Partial Differential Equations in Modelica

26th August 2014



Contents

1 Modelica extension for PDE 3
1.1 Requests on language extension and possible approaches . . . . . 3
1.2 New concepts and language elements . . . . . .. ... ... ... 8

1.2.1 Domain deffinition . . . . . ... ... ... .. 0. 8
1.2.11 Byboundary . . ... ... ... .. ... .. 8

1.2.1.2 Using shape-function . . .. ... ... ... .. 9

1.2.2 Domain type . . . . .. . ... e 9
1.2.3 Regiontype . . . . . . . . ..o 9
1.24 coordinate . . . . . . . . . ... 10
1.2.5 interval . . . . . ... 10
1.2.6 shape function . .. ... ... ... L. 10
1.27 fields . . .. ..o 11
1.2.8 field literal constructor . . . . . . .. .. ... ... 11
1.29 dinoperator . .. .. ... ..o 12
1.3 Changes and additions to Levon Saldamlis proposals . . . . . . . 12

2 Numerics 14

3 Example models 17
3.1 Package PDEDomains . . . . ... ... ... ... ........ 17
3.2 Simplemodels. . . . . .. L 22

3.2.1 Advection equation (ID)[19] . . . . . . . ... ... . ... 22
3.2.2 String equation (ID)[26] . . . . . ... ... ... ... 24
3.2.3 Heat equation in square with sources (2D) . . . . . . . . . 25
3.2.4 3D heat transfer with source and PID controller [15, 16] . 26
3.3 More complex realisticmodels . . . . . .. ... ... ....... 28
3.3.1 Henleho klicka - protiproudovad vyména . . . ... .. .. 28
3.3.2  Oxygen diffusion in tissue around vessel . . . . . . .. .. 29
3.3.3 Heat diffusion . . . . . .. ... 29
3.3.4 Pulse waves in arteries caused by heart beats [2, 14, 17] . 30
335 Vocalcords . ... ... .. ... ... ... . 32
3.3.6 Vibrating membrane (drum) in air . . . . ... ... ... 32
3.3.7 Eulerequations . . . .. .. ... ... ... ... ... 36



A Articles and books 37

B Questions & problems: 38
B.1 Modelica language extension . . . . . . ... .. ... ... ..., 38
B.2 Generatedcode . . . . . .. ... 43
B.3 Numerics and solver . . . . . . . ... ... o0 43
B4 TODO . . . . . . e 44



Chapter 1

Modelica extension for PDE

1.1 Requests on language extension and possible
approaches

Space & coordinates

What should be specified
e Dimension of the problem (1,2 or 3D)

e ?? Coordinates (cartesian, cylindrical, spherical ...) — where this informa-
tion will be used (if at all):

— in differential operators as grad, div, rot etc.
— in visualization of results

— 77 in computation — perhaps equations should be transformed and
the calculation would be performed in cartesian coordinates

e Names of independent (coordinate) variables (z, y, 2, r, ¢, 6...)

Perhaps all these should be specified within the domain deffinition.

Dimension can be infered from number of return values of shape-function or
different properities of the domain in other cases.

The base coordinates would be cartesian and they would be always implicitly
defined in any domain. Besides that other coordinate systems could be defined
also.

Names of independent variables in cartesian coordinates should be fixed z, (z,y),
(z,y,2) in 1D, 2D and 3D domains respectively.



Domain & boundary

What should be specified

e the domain where we perform the computation and where equations hold
e boundary and its subsets where particular boundary conditions hold

e normal vector of the boundary

Possible approaches

Parametrization of the domain with shape function and intervals — from
The Book (Principles of ...), section 8.5.2

Example from the book:

model HeatCircular2D
import DifferentialOperators2D .x;
parameter DomainCircular2DGrid omega;
FieldCircular2DGrid u(domain—omega, FieldValueType=SI.Temperature);
equation
der (u) = pder (u,D.x2)+ pder (u,D . y 2 ) in omega.interior;
nder (u) = 0 in omega.boundary;
end HeatCircular2D ;

record DomainCircular2DGrid "Domain being a circular region"

parameter Real radius = 1;
parameter Integer nx = 100;
parameter Integer ny = 100;
replaceable function shapeFunc = circular2Dfunc "2D circular region";

DomainGe2D interior (shape=shapeFunc,interval={{0,radius},{O,1}},geom= ..

DomainGe2D boundary (shape=shapeFunc, interval={{radius, radius), { 0,1

function shapeFunc = circular2Dfunc "Function spanning circular region";
end DomainCircular2DGrid;

function circular2Dfunc "Spanned circular region for v in interval 0..1"
input Real r,v;
output Real x,y;
algorithm
X : = rxcos (2«PIxv);
y = rxsin (2xPIxv);
end circular2Dfunc;

record FieldCircular2DGrid
parameter DomainCircular2DGrid domain;



replaceable type FieldValueType = Real;
replaceable type FieldType = Real[domain.nx,domain.ny,domain.nz];

parameter FieldType start = zeros(domain.nx,domain.ny,domain.nz);
FieldType Val;

end FieldCircular2DGrid;

And modified version, where all numerical stuff (grid, number of points — this
should be configured using simulation setup or annotations ) omitted, modified
pder operator, Field as Modelica build-in type:

model HeatCircular2D

parameter DomainCircular2D omega(radius=2);

field Real u(domain=omega, start = 0, FieldValueType=SI.Temperature);
equation

pder (u,time) = pder(u,x)+ pder(u,y) in omega.interior;

pder (u,omega.boundary.n) = 0 in omega.boundary;
end HeatCircular2D ;

record DomainCircular2D

parameter Real radius = 1;
parameter Real cx = 0;
parameter Real cy = 0;

function shapeFunc
input Real r,v;
output Real x,y;

algorithm
X :

cx + radiusxr % cos(2 x C.pi * v);
y := ¢y + radiusxr % sin(2 % C.pi * v);
end shapeFunc;
Region2D interior (shape shapeFunc, interval = {{O,
RegionlD boundary(shape = shapeFunc, interval = {{1
end DomainCircular2D ;

Description by the boundary Domain is defined by closed boundary curve,
which may by composed of several connected curves. Needs new operator
interior and type Domain2d (and DomainlD and Domain3d). (similarly
used in FlexPDE — http://www.pdesolutions.com/.)

package BoundaryRepresentation
partial function cur
input Real u;
output Real x;
output Real y;
end cur;
function arc



extends cur;
parameter Real r;
parameter Real cx;
parameter Real cy;
algorithm
x:=cx + r * cos(u);
y:=cy + 1 % sin (u);
end arc;
function line
extends cur;
parameter Real x1;
parameter Real y1;
parameter Real x2;
parameter Real y2;
algorithm
x:=x1 + (x2 — x1)
yi=yl + (y2 — yl)
end line;
function bezier3
extends cur;
//start —point
parameter Real x1;
parameter Real y1;
//end—point
parameter Real x2;
parameter Real y2;
//start —control —point
parameter Real cx1;
parameter Real cyl;
//end—control —point
parameter Real cx2;
parameter Real cy2;
algorithm
x:=(1 —u) ~ 3 xx1 +3 % (1 —u) " 2% u* cxl + 3 %
(1 —u) *u "~ 2 % cx2 +u " 3 x x2;
vi=(1 —u) ~ 3 xyl +3 x (1 —u) ~ 2 % u=x*x cyl + 3 x
(1 —u) *xu’" 2 % cy2 +u" 3 % y2;
end bezier3;
record Curve
function curveFun = line;
// to be replaced with another fun
parameter Real uStart;
parameter Real uEnd;
end Curve;
record Boundary
constant Integer NCurves;

* Uj;
* U,

?



