
Commander X16 Programmer's Reference Guide

- 1 -

VERA Programmer's Reference

Version 0.9

Author: Frank van den Hoef

This is preliminary documentation and the specification can still change at any point.

This document describes the Versatile Embedded Retro Adapter or VERA. The VERA consists of:

Video generator featuring:

Multiple output formats (VGA, NTSC Composite, NTSC S-Video, RGB video) at a fixed resolution of 640x480@60Hz

Support for 2 layers, both supporting either tile or bitmap mode.

Support for up to 128 sprites.

Embedded video RAM of 128kB.

Palette with 256 colors selected from a total range of 4096 colors.

16-channel Programmable Sound Generator with multiple waveforms (Pulse, Sawtooth, Triangle, Noise)

High quality PCM audio playback from an 4kB FIFO buffer featuring up to 48kHz 16-bit stereo sound.

SPI controller for SecureDigital storage.

Registers

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F20
ADDRx_L

(x=ADDRSEL)
VRAM Address (7:0)

$9F21
ADDRx_M

(x=ADDRSEL)
VRAM Address (15:8)

$9F22
ADDRx_H

(x=ADDRSEL)
Address Increment DECR

Nibble

Increment

Nibble

Address

VRAM

Address

(16)

$9F23 DATA0 VRAM Data port 0

$9F24 DATA1 VRAM Data port 1

$9F25 CTRL Reset DCSEL ADDRSEL

$9F26 IEN
IRQ

line (8)

Scan line

(8)
- AFLOW SPRCOL LINE VSYNC

$9F27 ISR Sprite collisions AFLOW SPRCOL LINE VSYNC

$9F28
IRQLINE_L (Write

only)
IRQ line (7:0)

$9F28
SCANLINE_L

(Read only)
Scan line (7:0)

$9F29
DC_VIDEO

(DCSEL=0)

Current

Field

Sprites

Enable

Layer1

Enable

Layer0

Enable

NTSC/RGB:

240P

NTSC:

Chroma

Disable /

RGB: HV

Sync

Output Mode

$9F2A
DC_HSCALE

(DCSEL=0)
Active Display H-Scale

$9F2B
DC_VSCALE

(DCSEL=0)
Active Display V-Scale

$9F2C
DC_BORDER

(DCSEL=0)
Border Color

Commander X16 Programmer's Reference Guide

- 2 -

$9F29
DC_HSTART

(DCSEL=1)
Active Display H-Start (9:2)

$9F2A
DC_HSTOP

(DCSEL=1)
Active Display H-Stop (9:2)

$9F2B
DC_VSTART

(DCSEL=1)
Active Display V-Start (8:1)

$9F2C
DC_VSTOP

(DCSEL=1)
Active Display V-Stop (8:1)

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache

Write

Enable

Cache

Fill

Enable

One-byte

Cache

Cycling

16-bit Hop
4-bit

Mode
Addr1 Mode

$9F2A

FX_TILEBASE

(DCSEL=2)

(Write only)

FX Tile Base Address (16:11)

Affine

Clip

Enable

2-bit

Polygon

$9F2B

FX_MAPBASE

(DCSEL=2)

(Write only)

FX Map Base Address (16:11) Map Size

$9F2C

FX_MULT

(DCSEL=2)

(Write only)

Reset

Accum.
Accumulate

Subtract

Enable

Multiplier

Enable
Cache Byte Index

Cache

Nibble

Index

Two-byte

Cache

Incr.

Mode

$9F29

FX_X_INCR_L

(DCSEL=3)

(Write only)

X Increment (-2:-9) (signed)

$9F2A

FX_X_INCR_H

(DCSEL=3)

(Write only)

X Incr.

32x
X Increment (5:-1) (signed)

$9F2B

FX_Y_INCR_L

(DCSEL=3)

(Write only)

Y/X2 Increment (-2:-9) (signed)

$9F2C

FX_Y_INCR_H

(DCSEL=3)

(Write only)

Y/X2

Incr.

32x

Y/X2 Increment (5:-1) (signed)

$9F29

FX_X_POS_L

(DCSEL=4)

(Write only)

X Position (7:0)

$9F2A

FX_X_POS_H

(DCSEL=4)

(Write only)

X Pos.

