OSMC) [6].

The Programming Environments Laboratory (PELAB) [7]
at Linköping University, together with OSMC, is developing
the OpenModelica modeling and simulation environment
including the OpenModelica Compiler (OMC) for the
Modelica language (including the MetaModelica extensions).
There is also an Eclipse plug-in called Modelica Development
Tooling (MDT) which includes a debugger. A Template Code
Generation language called Susan [8] [9] is also used to
simplify code generation and further developed.

III. PARALLEL SIMULATION OF MODELICA MODELS ON

MULTI-CORE COMPUTERS

Compiling Modelica models for efficient parallel
simulation on multi-core architectures requires additional
methods compared to the typical approaches described in [1]
and [2]. The parallel methods can be roughly divided into the
following groups:

 Explicit parallelism in the language: With this approach
the language can be extended to provide additional
constructs for explicitly stating potential parallelism in
the model code. This approach has been explored in
[10] and [11].

 Automatic parallelization: In this approach the compiler
itself is responsible for analyzing the program or model,
extracting potential parallelism, partitioning the
computational work and automatically produce parallel
code. This approach has been explored in [12] [13] and
[14].

Automatic parallelization is a preferred way of
parallelization from the users’ perspective since users and
programmers do not need to be familiar with parallel
programming which is usually time consuming and error
prone. This is even more advantageous in areas of equation-
based modeling languages where modelers are often
application field experts rather than programming experts.

There can be different approaches to automatic
parallelization of equation-based languages like Modelica.

In this paper we present two automatic parallelization
approaches. The first is based on Transmission Line Modeling
(TLM) in which the modeler can introduce additional
parallelism into the system by inserting delay elements into the
model. Such subsystems can be de-coupled using delays

greater than the step size of the numerical solver. The second is
based on a set of recursive decompositions of model equations
into independent subsystems of equations and computing the
subsystems in parallel. The prototypes have been implemented
in the OpenModelica Compiler (OMC). In this context
automatic means that the extraction and parallelization is done
by OMC rather than the modeler or programmer.

OMC takes an object-oriented Modelica representation of a
model, translates the model descriptions and provides a set of
flat equations representing the model and then solves these sets
of equation. Our approach re-uses the dependency analysis
from the sequential translation step. Scheduling the
computations of these sub-systems ensures that the data-
dependencies are obeyed and computational load is balanced
between subsystems. With the help of the dependency analysis
information the set of equations for a model is partitioned into
a number of sub-systems. The resulting independent sub-
systems are scheduled and executed in parallel. Finally, parallel
C source code is generated for these subsystems instead of the
normal sequential C source code.

The current implementation uses OpenMP [15] as parallel
runtime platform. The implementation is done partially in the
code generator of OMC and partially in the runtime system.

IV. TRANSMISSION LINE MODELING (TLM)

A computer simulation model is basically a representation
of a system of equations that model some physical phenomena.

The goal of simulation software is to solve this system of
equations in an efficient, accurate and robust way. In order to
achieve such a goal the by far most common approach is to use
a centralized solver algorithm which puts all equations together
into a DAE or an ODE system of equations. The system is then
solved using matrix operations and numeric integration
methods.

One disadvantage of this approach is that it often introduces
data dependencies between the central solver and the equation
system, making it difficult to parallelize the equations for
simulation on multi-core platforms. Another problem is that the
stability of the numerical solver depends on the simulation step
size.

The fundamental idea behind the TLM method is to model
a system in a way such that components can be somewhat
numerically isolated from each other. This allows each
component to solve its own equations independently of the rest
of the system. This is achieved by replacing capacitive
components (for example volumes in hydraulic systems) with
transmission line elements of a length for which the physical
propagation time corresponds to at least one simulation time
step. In this way a time delay is introduced between the
resistive components (for example orifices in hydraulic
systems). The result is a physically accurate description of
wave propagation in the system [16].

One noteworthy property with this method is that the time
delay represents a physically correct separation in time
between components of the model. Since the wave propagation
speed (speed of sound) in a certain liquid can be calculated, the
conclusion is that the physical length of the line is directly

proportional to the delay time used when simulating the
component, see Equation 1. Note that this delay time is a
parameter in the component and can very well differ from the
time step used by the simulation engine. Keeping the delay in
the transmission line larger than the simulation solver time step
is important, to avoid extrapolation of delayed values. This
means that a minimum time delay of the same size as the
maximum time step is required, introducing a modeling error
for very short transmission lines.