Curve curves|NCurves]|;

// for i in 1:(NCurves—1) loop

//assert (Curve[i].curveFun (Curve[i].uEnd) = Curve[i
+1].curveFun (Curve|[i+1].uStart), String(i)+"th
curve and "+String (i+1)+"th curve are not

connected." ,level = AssertionLevel.error);

// end for;

// assert (curves [NCurves|. curveFun (curves [ NCurves
].uEnd) =

// curves [1].curveFun(curves
[1].uStart),

// String (NCurves)+"th curve
and first curve are not connected.",

// level = AssertionLevel.
error);

end Boundary;
record DomainHalfCircle
constant Real pi = Modelica.Constants. pi;
arc myArcFun(cx = 0, cy = 0, r = 1);
Curve myArc(curveFun — myArcFun, uStart = pi / 2,
uEnd = (pi % 3) / 2);

line myLineFun(xl1 = 0, yl = -1, x2 = 0, y2 = 1);

Curve myLine(curveFun = myLineFun, uStart = 0, uEnd =
1);

line myLine2(curveFun = line(x1 = 0, yl = -1, x2 = 0,

y2 = 1), uStart = pi / 2, uEnd = (pi * 3) / 2);
Boundary b(NCurves = 2, curves = {myArc,myLine});
//new externaly defined type Domain2D and operator

interior:

Domain2D d = interior Boundary;
end DomainHalfCircle;
end BoundaryRepresentation;

Constructive solid geometry used in Matlab PDE toolbox, http://en.wikipedia.org/wiki/Constructive _sol

Domain is build from primitives (cuboids, cylinders, spheres, cones, user defined
shapes ...) applying boolean operations union, intersection and difference.
How to describe boundaries?

Listing of points — export from CAD
Inequalities

Boundary representation (BRep) (NETGEN, STEP)



- ~
9 ®
/n\

/N
Y ov /%U;\i

Figure 1.1: constructive solid geometry

Fields

Partial derivative

2
88:105;; ... pder(u,x,y)

directional derivative ... pder(u,omega.boundary.n)

Equations, boundary and initial conditions

Use the in operator to express where equations hold.

1.2 New concepts and language elements

1.2.1 Domain deflinition

Three concurent aproaches - one has to be chosen:

1.2.1.1 By boundary

This is the aproach from [12]. Defining domains using curves (that have one
parameter) to build up the boundary works very well in 2D. Parameters of these
curves are bounded in one dimensional interval. In 3D we have to use surfaces
(haveing two parameters) instead of curves. Parameters must be bounded in
some subsets of R? now. If the boundary is composed of several surfaces, pa-
rameters of these surfaces must be often bounded not just in Cartesian product
of two intervals but in some more complex sets so that these surfaces are con-
tinuously connected. There is no way to write this in the current extension. It
is possible to just slightly generalize this method and allow specification of more
general sets for these parameters. But this is questionable, as user would have
to calculate boundaries where surfaces mutually intersect. This could be often
quite hard.



type Domain
parameter Integer ndims;
Real cartesian[ndims];
Real coord[ndims] = cartesian;
replaceable Region interior;
replaceable function shape
input Real ul[ndims];
output Real coord[ndims];
end shape;
end Domain;

Domain type
There is also a built-in Domain type here to be inherited in all other domain
types, but it has different members. It is defined as follows:

1.2.1.2 Using shape-function

Other approach was introduced in [3]. A so called shape-function is used to map
Cartesian product of intervals onto the interior and boundaries of the domain.
These functions allows to simply generate points in the domain or if inverted
gives straightforward rule to determine whether any given point belongs to the
domain. This would later simplify generating the computational grid to simulate
the model. This description is also perhaps closer to the way how such a region
(subsets of R™) is usually described in mathematics. To allow this approach we
need some changes to the language.

1.2.2 Domain type

Any domain type extends built-in type Domain, that has two members replaceable
Region interior; and parameter Integer ndim;. Other domains extends
this general domain and redeclares Region interior into Region1D, 2D or 3D.
During translation are domains treated in special way. There will be pack-
ege PDEDomains containing library of common domains DomainLineSegment1D,
DomainRectangle2D, DomainCircular2D, DomainBlock3D and others. User can
define other new domain classes.

Needs OMC modification.

1.2.3 Region type

How to evaluate ndimr (equality operator for Reals problematic)?



type Region
parameter Integer ndims; //dim of space
parameter Integer ndimr; //dim of region
parameter Real[ndims][2] interval;
replaceable function shape;
input Real u[ndim];
output Real coord[ndims];
end shape;
end Region;

1.2.4 coordinate

Space coordinate variables are of a different kind than other variables. They
are similar to the time variable in Modelica. Both coordinates and time are
independent variables. They can get any value from the domain resp. time
interval. Other (dependent) variables are actually functions of time and as for
fields also of space coordinates. Thus coordinate variables should not hold any
particular value of the physical quantity they represent. They have rather a
symbolic meaning.

New keyword coordinate is used as a modifier to define coordinates. The
syntax is

"coordinate Real" coordName;

Or without Real?

1.2.5 interval

to define parameter interval for a shape-function. E.g. interval={{0,1},0}.
Used in domain records. (Previously called range.)
New language element.

1.2.6 shape function

one-to-one map of points in k-dimensional interval (usualy cartesian product
of intervals) to points in n-dimensional domain and thus deffine a coordinate
system in domain

region types and regions RegionOD, RegionlD, Region2D, Region3D used in
domain records to define interior, boundaries and othere regions where
certain equations hold (e.g. connection of PDE and ODE). Two manda-
tory attributes are shape and interval. E.g. Region2D left (shape =
shapeFunc, interval = {0,{0,1}}).
New language element.

10



1.2.7 fields

A variable whose value depends on space position, is called field. It is defined
with keyword field. Field can be of either Real, Integer or Boolean type.
It can be defined also as a parameter. Field may be an array to represent
vector field. Mandatory attribute is domain. Other attributes are same as
for corresponding regular type (e.g. for Real: start, fixed, nominal, min,
max, unit, displayUnit, quantity, stateSelect. (Not shure about fixed
and stateSelect.) Fields may be initialized in initialEquation section or us-
ing start attribute in declaration as other variables. Because higher derivatives
are allowed for fields it is sometimes necessary to specify start value for some
field derivative. This is not a problem in the initialEquation. To initialize field
derivative using start attribute we can treat it as an array. Here it is confusing
that arrays are indexed starting with 1, so that start[1] is start value the field
itself, start[2] is for first derivative etc. They can be assigned either constant
values or field literals..

see 3.2.2

New language element.

attribute:
field Real u in omega;

?7?7Use in operator to specifie the domain in field declaration instead of domain

1.2.8 field literal constructor

»field” *’(”’ exprl ’’in’’ expr2 )’

or just shortcut

»{*> exprl ”’in”’ expr2 ’’}”

where expr2 is a domain and exprl may depend on coordinates defined in this
domain. E.g.

field Real f = field(2*dom.x+dom.y in omega.interior);

operations and functions on fields All operators (=, :=, +, -, *, /, 7, <,
<=,>,>=,==, <>) and functions can be applied on fields. The result
is also a field. If a binary operator or function of more arguments is
applied on two (or more) fields, these fields must be defined within the
same domain.
If some binary operator or function with more arguments is performed
on field and regular variable (it means a variable that is not a field), the
operation is performed as if the regular variable is field that is constant in
space.

pder () operator for partial and directional derivative of real field. Higher
derivatives are allowed. E.g. pder(u,omega.x,omega.x,omega.y) means

33y,

Ox2
of

. Directional derivative: pder(u,omega.left.n). Time derivative
ﬁyeld must be written also using pder operator not der.