(-9)
- X Position (10:8)

$9F2B

FX_Y_POS_L

(DCSEL=4)

(Write only)

Y/X2 Position (7:0)

$9F2C

FX_Y_POS_H

(DCSEL=4)

(Write only)

Y/X2

Pos.

(-9)

- Y/X2 Position (10:8)

$9F29

FX_X_POS_S

(DCSEL=5)

(Write only)

X Postion (-1:-8)

$9F2A FX_Y_POS_S

(DCSEL=5)

Y/X2 Postion (-1:-8)

Commander X16 Programmer's Reference Guide

- 3 -

(Write only)

$9F2B

FX_POLY_FILL_L

(DCSEL=5, 4-bit

Mode=0)

(Read only)

Fill Len

>= 16
X Position (1:0) Fill Len (3:0) 0

$9F2B

FX_POLY_FILL_L

(DCSEL=5, 4-bit

Mode=1, 2-bit

Polygon=0)

(Read only)

Fill Len

>= 8
X Position (1:0)

X Pos.

(2)
Fill Len (2:0) 0

$9F2B

FX_POLY_FILL_L

(DCSEL=5, 4-bit

Mode=1, 2-bit

Polygon=1)

(Read only)

X2 Pos.

(-1)
X Position (1:0)

X Pos.

(2)
Fill Len (2:0)

X Pos.

(-1)

$9F2C

FX_POLY_FILL_H

(DCSEL=5)

(Read only)

Fill Len (9:3) 0

$9F29

FX_CACHE_L

(DCSEL=6)

(Write only)

Cache (7:0) | Multiplicand (7:0) (signed)

$9F29

FX_ACCUM_RESET

(DCSEL=6)

(Read only)

Reset Accumulator

$9F2A

FX_CACHE_M

(DCSEL=6)

(Write only)

Cache (15:8) | Multiplicand (15:8) (signed)

$9F2A

FX_ACCUM

(DCSEL=6)

(Read only)

Accumulate

$9F2B

FX_CACHE_H

(DCSEL=6)

(Write only)

Cache (23:16) | Multiplier (7:0) (signed)

$9F2C

FX_CACHE_U

(DCSEL=6)

(Write only)

Cache (31:24) | Multiplier (15:8) (signed)

$9F29

DC_VER0

(DCSEL=63)

(Read only)

The ASCII character "V"

$9F2A

DC_VER1

(DCSEL=63)

(Read only)

Major release

$9F2B

DC_VER2

(DCSEL=63)

(Read only)

Minor release

$9F2C

DC_VER3

(DCSEL=63)

(Read only)

Minor build number

$9F2D L0_CONFIG Map Height Map Width T256C
Bitmap

Mode
Color Depth

Commander X16 Programmer's Reference Guide

- 4 -

$9F2E L0_MAPBASE Map Base Address (16:9)

$9F2F L0_TILEBASE Tile Base Address (16:11)
Tile

Height

Tile

Width

$9F30 L0_HSCROLL_L H-Scroll (7:0)

$9F31 L0_HSCROLL_H - H-Scroll (11:8)

$9F32 L0_VSCROLL_L V-Scroll (7:0)

$9F33 L0_VSCROLL_H - V-Scroll (11:8)

$9F34 L1_CONFIG Map Height Map Width T256C
Bitmap

Mode
Color Depth

$9F35 L1_MAPBASE Map Base Address (16:9)

$9F36 L1_TILEBASE Tile Base Address (16:11)
Tile

Height

Tile

Width

$9F37 L1_HSCROLL_L H-Scroll (7:0)

$9F38 L1_HSCROLL_H - H-Scroll (11:8)

$9F39 L1_VSCROLL_L V-Scroll (7:0)

$9F3A L1_VSCROLL_H - V-Scroll (11:8)

$9F3B AUDIO_CTRL

FIFO

Full /

FIFO

Reset

FIFO Empty

(read-only)
16-Bit Stereo PCM Volume

FIFO Loop (write-only)

$9F3C AUDIO_RATE PCM Sample Rate

$9F3D AUDIO_DATA Audio FIFO data (write-only)

$9F3E SPI_DATA Data

$9F3F SPI_CTRL Busy -
Slow

clock
Select

VRAM address space layout

Address range Description

$00000 - $1F9BF Video RAM

$1F9C0 - $1F9FF PSG registers

$1FA00 - $1FBFF Palette

$1FC00 - $1FFFF Sprite attributes

Important note: Video RAM locations 1F9C0-1FFFF contain registers for the PSG/Palette/Sprite attributes. Reading anywhere

in VRAM will always read back the 128kB VRAM itself (not the contents of the (write-only) PSG/Palette/Sprite attribute

registers). Writing to a location in the register area will write to the registers in addition to writing the value also to VRAM.