 √

(1)

TLM isolates/decouples model components, making them
largely independent from other subsystems. This property
makes it very suitable to prepare models for parallel
simulations .

The Modelica delay-operator will break any equation-
variable direct dependency and thus also makes the adjacency
matrix contain independent subsystems. Finding independent
subsystems (i.e., strongly connect components of a graph) in an
adjacency matrix is an operation that can be performed using
fast algorithms from graph theory given that the adjacency
matrix is sparse.

V. PARTITIONING

The main reason for using TLM is that a coarse-grained
parallelization of the system is implicitly gained. We present a
general approach to partitioning a system of equations that
utilizes the time-delay introduced by TLM [17].

Each partition of the equation system will be independent
from any other within the current time step. This means they
can be parallelized by synchronizing between time steps.

The common data-structure used for sorting and matching
equations uses the dependences between variables and
equations, usually stored as a sparse adjacency matrix (See [1]
chapter 17). We can assume that any Modelica compiler will
have this structure readily available.

The equation system is transformed into block lower
triangle (BLT) form, where each BLT block corresponds to
either a single equation from the original system of equations
or a strongly connected component (several equations) in the
strongly connected components dependency graph of the
system of equations. This means that the system can be solved
sequentially. What happens when TLM is used to model the
system is that some entries in the adjacency matrix disappear
since delay expressions are allowed to decouple the system if
they only access data in former time steps.

The basic data structure needed to perform the partitioning
analysis is the adjacency matrix. Neither the BLT matrix nor
the sorted system is needed since it is possible to use the
adjacency matrix alone to determine if two equations are totally
connected in the graph. The benefit of only looking at the
adjacency matrix is that the equation system can be partitioned
before optimizations are performed, some of which are costly

to perform on large systems since they do not have linear time
complexity.

Since not all nodes are connected to each other, the graph is
not a tree, but a forest. The goal is to find all trees in the forest
since these are possible to run in parallel. There are many ways
to do this operation fast. Which one to choose depends mostly
on the data representation that is used. Cormen [18] contains an
interesting algorithm using disjoint sets. Our approach instead
uses a depth-first search, marking all reachable nodes then
choosing the next unmarked vertex and repeating the algorithm
until all trees have been found. The algorithm has a complexity

of (|V| + |E|), as any connected components algorithm should.

VI. RUNTIME SYSTEM AND THREAD SAFTY

The OpenModelica runtime system is quite complex and
provides a lot of functionality. It has to provide support for
simulations which can use different solvers, interactive
simulations, external features like FMI etc. It has to support
different mathematical operations, optimization features and so
on. It has to provide different interfaces for specific purposes,
for e.g. Java, FORTRAN interfaces. Support for MetaModelica
compilation and execution is also part of the runtime system.

To provide efficient performance and implementations of
this functionality the runtime system needs to have a flexible
and efficient memory management system.

Among many things this should include support for smart
arrays. Smart, in the sense that, the array representations should
be aware of the number of dimensions as well as the sizes of
each dimension. Since the runtime system is mainly
implemented using C this is not available out of the box. This
means that there needs to be a custom array container
implementation that can work hand in hand with the memory
management system. The OpenModelica runtime achieved this
by representing Modelica arrays as C structures with additional
information about the array.

The actual data of each array is located in a global memory
pool. The global memory pool operates in a very similar way to
a traditional stack implementation of last in first out. Each
array structure has a pointer pointing to its own specific data.
There are two main reasons for using a global memory pool
instead of raw allocations (malloc()) per need. The first reason
is that using a global memory pool the runtime system can
avoid potential memory leaks which can be very troublesome
for simulations which take relatively longer time.

Simulations involve computations over many simulation
time steps. This means that a small memory leak can build up
over time to a considerable amount. By using a custom
memory pool the runtime achieves a better and safe memory
model. The second reason is more related to the nature of
physical models, specifically those which are usually modeled
with Modelica. Most Modelica models (at least so far) do not
have large arrays. This means that the amount of memory
allocated per array is relatively small, in other words the
memory allocated per malloc call is relatively small. Now
keeping in mind that a certain array allocation will most
probably be done at every time step, it would be expensive to
call malloc at each time-step compared to the actual operations
performed on the array elements.