11



normal vector implicitly defined for all N-1 dimensional regions in N dimen-
sional domain. (e.g. omega.left.n) Used in boundary condition equa-
tions. How to write domain and region independently - perhaps region.n?
New language element.

1.2.9 in operator

is used to define where PDE, boundary conditions and other equations hold and
to acces field values in particular point (see 3.5). On left is an equation on right
is a region where the equation hold.

E.g. x=0 1in omega.left

New language element.

dom keyword stands for current domain specified with in operator.
pder(u,dom.x)=0 in omega.interior;
is equivalent to
pder (u,omega.x)=0 in omega.interior;
Is useful to write equations domain independent.
New language element.

region keyword stands for current region specified with in operator.
vregion.n=0 in omega.left, omega.right;
is equivalent to
vxomega.left.n=0 in omega.left; v*omega.right.n=0 in omega.right;
Is useful to get normal vector in domain independent equations and on
anonymous regions.
New language element. Not shure if it will be needed.

region addition?? + operator can be used to add regions. Can be used in
domain record to form a new region, e.g.
boundaries = left + right;
or on right side of in operator, e.g.
x = 0 1in omega.left + omega.right;
New language element. Not shure if it will be needed.

vector differential operators grad, div, rot

1.3 Changes and additions to Levon Saldamlis
proposals

Field literal constructor
is modified to handle several different coordinate systems.

Previously

n

"field" "(" exprl "for" iter "in" aDomain ")"

12



or

"{" exprl "for" iter "in" aDomain "}"

where iter is one variable or touple of variables of arbitrary name that are
binded to coordinates in aDomain.

Now

see 1.2.8

Disable accessing field values in function-like style

Accessing field values in function-like style should not be allowed, if possible,
for two reasons: first it is not allowed in current Modelica for regular (non-
field) variables (that are unknown functions of time) in ODE. We should be in
agreement with current Modelica. Second, if more than one coordinate system
are defined in a domain, it is not indicated which coordinates are used in the
argument. Regions consisting of one point and the in operator may be used
instead, see 1.2.9.

Initialization of derivatives of fields

in case of field that is differentiated at least twice (in constructor, not in initial
equation section). Previously not solved, now see 1.2.7.

Coordinates

new keyword coordinate. They were previously member of built-in class
domain, that was inherited by all other domains.

13



Chapter 2

Numerics

Goals

1. advection equation in 1D and eulerian coordinate, dirichlet BC, explicit
solver

2. numann BC

3. automatic dt

4. diffusion or mixed equation
5. implicit solver

6. systems of equations

7. 2D (rectangle), 3D (cube)
8. lagrangian coordinate

9. general domain

difference schemes separated from the rest of solver
Difussion eq:

Ut = AUy
or
Uy = —Wg
W = —QUy
String eq:
Yt = kymz

14



or

Sz = ku
Yy = v
Y = S

The description without higher derivative is ugly, we need higher derivatives.

Representation
Explicit
ur = f(u, Uy, t) (2.1)
resp.
Ut = f(u7uw7uw;c7 7t)
Implicit
F(u,ut,uqg,t) =0 (2.2)
resp.
F(u7 Uty Ugy Uz --- at) =0
Solvers

Difference schemes for explicit solver
U denotes discretized u
Time difference from Lax-Friedrichs in explicit form (i.e. with the u’;™ on
LHS):

1
uptt = D (0,0, m) = vA S (e + ) (2.3)

m

Space difference from Lax-Friedrichs:

n n
Ujpr — Uj_q

Dx(U7n7m): 2A.’I,'

(2.4)

Explicit solver Lax-Friedrichs
We solve equation (2.1) substituing space difference (2.4) and applying time
difference in explicit form (2.3):

W = DEP(F((al, DaU,mm), 7)) =

2Ax

1
At - f(u, ,t)+§(u7’m+1+%71)

15



Difference schemes for implicit solver space difference from Crank-
Nicolson

m—11 Um» um-l—l?umfl’ Upm ’uerl -

2Ax 2Ax

n+1 n+1 n n
n n n n+1 n+l  n4+1ly _ 1 um+1 — U1 U1 — U1
D, (u ) B

n n n n
Dﬂm (um—lv Uy um—&-h Upy—15 Uy 5 um+1

2(Ax)?

time difference from Crank-Nicolson

n+1 n+1 _ n+1l ) u?n+1 B u?n (26)

n n n p—
Dy (tgy, 15 Uy Unyy 15U U U A7

m—1 “m 1 Ym+1

Implicit solver Crank-Nicolson
With nonlinear solver:
We solve equation (2.2) substituting space (2.5) and time (2.6) differences

F(ul, De(uly_1,.), Dy(ulty 1, ..),t") =0, m € M (2.7)

and than solving the whole system for all unknown u"*1. System has 3-band
Jacobian. If F is linear in u, and wu, system is also linear with 3-band matrix
eventhou is given generaly. Is there any solver eficient in solving linear equations
with banded matrix given implicitly? (I hope Newton-Raphson is.) As initial
guess for the solution we can use extrapolated values. If solving fails we can try
value from the node on left or right (this could help on shocks).

With linear solver:

If F is linear, we expres (2.7) as

A" = b,

Ais M x M 3-diagonal. Functions for evaluation of M and b are generated
during compilation. In runtime we solve just the linear system. In this aproach
difference schema must be chosen before compilation of model.

Implicit solver and systems of PDE If we solve e.g. system with three
variables u, v, w, se can sort difference equations in order

Uy, U1, W1, U2, V2, W2, U3, V3, W3, ...

so that the system is stil banded.