Since the VRAM contains random values at startup the values read back in the register area will not correspond to the actual

values in the write-only registers until they are written to once. Because of this it is highly recommended to initialize the

area from 1F9C0-1FFFF at startup.

Video RAM access

The video RAM (VRAM) isn't directly accessible on the CPU bus. VERA only exposes an address space of 32 bytes to the CPU as described in

the section Registers . To access the VRAM (which is 128kB in size) an indirection mechanism is used. First the address to be accessed needs

Commander X16 Programmer's Reference Guide

- 5 -

to be set (ADDRx_L/ADDRx_M/ADDRx_H) and then the data on that VRAM address can be read from or written to via the DATA0/1 register. To

make accessing the VRAM more efficient an auto-increment mechanism is present.

There are 2 data ports to the VRAM. Which can be accessed using DATA0 and DATA1. The address and increment associated with the data

port is specified in ADDRx_L/ADDRx_M/ADDRx_H. These 3 registers are multiplexed using the ADDR_SEL in the CTRL register. When

ADDR_SEL = 0, ADDRx_L/ADDRx_M/ADDRx_H become ADDR0_L/ADDR0_M/ADDR0_H.

When ADDR_SEL = 1, ADDRx_L/ADDRx_M/ADDRx_H become ADDR1_L/ADDR1_M/ADDR1_H.

By setting the 'Address Increment' field in ADDRx_H, the address will be increment after each access to the data register. The increment

register values and corresponding increment amounts are shown in the following table:

Register value Increment amount

0 0

1 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

9 256

10 512

11 40

12 80

13 160

14 320

15 640

Setting the DECR bit, will decrement instead of increment by the value set by the 'Address Increment' field.

Reset

When RESET in CTRL is set to 1, the FPGA will reconfigure itself. All registers will be reset. The palette RAM will be set to its default values.

Interrupts

Interrupts will be generated for the interrupt sources set in the lower 4 bits of IEN. ISR will indicate the interrupts that have occurred. Writing

a 1 to one of the lower 3 bits in ISR will clear that interrupt status. AFLOW can only be cleared by filling the audio FIFO for at least 1/4.

IRQ_LINE (write-only) specifies at which line the LINE interrupt will be generated. Note that bit 8 of this value is present in the IEN register.

For interlaced modes the interrupt will be generated each field and the bit 0 of IRQ_LINE is ignored.

SCANLINE (read-only) indicates the current scanline being sent to the screen. Bit 8 of this value is present in the IEN register. The value is 0

during the first visible line and 479 during the last. This value continues to count beyond the last visible line, but returns $1FF for lines 512-

524 that are beyond its 9-bit resolution. SCANLINE is not affected by interlaced modes and will return either all even or all odd values during

an even or odd field, respectively. Note that VERA renders lines ahead of scanout such that line 1 is being rendered while line 0 is being

scanned out. Visible changes may be delayed one scanline because of this.

The upper 4 (read-only) bits of the ISR register contain the sprite collisions as determined by the sprite renderer.

Display composer

Commander X16 Programmer's Reference Guide

- 6 -

The display composer is responsible of combining the output of the 2 layer renderers and the sprite renderer into the image that is sent to

the video output.

The video output mode can be selected using OUT_MODE in DC_VIDEO.

OUT_MODE Description

0 Video disabled

1 VGA output

2 NTSC (composite/S-Video)

3 RGB 15KHz, composite or separate H/V sync, via VGA connector

Setting 'Chroma Disable' disables output of chroma in NTSC composite mode and will give a better picture on a monochrome display.

(Setting this bit will also disable the chroma output on the S-video output.)