Having a global memory pool as explained above is
suitable for normal sequential operations of the run-time
system. However it adds certain issues for multi-threaded
execution. Having all threads share the common memory pool
and update it properly will require an extensive amount of
tracking of allocations and de-allocations to ensure that
memory is not left locked. In addition this will require extra
measures to ensure that proper synchronization is achieved to
avoid data races and conflicts.

A rather relaxed approach is to let threads have their own
representations of the memory model which they keep updated
between themselves. Memory pools are created based on the
number of threads specified for the simulation. Each thread
uses its own memory pool to perform any allocations and de-
allocations as needed. These memory pools act as private
data/memory spaces for each thread. Anything that needs to be
shared between threads is allocated directly (not using the
memory pools) and is shared directly.

Of course not the whole run-time system needs multiple
threads for its execution. More specifically we are using
multiple threads right now for computing the different
partitions or subsystems generated by the compiler backend.
Currently this includes algebraic equations and ODE equations.
These equations are solved on every time step.

 Fig. 1. Simplified thread guidance example through run-time system.

This means that the implementation can launch threads
when needed, for example when it needs to solve a set of
algebraic independent subsystems. It will synchronize them as
needed and continue with the sequential execution when it is
done.

However launching threads at every time-step will incur a
quite unnecessary overhead. For example if a simulation
involves 1000 time steps then this means the run-time system
will have to launch and join threads 1000 times. To work
around this issue we have decided to create a pool of threads at
the start of simulation and guide them through the execution
environment to the desired location. All threads except one will
be available but idle until the exact point where they are
needed. Then each thread will operate on an individual
subsystem until there are no subsystems left as shown in
Fig. 1.

Once the computations on independent subsystems is
finished the master thread continues with the rest of the
execution with the rest of the threads going back to idle state.
This process is repeated whenever there are independent
computations to be performed.

VII. MEASUREMENTS AND RESULTS

To be able to evaluate the relative performance gains of the
implementation we have used a simple hydraulic system model
consisting of a volume with a pressure relief valve as shown in
Fig. 2.

 Fig. 2. A volume with a pressure relief valve.

A pressure relief valve is a safety component. It has a
spring at one end of the spool and the upstream pressure, that
is, the pressure at the side of the component where the flow is
into the component, is acting on the other end.

The preload of the spring will make sure that the valve is
closed until the upstream pressure reaches a certain level, when
the force from the pressure exceeds that of the spring. The
valve then opens, reducing the pressure to protect the system.

The results of performance measurements with the volume
split into different number of segments using an RK4 integrator
and a step size of 5*10

-6
 are shown in Fig. 3 and Fig. 4.

The measurement does not include the model instantiation,
flattening and back-end specific operations. Only the
computation time for the simulation executable to complete is
measured and compared.

The simulation is performed on an Intel Xeon W3565 quad-
core CPU with clock frequency of 3.2GHz.

 Fig. 3. Simulation time vs. number of segments.

output_function

thread 1 thread 2 thread 3 thread 4

functionAlgebraics

Algebraicsystems 1 AlgebraicSystems 2 AlgebraicSystems 3 Algebraicsystems 4

functionODE

ODESystems 1 ODESystems 2 ODESystems 3 ODESystems 4

updateContinuousSystems

thread 1 thread 2 thread 3 thread 4

performSimulation

thread 1 thread 2 thread 3 thread 4

100 150 200 250

Sequential 10,932 19,023 25,355 32,432

2 Threads 10,402 13,993 18,152 21,74

4 Threads 7,837 11,554 13,936 16,726

0

5

10

15

20

25

30

35

Si
m

u
la

ti
o

n
 t

im
e

 Fig. 4. Gained Speedup for different number of segments.

VIII. DISCUSSION AND CONCLUSION

From the results it can be seen that doubling the number of
cores does not necessarily reduce the simulation time by half.
Of course parallelism is rarely close to the ideal expectation. If
a computation is complex and involves a number of algorithms,
the parallelization efficiency can be degraded to some extent
due to the inherently sequential parts of the computation. This
applies to most if not all simulations of physical systems.

The reason that the performance gains for this specific
model are not proportional to the number of threads or cores
used is that a typical simulation involves a considerable
amount of setup, sanity checks and other miscellaneous
operations which have to be performed within each time step.
Some of these operations cannot be or are not yet parallelized.