16

n+1 n-+1 n+1 n n n
+1 n+1  n+l ) _ 1 um+1 - 2’u’m + Uy 1 U1 — 2u’m + U —1
2

2(Ax)?2

(2.5)



Chapter 3

Example models

3.1 Package PDEDomains

Modelica code of domain definitions:

package PDEDomains
import C = Modelica.Constants;

type Domain //Domain is built—in, but this is his
interface"
prameter Integer ndim;
Coordinate coord[ndim];
replaceable Region interior;
replaceable function shapeFunc
input Real u[ndim—1];
output Real coord[ndim];
end shapeFunc;
end Domain

type Region //Region is built—in, looks like
parameter Integer ndimS; //dimension of the space,
where the region exists
parameter Integer ndim; //dimension of the region
//e.g. sphere in 3D has ndimS = 3, ndim = 2
replaceable function shape;
input Real u[ndim];
output Real coord[ndimS];
end shape;
parameter Real[ndim]|[2] interval;
equation

17



assert (ndim <= ndimS, "Dimension of region must be
lower or equal to dimension of space where it is

defined .") ;
end Region;
type Region0D = Region (ndim = 0);
type RegionlD = Region (ndim = 1);
type Region2D = Region (ndim = 2);
type Region3D = Region (ndim = 3);

//approach 1:
class DomainLineSegment1D
extends Domain;
parameter Real 1 = 1;
parameter Real a = 0;
redeclare function shapeFunc
input Real v;
output Real x = 1sv + a;
end shapeFunc;
Coordinate x(name = "cartesian") = coord|[1];
RegionlD interior (shape = shapeFunc, interval =
{0,1}) 5
Region0D left (shape = shapeFunc, interval = 0);
Region0D right (shape = shapeFunc, interval = 1);
Region0D boundary = left + right; //{left, right};
end DomainLineSegmentlD ;

//approach 2:
class DomainLineSegment1D
extends Domain;

parameter Real 1 = 1;

parameter Real a = 0;

parameter Real b = a + 1;
Coordinate x (name = "cartesian");

RegionlD interior(x in (a,b));

Region0D left (x = a);

Region0D right (x = b);

Region0D boundary = left + right;
end DomainLineSegmentl1D ;

//approach 1:
class DomainRectangle2D

18



//

//
//

extends Domain;
parameter Real Lx = 1
parameter Real Ly = 1
parameter Real ax = 0;
parameter Real ay = 0
function shapeFunc

input Real vl1, v2;

output Real x = ax + Lx * vl, y = ay + Ly x v2;
end shapeFunc;

Coordinate x (name = "cartesian");
Coordinate y (name = "cartesian");
Coordinate r (name = "polar");
Coordinate phi (name = "polar");
equation

r = sqrt(x°2 + y~2);
phi = arctg(y/x);
Region2D interior (shape = shapeFunc, interval =

{{051}5{051}});

RegionlD right (shape = shapeFunc, interval =

{1,{0,1}});

RegionlD bottom (shape = shapeFunc, interval =
{{0,2},0});

RegionlD left (shape = shapeFunc, interval =
{0.{0,1}});

RegionlD top(shape = shapeFunc, interval = {{0,1},1})

Region1D boundary = right + bottom + left + top;
Region1D boundary (union = {right, bottom, left , top

1)

end DomainRectangle2D ;

approach 2:
class DomainRectangle2D
extends Domain;

Coordinate x (name = "cartesian");
Coordinate y (name = "cartesian");
Coordinate r (name = "polar");

Coordinate phi (name = "polar");

parameter Real L1 = 1; //rectangle length, assign
implicit value

parameter Real L2 = 1; //rectangle height, assign
implicit value

parameter Real al = 0; //x—coordinate of left side,
implicitly 0
parameter Real a2 = 0; //y—coorinate of lower side,

implicitly 0

19



//
//

parameter Real bl = al + L1; //x—coordinate of right

side

parameter Real b2 = a2 + L2; //y—coorinate of upper

side

equation
r = sqrt(x"2 + y~2);
phi = arctg(y/x);

Region2D interior (x in (al,bl), y in (a2,b2));

rather (x,y) in (al,bl)@(a2,b2)??

RegionlD right (x = a, y in (a2,b2));
RegionlD bottom (x in (al,bl), y = bl);
RegionlD left (x =al, y = (a2,b2));
RegionlD top (x in (al,bl), y = b2);
Region1D boundary = right + bottom + left + top;

end DomainRectangle2D ;

//approach 1:

class DomainCircular2D

extends Domain;

parameter Real radius = 1;
parameter Real cx = 0;
parameter Real cy = 0;

function shapeFunc
input Real r,v;
output Real x,y;
algorithm
x:=cx + radius x r % cos(2 x C.pi * v);
y:=cy + radius x r % sin(2 % C.pi * v);
end shapeFunc;
coordinate x (name="cartesian');
coordinate y (name="cartesian";
coordinate cartesian|[2] = {x,y};
// Coordinate r (name="polar");
// Coordinate phi (name="polar");
// equation
/I r = sart (x°2 + y°2);
// phi = arctg(y/x);
Region2D interior (shape = shapeFunc, interval
1}.{0,1}});

RegionlD boundary(shape = shapeFunc, interval

{17{071}})3

end DomainCircular2D ;

//approach 2:

class DomainCircular2D

extends Domain;

20

//or

{{0



parameter Real radius = 1;
parameter Real cx = 0;

parameter Real cy = 0;
coordinate x (name—="cartesian");
coordinate y (name="cartesian";
coordinate r (name="polar");
coordinate phi (name="polar");

coordinate cartesian[2] = {x,y};
coordinate polar[2] = {r,phi};
equation

x = rxcos(phi) + cx;
y = rxsin(phi) + cy;
Region2D interior (phi in (0,2xC.pi), r in (O, radius))

RegionlD boundary(phi in (0,2%xC.pi), r = radius);
end DomainCircular2D ;

//approach 2:
type DomainElliptic2D
extends Domain(ndim—=2);
parameter Real cx, cy, rx, ry; //x/y center, x/y
radius
coordinate Real cartesian|[ndim], x = cartesian[1l], ¥y
= cartesian [2];
coordinate modPolar[ndim], r = modPolar[1], phi =
modPolar [2];
equation
x = rxxrxcos(phi) + cx;
y = rysrxsin (phi) + cy;
Region2D interior (phi in (0,2%C.pi), r in (0,1));
RegionlD boundary(phi in (0,2«xC.pi), r = 1);
end DomainElliptic2D

//approach 1:
class DomainBlock3D

extends Domain(ndim=3);
parameter Real Lx = 1, Ly
parameter Real ax = 0, ay
redeclare function shapeFunc

input Real vx, vy, vz;

output Real x = ax + Lx * vx, y = ay + Ly x vy, z =

az + Lz x vz,

end shapeFunc;
Coordinate x (name="cartesian")
Coordinate y (name="cartesian")
Coordinate z (name="cartesian")

1, Lz = 1;
0, az = 0;

)
)

)

21



coord = {x,y,z};
Region3D interior (shape = shapeFunc, interval =

{{0,1},{0,1},{0,1}});

Region2D right (shape — shapeFunc, interval =

{1,{0,1},{0,1}});

Region2D bottom (shape = shapeFunc, interval =

{{0’1}7{071}51});

Region2D left (shape = shapeFunc, interval =

{07{071}7{071}});

Region2D top (shape = shapeFunc, interval =

{{0,1},{0,1},1});

Region2D front (shape = shapeFunc, interval =

{{0’1}707{051}});

Region2D rear (shape = shapeFunc, interval =
{{0,1},1,{0,1}});
end DomainBlock3D;
//and others

end PDEDomains;

Listing 3.1: Standard domains deffinitions: 1D — Line segment, 2D — Rectangle,
Circle, 3D — Block