Setting 'HV Sync' enables separate HSync/VSync signals in RGB output mode. Clearing the bit will enable the default of composite sync over

RGB.

Setting '240P' enables 240P progressive mode over NTSC or RGB. It has no effect if the VGA output mode is active. Instead of 262.5

scanlines per field, this mode outputs 263 scanlines per field. On CRT displays, the scanlines from both the even and odd fields will be

displayed on even scanlines.

'Current Field' is a read-only bit which reflects the active interlaced field in composite and RGB modes. In non-interlaced modes, this

reflects if the current line is even or odd. (0: even, 1: odd)

Setting 'Layer0 Enable' / 'Layer1 Enable' / 'Sprites Enable' will respectively enable output from layer0 / layer1 and the sprites renderer.

DC_HSCALE and DC_VSCALE will set the fractional scaling factor of the active part of the display. Setting this value to 128 will output 1

output pixel for every input pixel. Setting this to 64 will output 2 output pixels for every input pixel.

DC_BORDER determines the palette index which is used for the non-active area of the screen.

DC_HSTART/DC_HSTOP and DC_VSTART/DC_VSTOP determines the active part of the screen. The values here are specified in the native

640x480 display space. HSTART=0, HSTOP=640, VSTART=0, VSTOP=480 will set the active area to the full resolution. Note that the lower 2

bits of DC_HSTART/DC_HSTOP and the lower 1 bit of DC_VSTART/DC_VSTOP isn't available. This means that horizontally the start and

stop values can be set at a multiple of 4 pixels, vertically at a multiple of 2 pixels.

DC_VER0, DC_VER1, DC_VER2, and DC_VER3 can be queried for the version number of the VERA bitstream. If reading DC_VER0 returns

$56 , the remaining registers returns values forming the major, minor, and build numbers respectively. If DC_VER0 returns a value other

than $56 , the VERA bitstream version number is undefined.

Layer 0/1 registers

'Map Base Address' specifies the base address of the tile map. Note that the register only specifies bits 16:9 of the address, so the address

is always aligned to a multiple of 512 bytes.

'Tile Base Address' specifies the base address of the tile data. Note that the register only specifies bits 16:11 of the address, so the

address is always aligned to a multiple of 2048 bytes.

'H-Scroll' specifies the horizontal scroll offset. A value between 0 and 4095 can be used. Increasing the value will cause the picture to move

left, decreasing will cause the picture to move right.

'V-Scroll' specifies the vertical scroll offset. A value between 0 and 4095 can be used. Increasing the value will cause the picture to move up,

decreasing will cause the picture to move down.

'Map Width', 'Map Height' specify the dimensions of the tile map:

Value Map width / height

0 32 tiles

1 64 tiles

2 128 tiles

Commander X16 Programmer's Reference Guide

- 7 -

3 256 tiles

'Tile Width', 'Tile Height' specify the dimensions of a single tile:

Value Tile width / height

0 8 pixels

1 16 pixels

In bitmap modes, the 'H-Scroll (11:8)' register is used to specify the palette offset for the bitmap.

Layer display modes

The features of the 2 layers are the same. Each layer supports a few different modes which are specified using T256C / 'Bitmap Mode' /

'Color Depth' in Lx_CONFIG.

'Color Depth' specifies the number of bits used per pixel to encode color information:

Color Depth Description

0 1 bpp

1 2 bpp

2 4 bpp

3 8 bpp

The layer can either operate in tile mode or bitmap mode. This is selected using the 'Bitmap Mode' bit; 0 selects tile mode, 1 selects bitmap

mode.

The handling of 1 bpp tile mode is different from the other tile modes. Depending on the T256C bit the tiles use either a 16-color foreground

and background color or a 256-color foreground color. Other modes ignore the T256C bit.

Tile mode 1 bpp (16 color text mode)

T256C should be set to 0.

MAP_BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Character index

1 Background color Foreground color

TILE_BASE points to the tile data.

Each bit in the tile data specifies one pixel. If the bit is set the foreground color as specified in the map data is used, otherwise the

background color as specified in the map data is used.

Tile mode 1 bpp (256 color text mode)

T256C should be set to 1.

MAP_BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Character index

1 Foreground color

TILE_BASE points to the tile data.