Performance gains for simulations can be improved further
as more and more of the static or dynamic (model dependent)
run-time gets parallelized. Since the OpenModelica run-time
system is now thread safe for most parts, it is relatively easy to
add parallelism according to need. The current thread and
memory management implementation can be used to direct
computations in parallel when possible and needed in other
parts of the run-time system.

REFERENCES

[1] Peter Fritzson, Principles of Object-Oriented Modelling and Simulation
with Modelica 2.1, 1st ed.: Wiley-IEEE Press, 2004.

[2] François E., Kofman, Ernesto Cellier, Continuous System Modeling.,
2006.

[3] Modelica. [Online]. [Last accessed: 2013-06-09]. Available from:
https://www.modelica.org/.

[4] Modelica Association. [Online]. [Last accessed: 2013-06-09]. Available
from: https://www.modelica.org/association.

[5] OpenModelica. [Online]. [Last accessed: 2013-06-09]. Available from:
http://www.openmodelica.org/.

[6] Open Source Modelica Consortium (OSMC). [Online]. [Last accessed:
2011-06-09]. Available from:
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsort
ium.html.

[7] PELAB. [Online]. [Last accessed: 2013-06-09]. Available from:
http://www.ida.liu.se/~pelab/.

[8] Rickard Lindberg, "A TemplateBased Code Generator for the
OpenModelica Compiler," Linköping University, LIU-IDA/LITH-EX-
A--10/006--SE, 2010.

[9] Peter Fritzson. Modelica Text Template Language Susan. [Online].
[Last accessed: 2013-06-09]. Available from:
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1
_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf.

[10] Christoph Kessler, Peter Fritzson, and Mattias Eriksson,
"NestStepModelica – Mathematical Modeling and Bulk-Synchronous
Parallel Simulation," in PARA'06 Proceedings of the 8th international
conference on Applied parallel computing: state of the art in scientific
computing., Linköping, Sweden, 2006, pp. 1006-1015.

[11] Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritzson, and
Kristian Stavåker, "A Data-Parallel Algorithmic Modelica Extension for
Efficient Execution on Multi-Core Platforms," in Proceedings of the 9th
International Modelica Conference, Munich, Germany, Sept 3-5, 2012.

[12] Peter Aronsson, "Automatic Parallelization of Equation-Based
Simulation Programs," Linköping University, Dissertation No. 1022,
2006.

[13] Håkan Lundvall, "Automatic Parallelization using Pipelining for
Equation-Based Simulation Languages," Linköping University,
Linköping, Sweden, Licentiate Thesis 1381, 2008.

[14] Per Östlund, "Simulation of Modelica Models on the CUDA
Architecture.," Linköping Univeristy, Linköping, Sweden, Master
Thesis LIU-IDA/LITH-EX-A--09/062--SE, 2009.

[15] openmp.org. [Online]. [Last accessed: 2013-06-09]. Available from:
http://openmp.org.

[16] Petter Krus, "Robust System Modelling Using Bi-lateral Delay Lines,"
in Proceedings of the 2nd Conference on Modeling and Simulation for
Safety and Security (SimSafe), Linköping, Sweden, 2005.

[17] Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus,
"Towards Efficient Distributed Simulation in Modelica using
Transmission Line Modeling," in Proceedings of the 3rd International
Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools, (EOOLT'2010), Oslo, Norway, Oct 3, 2010.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, and
Clifford Stein, Introduction to Algorithms, 3rd ed.: The MIT Press,
2009.

100 150 200 250

2 Threads 1,05095174 1,359465447 1,396815778 1,491812328

4 Threads 1,394921526 1,64644279 1,819388634 1,939017099

0

0,5

1

1,5

2

2,5
sp

ee
d

u
p

https://www.modelica.org/
https://www.modelica.org/association
http://www.openmodelica.org/
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.ida.liu.se/~pelab/
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf
https://openmodelica.org/svn/OpenModelica/tags/OPENMODELICA_1_9_0_BETA_4/doc/OpenModelicaTemplateProgramming.pdf
http://openmp.org/

	I. Introduction
	II. Background
	A. Modelica
	B. The OpenModelica Compiler (OMC)

	III. Parallel Simulation of Modelica Models on Multi-Core Computers
	IV. Transmission Line Modeling (TLM)
	V. Partitioning
	I. Runtime system and Thread Safty
	VI.
	VII. Measurements and Results
	VIII. Discussion and Conclusion
	References