3.2 Simple models

3.2.1 Advection equation (1D)[19]

L .. length
c .. constant, assume ¢ > 0
uwe (0,L) x (0, T) - R

equation
ou . ou 0
ot Cax -
initial conditions
u(z,0) =1

boundary conditions
u(0,t) = cos (27t)

22



Modelica code

model advection "advection equation"
import PDEDomains. *
import C = Modelica.Constants;
parameter Real L = 1; // length

parameter Real ¢ = 1;

parameter DomainLineSegmentlD omega(length = L)

field Real u(domain = omega, start = 1);

equation

pder (u,time) + c*pder(u,dom.x) = 0 in omega.
interior ;

u = cos(2+C.pixtime) in omega.
left ;

end advection

Listing 3.2: Advection equation in Modelica

Flat model

/*¥TODO: finish it!!x/

function PDEDomains. DomainLineSegmentlD .shapeFunc
input Real v;
output Real x = 1lxv 4 a;

end PDEDomains. DomainLineSegmentlD .shapeFunc;

model advection flat "advection equation"
import C = Modelica.Constants;
parameter Real L = 1; // length
parameter Real ¢ = 1;
// parameter DomainLineSegmentlD omega(length = L
9
parameter Real omega.l = L;
0

parameter Real omega.a = 0;

DomainlDInterior DomainLineSegmentlD . interior (
shape = shapeFunc, range = {0,1});

23



DomainlDBoundary DomainLineSegmentlD . left (shape
= shapeFunc, range = {0,0});
DomainlDBoundary DomainLineSegmentlD.right (shape
= shapeFunc, range = {1,1});

field Real u(domain = omega, start = 1);
equation
pder (u,time) + cxpder(u,x) = 0 in omega.
interior ;
u = cos(2«pixtime) in omega.left ;
end advection flat;

Listing 3.3: Advection equation — flat model

3.2.2 String equation (1D)[26]

L .. length
u € (0,L) x (0,T) = R (string position)
¢ .. constant

equation:
0%u 8%u
—c =0
ot? Ox?
initial conditions
4

u(z,0) = sin (Z/Tx)
W(x,0) = 0

boundary conditions

u(0,t) =0, wu(L,t)=0

Modelica code
model string "model of a vibrating string with fixed ends
n
import C = Modelica.Constants;
parameter Real L = 1; // length
parameter Real ¢ = 1; // tension/(linear density)
parameter DomainLineSegmentlD omega(length = L);
parameter field Real u0 = {sin(4%C.pi/L*dom.x) for dom.
x in omega.ingerior };

24



Figure 3.1: Heat eq.

field Real u(domain = omega, start[0] = u0, start[l] =

0);
equation
pder (u, time ,time) — cxpder(u,x,x) = 0 in omega.
interior;
u=20 in omega.left +

omega.right;
end string;

Listing 3.4: String model in Modelica

3.2.3 Heat equation in square with sources (2D)

a .. domain square side hlaf length
¢ .. conductivity quocient
T .. temperature

1 if|z| < a/10 and y < a/10
W(ny) — lz| < a/ /
0 else
equation
oT 0T 0°T
T (ax * ay) =W

25



initial conditions
T(x,y,0) =0

boundary conditions insulated walls (top, left, bottom)

%(I’ a,t) = 0
Z%(fa, y,t) = 0
g—g(z, —a,t) = 0
fixed temperature (right)
T(a,y,t) =0

3.2.4 3D heat transfer with source and PID controller [15,
16]

new problems:
e system of ODE and PDE

e in operator used to acces field value in a concrete point (PID controler
equation defining T5).

e vector field

o differential operators grad and diverg

lg, Uy, I, .. room dimensions (6m, 4m, 3.2m)

T .. temperature (scalar field)

W .. thermal flux (vector field)

c .. specific heat capacity (1012.J - kg=! - K1

o .. density of air (1.2041 kg - m~3)

A .. thermal conductivity (0.0257 W - m™1K)

Tout - outside temperature (0°C)

k .. right wall heat transfer coefficient (0.2W -m=2. K1

T, .. temperature of the sensor placed in middle of the right wall
P .. power of heating

kp, ki, kq .. coeflicients of the PID controller (100, 200, 100)

Ty .. desired temperature (20°C)

e .. difference between temperature of the sensor and desired temperature

heat equation

low = 9T
co ot
W = =AVT



heat source sensor

3D bar L

N\

g(t) u(zo, t)

PID controller =

T

Ure s (1)

Figure 3.2: Heat transfer with source and PID controller

boundary conditions left wall (x = 0) - heat flux given by heating power

rare (y = 0) and front (y = [,), resp. bottom (y = 0) and top (z = [,)
insulated walls

W, =0, resp. W =0
right wall (z = ;) - not fully insulated

W;E = KZ(T — Tout)

PID controler

o3
I
poc
§

Modelica code:
model heatPID

class Room
extends DomainBlock3D ;
Region0D sensorPosition (shape = shapeFunc, range =

{{1,1},{0.5,0.5},{0.5,0.5}}) ;

end Room

27



parameter Real 1x = 4, ly = 5, lz = 3;

Room room (Lx=Ix, Ly=ly , Lz=lz);

field Real T(domain = room, start = 15);

field Real[3] W(domain = room) ;

parameter Real ¢ = 1012, rho = 1.204, lambda = 0.0257;
parameter Real Tout = 0, kappa = 0.2;

Real Ts, P, elnt;

parameter Real kp = 100, ki = 200, kd = 100, Td = 20;
equation

1/(c*rho)xdiverg (W) = — pder(T,time) in room.interior;

W = —lambdaxgrad (T) in room.interior

Wikregion.n = P/(lxxly) in room. left;

Wxregion.n = 0 in room. front ,
room.rare, room.top, room.bottom:;

Wxregion.n = kappax*(T — Tout) in room.right;

Ts =T in room.
sensorPosition ;

e = Td — Ts;

der(elnt) = e;
P = kpxe + kixelnt + kdxder(e);
end heatPid;

Listing 3.5: heat equation with PID controller

3.3 More complex realistic models

3.3.1 Henleho kli¢ka - protiproudova vymeéna

¢in(z,t) .. koncentrace Na v sestupné ¢asti tubulu

Cin(z,t) .. koncentrace Na ve vzestupné ¢asti tubulu

Cout(z,t) .. koncentraca Na v dieni

Q(z,t) .. tok vody v sestupné ¢asti tubulu

fu,0(z,t) .. tok vody na milimetr délky z sestupné ¢asti tubulu do diené

fNa - tok sodiku ze vzestupné €asti tubulu do dfené na milimetr délky —
aktivni transport — parametr

L .. délka tubulu

Py, .. prostupnost cévy pro vodu (permeabilita)

28



g%(%t) + frs0(z,t) =0
(Cout(,) — ein(a0) - Prrio = frrso(z.1)
Fraole,t) = ()
QUL 1) cin(L1) = Fia - L+ QUL1) (1)

0
% (Ein(x?t) : Q(Ivt)) = f;/'a

dmNa
dt

f;;/a'L:

3.3.2 Oxygen diffusion in tissue around vessel

polar coordinates (r, )

o 180 0% 1 02
7 (agﬂag af)”’ =0
o(ro,) = 0o
o(r,0) = o(r,2m)
Onnn (R, 0) = 0 (= 0tm(R,p))

0 .. oxygen concentration

0o .. concentration in the vessel

q .. diffusion coefficient

w .. local oxygen consumption

R .. Q diameter

The last equation should simulate infinite continuation of the domain.

3.3.3 Heat diffusion

domain boundary

oY = (apcos(v), bpsin(v)), v € (0,2m)
equation [22]
or X (0°T 9*T
5t ta) - W

A .. thermal conductivity
W (z,y) .. heat power density of tissue (input)

Wy ifa? 442 <72
0 else

W(I, y) = {

29



10°C

Figure 3.3: Scheme of heat diffusion in body

e ;-——— Y

7% 2
— Blx-+ ‘ / P‘% a 7,
| Alxt) __— ﬁ

% 7 % e
/ % _
; @
7 p
7
%

Figure 3.4: Arteria scheme

boundary condition

oT
)\% - O/,(T - Tout), (.’E,y) € aQ

« .. tissue-air thermal transfer coefficient [23]
initial condition

T(Zlf,y, 0) = T()(l?,y)

3.3.4 Pulse waves in arteries caused by heart beats |2, 14,
17]

A(z,t) .. crossection of vessel
U(z,t) .. average velocity of blood
Q(z,t) .. flux
Q=AU

30



Splitting flow

{Hﬁ..{f”:] r}\// : .I::J.‘llb.l[,"-hjl

- - g

- __-:;'\\_ {_.-‘-’_lf Uf.']

X

Figure 3.5: Arteria splitting

P(z,t) .. pressure
P..; .. external pressure

Ap .. vessel crossection at (P = P.,;) (24mm)

_ _VThoE
p= (1—1’20)140

ho .. vessel wall thicknes (2mm)

E .. Young’s modulus (0.24 - 6.55MPa)|[7, 5, 4]

v .. Poisson ratin (1/2)

0 =1050kgm~3 .. blood density

@ =4.0mPas

« .. other ugly coefficient, let us say its 1

f .. frictional forces per unit length, let us assume inviscide flow f = 0, or
f=—AQ8u/(mr') = —8mpQ/A[21]

p.. dynamic viscosity of blood (3 4) - 10~3Pa-s[20]

A 0Q
o T =Y
0Q 0 [ Q*\ AoP
8t+8x<aA>+983: -
oQ QoQ Q*oA AOP
ot Adxr A2 0z o Ox
Q. , Q0Q (B ~ QNoA _ f
8t+2aA8x+(2g\r O‘A?) oz o
Pezt"i'ﬁ(\/z_\/AO) = P

Three segment geometry — splitting arteria

We model arteria being splited into two minor arteries. Three same equation
systems (super-indexes A, B, C) are solved on three different domains. Systems
are connected via BC.

Boundary conditions

31



input

T, .. cardiac cycle period

junction

QLAY = QP(0,4)+Q°(0,1)
PALA ) = PB(0,1)
PA(LAt) = PC(0,1)

terminal we simulate the continuation of segments B and C' with just a
resitance

m7 for B and C

out

For check: the result should be in agreement with Moens—Korteweg equation.

Q(L7t> =

3.3.5 Vocal cords
(6]

3.3.6 Vibrating membrane (drum) in air

Membrane [25]:

QTVL = {(x’"lﬁ ym)|x$n + y72n < ‘7‘2}
u(z,y,t) .. membrane displacement, v : Q,, x (0,7) = R
r .. membrane radius
Cm .. membrane wave speed

0u —
w = C"Lv u
Initial and boundary conditions
U((E,y,O) = UO($7y)
u(z,y,t) 0 (z,y) € 0N,

32



Air[18]:

Q, = (0,1;) x (0,1,) x(0,1,)
v(z,y,2,t) .. air speed, v : Q, x (0,T) — R3
p(z,y,t) .. air pressure, p: Q, x (0,T) = R
po .. density
Cq -- speed of sound

ov
—+Vp = 0
Po 5y +Vp
dp
E'FﬁoC%V v = 0
Initial and boundary conditions
v(z,y,2,00 = 0
p(z,y,2,0) = po
v(@,y,2,1) -n(0%) = 0(z,y,2) €00

Position of membrane in the room

Position of membrane centre a = (ag,ay,a;) .. position vector of

membrane centre in room
membrane lies in Q,,, = {(a, + =, ay +y, a.)|z® +y? < r?} in term of coor-
dinates defined in €,.

Or coordinate transformation (shift)

Ty = T+ Gy

Ym =Y+ ay
a,? ="z (holds just in Q,,)
Equation connecting membrane and air

0 ~
V(I‘,y7z,t) : nﬁm = 871;(1‘ —Qg,Y — ay,t) in Qm

model membranelnAir
import C = Modelica.Constants;

//room deffinitions:

parameter Real 1x = 5, ly = 4, lz = 3;

coordinate Real x, y, z;

DomainBlock3D room(cartesian = {x,y,z}, Lx=lx, Ly=ly,
Lz=l1z);

33



parameter Real p_ 0 = 101300; //mean pressure

field Real v[3](domain=room, start = zeros(3)); //air

speed

field Real p(domain=rooom, start = p_0); // air
pressure

parameter Real rho 0 = 1.2; //air density

parameter Real c¢_a = 340; //speed of sound in air

//membrane deffinitions

parameter Point membranePos(x=1x/2,y=ly /2,z=1z/2); //
position of membrane center in the room

r = 0.15; //membrane radius

CircularDomian2D membranel (x=x—membranePos.x, y=y—
membranePos.y, O=z—membranePos.z in interior , radius

=1);

parameter Real ¢ m = 100; //wave speed traversing the
membrane

function u0

input x, y;

output ul = cos(sqrt(x°2 + y~2)xC.pi/(2xr));
end ul;

field Real u(domain = membrane, start[0] = u0, start[1]
= 0);

equation

//algernative aproach to match multiple domains(first
—— equations in domain constructor):

//is it OK that fields from different domain appeare
here?

membrane.x = room.x—membranePos.x in membrane.interior ;

membrane .y = room.y—membranePos.y in membrane.interior ;

0 = room .z—membranePos.z in membrane. interior ;

//membrane equations:

pder(u,t,t) = c m~2xgrad(diverg(u)) in membrane.
interior;

u =0 in membrane.boundary;

34



//room equations:

rho Oxpder(v,t) + grad(p) 0 in room.interior

pder(p,t) + rho 0O%xc_0"2xdiverg(v) = 0 in room.interior

)
vkregion.n = 0 in room.boundary;

viregion.n = pder(u,t) in membrane.interior;
end membranelnAir;

//Another aproach — class defining coordinates encloses
domains
class RoomAndMembrane

parameter Real 1x = 5, ly = 4, lz = 3;

coordinates x, y, z;

coordinates shiftCoord[3] = {x—membranePos.x,y—
membranePos.y,z—membranePos .z };

DomainBlock3D room (x=x, y=y, z=z, Lx=lx, Ly=ly, Lz=lz,
ax — 0, ay = 0, az — 0);

//3 options to define membrane and and inner and outer
coordinate transformation:

//1st:

//2nd rotated membrane

//3th rotated, in matrix notation

35



//air:

field Real v[3](domain=room, start = zeros(3)); //speed

field Real p(domain=rooom, start = p_ 0); //pressure
//membrane :
field Real u(domain = membrane, start[0] = u0, start[1]
= 0); //displacement
equation
vxkregion.n = pder(u,t) in room.membrane; //relation

between membrane and air fields

end RoomAndMembrane

Listing 3.6: Vibrating membrane in air

3.3.7 FEuler equations

do 9

ot = oz (ov)
0 dp
ot (ov) = " or
Je v
Q& = —p%

o .. density, v .. velocity, p .. pressure, € .. specific internal energy
state equation

p=co(y—1)

v = ¢p/cy .. gas constant (fraction of specific heat capacities at constant
pressure and volume)

36



Appendix A

Articles and books

I want to read: Other parts of Saldamli’s thesis, e.g. first sections of
chapter 7 and 9.3.

A DIFFERENTIATION INDEX FOR PARTIAL DIFFERENTIAL-ALGEBRAIC
EQUATIONS [10]

INDEX AND CHARACTERISTIC ANALYSIS OF LINEAR PDAE SYS-
TEMS [11]

Finite difference methods for ordinary and partial differential equations [8]

A Framework for Describing and Solving PDE Models in Modelica [13]

Solving pde models in modelica.[9]

Solid modeling on Wikipedia. [24]

0O Modeling with PDE, Saldamli, Modelica work shop 2000

37



Appendix B

Questions & problems:

important topics are written in bold

B.1 Modelica language extension

e is it necessary to specifie the domain using “in” within equations, when it
is actualy determined by the fields used in equations?

Coordinates

e Should be some coordinate system defined by default within the domain
deffinition? (Perhaps cartesian by default and others defined extra by user
if needed?)

— I would say no. If yes, user should have option to give them a name,
so that they are not always x, y, z.

e How to call atribute of Coordinate variable saying the type of the coor-
dinate (now called name) should be the value assigned to this attribut
written in quotes? It is also related with the previous question.

e.g. somethink like Coordinate x (name = ‘‘cartesian’);

e Is needed Coordinate type?

— Could be used just Real instead and compiler would infer that it
is coordinate as it distinguishes e.g. state and algebraic variable
now? How it may be infered? If domain is defined using coordi-
nate equations — coordinate variables are either in region deffinitions
(e.g. RegionlD interior(x in (a,b));) or appear in equations
with these variables.

— or should it be coordinate Real x; or coordinate x;? Coordinate
isn’t actualy a data type, as it doesn’t hold any data, it has no value.
It is symbolic stuff.

38



e Should coordinates of one system be placed in an array so that they are
ordered? Than individual elements could have alieses with the usual name.
E.g.
cartesian[1] = x; cartesian[2] = y;

e How to map shape function return values on particular space variables
(e.g. x, y, z) when they are not ordered? And what if there are more
coordinate systems defined (e.g. cartesian and polar)?

e Avoid equations of coordinate transformations in equation section and
write somethink like
Coordinate r (name = "polar", deffinition = sqrt(x"2 + y~2));
?

Other

¢ How to define domain: using boundary description, shape-function
or shape-equations?

e Should be built-in class Domain empty, or contain perhaps interior and
boundary regions?

— perhaps it should contain replaceable interior of general type
Region. Ut would be redeclared to Region1D, Region2D, or Region3D
later.

e How to define general differential operators (as grad, div ...) , if we use
user defined coordinates?

¢ How to write equations (boundary conditions) that combine field
variables from different domains?

— Using a region that is subset of both domains — how to write this?

— Use just one domain, transform coordinates from the other domain.
Example from 3.3.6
v(dom.x,dom.y,dom.z,t)*region.n = pder(u,t) (dom.x - a_x,dom.y
- a_y,t) in room.membrane;
I dislike usage of arguments in equations.

e addition of regions (operator +)
— the meaning is unintuitive, it is not clear thet regions are treated as

sets

— the resulting type is doubtable, should it be realy region as well?
In 1D it is completly strange. In Rectangle2D e.g the left and top
regions are defined using the same shape-functon, but shape-function
of left + right is different, and complicated — requires conditions.

39



— perhaps instead of RegionlD reg3 = regl + reg2;
write
RegionlD[] reg3 = {regl, reg2};

Atribut interval in region constructor is assigned an interval value or a
single constant. The letter is strange. Should be done in different way.

Initialization.
Rename region to manifold[1]?
unify somehow concept of region and domain?

How to call divergence operator (standard div is is already used for integer
division)

How should the shape, geometrical structure, mesh structure, etc. be de-
scribed by an external file? Should be the file imported into the Modelica
language, or just loaded by the runtime.

Philosophical problem: What exists first, domain or coordinates? I would
say coordinates must exist first as domain shape is defined using shape-
function using some coordinates.

is OK := op in fields?

Allow higer derivatives? Perhaps allow only higher space derivatives, not
time? Why are higher derivatives not allowed in current Modelica?

— rather allow

Allow some of this shortcuts to pder (u,dom.x) = ... 1in omega.interior:
pder(u,dom.x) = ... in omega //if no region specified, interior
used implicitly

pder(u,omega.x) = ... //in omega ommited, information inferd

from omega.x
— rather not

Field variables and equations written within domains?

Normal vector — should it be written rather in function-like way,
normal (omega.regionl) rather than omega.regionl.n

— perhaps “.” notation is better as the normal vector is not a value but

a function of coordinates

40



o field literal constructor:
field Real f = field (2*x+y for (omega.x,omega.y));

or

field Real f = field (2*dom.x+dom.y in omega.interior );
or

field Real f = field (2% x+y for (x, y) in omega ) ;

o

Solved problems:

e Multiple inheritance of domains — should it be allowd, what is the mean-
ing?

— multiple inheritance is allowed in general, but resulting equations
must not be in conflict. Deffinition of regions using intervals is also
som kind of equation. So we cannot inherit two domain calses that
both defines e.g. Region interior.

e How to deal with (name of) coordinate (independent) variables,
so that it doesn’t meddle with other variables (ODE)?

— coordinates are defined within the domain class. This solves the
problem. Inside this class they may be addressed directly, outside
className.coordName as other class members are accesed. In equa-
tion may be used shortcut keywords domain (or dom?) (and region)
to address domain (and region) specified with in operator. E.g.
pder(u, domain.x)=0 in omega.left

— NO. avoid coordinate variables at all

* allow writing equations coordinate-free, using only pder (u,time),

grad, div, ... operators (does it mean, we need no coordinates
defined in domain?).

* use operators pderx(u), pdert(u) or

— NO. Fixed names x, y, z used stand-alone. If they meddle with
other variable, infere which one is it from tha fact that we differentiate
with respect to this variable and from the actual domain (indicated
with in op.). — Makes model confusing.

— NO. fixed names and approach ODE variables from PDE in some
special way.

— NO. use longer name for coordinate variables (e.g. spaceX ...)

e Allow writing equations independent on particular domain and
also coordinate system?

41



— yes, using replaceable and redeclare on domain class and using
coordinate free differential operators if we even don’t know the di-
mension (grad, div etc.)

Rename ranges to intervals?
— yes

Domain description where some parameters are in range and others are
fixed: {{1,1}, {0.5,0.5}} or {{1,1}, 0.5}7

— allow both

How to deal with vector fields? How to acces its elements — using an index
or scalar product with standard base vectors?

— both

How to distinguish the main domain (now called DomainLineSegment 1D,
DomainRectangle2D ...) and its “subsets” where some equations hold (now
called DomainOD, DomainiD ...). I think only one of them should be called
domain.

— “subsets” renaimed to regions — (Region0D, RegionlD, Region 2D,
Region3D)

directional derivative
— der(u,v) (u is scalar or vector field in R™, v is vector in R")

Should it be possible to override initial and boundary conditions given in
model with some different values from external configuration file?

— yes

How to set initial condition for field derivative in similar way as using
start atribute (i.e. not using equation in initial section)? See 3.2.2

— start atribut is array where index denotes the derivative start[0]
- actual value, start[1] - first derivative

42



B.2 Generated code

e How to represent on which particular boundary an boundary condition
hold in generated code (or even on which interior domain hold which
PDE equation system, if we support various interiors)? — Some domain
struct could hold both shapeFunction parameter ranges and pointer (or
some index) to function with the corresponding equations. Or boundary
condition function knows on which elements (indexes) of variable arrays
should be applied.

e Should be generated functions independent on grid? It means
either
functionPDEIndependent (u,u_x,t,x)
u_t = ...
return u_t
or
functionPDEDependent (data)
for (int 1 ...)
u_tlil = ...

B.3 Numerics and solver

e Shall we support higher derivatives in solver?

¢ What about space derivatives? — All state and algebraics have
corresponding array for its space derivative, not all of them are
used. — Or all space derivatives of states and algebraics are
stored as different algebraic fields. — Or there is array for space
derivatives that is utilised by both states and algebraics that
need it.

e What about multi step mothods (RK, P-K)?
e How to generate even (or arbitrary) meshes with nonlinea shape functions?

e How to generate mesh points just on the boundary? 1D — simple — just two
points. 2D — We can go through the boundary curve and detect crossings
of grid lines. 3D — who knows?!

e How to plugin an already existing solver?

e How to determine causality of boundary conditions and other equations
that hold on less dimensional manifolds.

¢ Build whole solver in some PDE framework, perhaps Overture (http://www.overtureframework.org)/)

43



B.4 TODO

e Write a library for vector fields defining scalar and vector product, diver-
gence, gradient, rotation...

e Write model in coordinates different from cartesian

44



Bibliography

1]

2]

3]

[4]

5]

[6]

7]

8]

9]

Krister Ahlander, Magne Haveraaen, and HansZ. Munthe-Kaas. On the
role of mathematical abstractions for scientific computing. In RonaldF.
Boisvert and PingTakPeter Tang, editors, The Architecture of Scientific
Software, volume 60 of IFIP — The International Federation for Information
Processing, pages 145-158. Springer US, 2001.

Jordi Alastruey, Kim H Parker, and Spencer J Sherwin. Arterial pulse wave
haemodynamics.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Press, 2004.

Feng Gao, Masahiro Watanabe, Teruo Matsuzawa, et al. Stress analysis in
a layered aortic arch model under pulsatile blood flow. Biomed Eng Online,
5(25):1-11, 2006.

Raymond G Gosling and Marc M Budge. Terminology for describing the
elastic behavior of arteries. Hypertension, 41(6):1180-1182, 2003.

J. Horacek, P. Sidlof, and J.G. Svec. Numerical simulation of self-
oscillations of human vocal folds with hertz model of impact forces. Journal
of Fluids and Structures, 20(6):853 — 869, 2005. Axial-Flow Fluid-Structure
Interactions Axial-Flow Fluid-Structure Interactions.

Roberto M Lang, Bernard P Cholley, Claudia Korcarz, Richard H Mar-
cus, and Sanjeev G Shroff. Measurement of regional elastic properties of
the human aorta. a new application of transesophageal echocardiography
with automated border detection and calibrated subclavian pulse tracings.
Circulation, 90(4):1875-1882, 1994.

Randall LeVeque. Finite difference methods for ordinary and partial dif-
ferential equations: steady-state and time-dependent problems. Society for
Industrial and Applied Mathematics, 2007.

Zhihua Li, Ling Zheng, and Huili Zhang. Solving pde models in modelica. In
Proceedings of the 2008 International Symposium on Information Science
and Engieering- Volume 01, pages 53-57. IEEE Computer Society, 2008.

45



[10] Wade S Martinson and Paul I Barton. A differentiation index for partial
differential-algebraic equations. SIAM Journal on Scientific Computing,
21(6):2295-2315, 2000.

[11] Wade S Martinson and Paul I Barton. Index and characteristic analysis of
linear pdae systems. SIAM Journal on Scientific Computing, 24(3):905—
923, 2003.

[12] Levon Saldamli. A High-Level Language for Modeling with Partial Differ-
ential Equations. PhD thesis, Department of Computer and Information
Science, Linkdping University, 2006.

[13] Levon Saldamli, Bernhard Bachmann, Hansjiirg Wiesmann, and Peter
Fritzson. A framework for describing and solving pde models in model-
ica. In Paper presented at the 4th International Modelica Conference, 2005.

[14] SJ Sherwin, V Franke, J Peir6, and K Parker. One-dimensional modelling
of a vascular network in space-time variables. Journal of Engineering Math-
ematics, 47(3-4):217-250, 2003.

[15] Kristian Stavaker. Demonstration: Using hiflow3 together with modelica.
Slides, March 26 2013.

[16] Kristian Stavaker, Staffan Ronnas, Martin Wlotzka, Vincent Heuveline,
and Peter Fritzson. Pde modeling with modelica via fmi import of hiflow3
c++ components. Accepted.

[17] Inga Voges, Michael Jerosch-Herold, Jiirgen Hedderich, Eileen Pardun,
Christopher Hart, Dominik Daniel Gabbert, Jan Hinnerk Hansen, Colin
Petko, Hans-Heiner Kramer, Carsten Rickers, et al. Normal values of aor-
tic dimensions, distensibility, and pulse wave velocity in children and young
adults: a cross-sectional study. Journal of Cardiovascular Magnetic Reso-
nance, 14(1):77, 2012.

[18] Wikipedia. Acoustic theory. http://en.wikipedia.org/wiki/Acoustic_ theory.
[19] Wikipedia. Advection equation. http://en.wikipedia.org/wiki/Advection.
[20] Wikipedia. Blood viscosity. http://en.wikipedia.org/wiki/Blood _viscosity.

[21] Wikipedia. Hagen—poiseuille equation.
http://en.wikipedia.org/wiki/Hagen

[22] Wikipedia. Heat equation. http://en.wikipedia.org/wiki/Heat equation.

[23] Wikipedia. PAZestup tepla. http://cs.wikipedia.org/wiki/PAZestup _tepla.

[24] Wikipedia. Solid modeling. http://en.wikipedia.org/wiki/Solid_modeling.

[25] Wikipedia. Vibrating membrane. http://en.wikipedia.org/wiki/Vibrations _of a_circular _membrane.

[26] Wikipedia. Vibrating string. http://en.wikipedia.org/wiki/Vibrating string.

46