Each bit in the tile data specifies one pixel. If the bit is set the foreground color as specified in the map data is used, otherwise color 0 is used

(transparent).

Commander X16 Programmer's Reference Guide

- 8 -

Tile mode 2/4/8 bpp

MAP_BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Tile index (7:0)

1 Palette offset V-flip H-flip Tile index (9:8)

TILE_BASE points to the tile data.

Each pixel in the tile data gives a color index of either 0-3 (2bpp), 0-15 (4bpp), 0-255 (8bpp). This color index is modified by the palette offset

in the tile map data using the following logic:

Color index 0 (transparent) and 16-255 are unmodified.

Color index 1-15 is modified by adding 16 x palette offset.

Bitmap mode 1/2/4/8 bpp

MAP_BASE isn’t used in these modes. TILE_BASE points to the bitmap data.

TILEW specifies the bitmap width. TILEW=0 results in 320 pixels width and TILEW=1 results in 640 pixels width.

The palette offset (in 'H-Scroll (11:8)') modifies the color indexes of the bitmap in the same way as in the tile modes.

SPI controller

The SPI controller is connected to the SD card connector. The speed of the clock output of the SPI controller can be controlled by the 'Slow

Clock' bit. When this bit is 0 the clock is 12.5MHz, when 1 the clock is about 390kHz. The slow clock speed is to be used during the

initialization phase of the SD card. Some SD cards require a clock less than 400kHz during part of the initialization.

A transfer can be started by writing to SPI_DATA. While the transfer is in progress the BUSY bit will be set. After the transfer is done, the

result can be read from the SPI_DATA register.

The chip select can be controlled by writing the SELECT bit. Writing 1 will assert the chip-select (logic-0) and writing 0 will release the chip-

select (logic-1).

Palette

The palette translates 8-bit color indexes into 12-bit output colors. The palette has 256 entries, each with the following format:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Green Blue

1 - Red

At reset, the palette will contain a predefined palette:

Commander X16 Programmer's Reference Guide

- 9 -

Color indexes 0-15 contain a palette somewhat similar to the C64 color palette.

Color indexes 16-31 contain a grayscale ramp.

Color indexes 32-255 contain various hues, saturation levels, brightness levels.

Sprite attributes

128 entries of the following format:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Address (12:5)

1 Mode - Address (16:13)

2 X (7:0)

Commander X16 Programmer's Reference Guide

- 10 -

3 - X (9:8)

4 Y (7:0)

5 - Y (9:8)

6 Collision mask Z-depth V-flip H-flip

7 Sprite height Sprite width Palette offset

Mode Description

0 4 bpp

1 8 bpp

Z-depth Description

0 Sprite disabled

1 Sprite between background and layer 0

2 Sprite between layer 0 and layer 1

3 Sprite in front of layer 1

Sprite width / height Description

0 8 pixels

1 16 pixels

2 32 pixels

3 64 pixels

Rendering Priority The sprite memory location dictates the order in which it is rendered. The sprite whose attributes are at the lowest

location will be rendered in front of all other sprites; the sprite at the highest location will be rendered behind all other sprites, and so forth.

Palette offset works in the same way as with the layers.

Sprite collisions

At the start of the vertical blank Collisions in ISR is updated. This field indicates which groups of sprites have collided. If the field is non-zero

the SPRCOL interrupt will be set. The interrupt is generated once per field / frame and can be cleared by making sure the sprites no longer

collide.

Note that collisions are only detected on lines that are actually rendered. This can result in subtle differences between non-interlaced and

interlaced video modes.

VERA FX

The FX feature set is available in VERA firmware version v0.3.1 or later. The Commander X16 emulators also have this feature officially as of

R44.

FX is a set of mainly addressing mode changes. VERA FX does not accelerate rendering, but it merely assists the CPU with some of the slower

tasks, and when used cleverly, can allow for the programmer to perform some limited perspective transforms or basic 3D effects.

FX features are controlled mainly by registers $9F29-$9F2C with DCSEL set to 2 through 6. FX_CTRL ($9F29 w/ DCSEL=2) is the master

switch for enabling or disabling FX behaviors. When writing an application that uses FX, it is important that the FX mode be preserved and

disabled in interrupt handlers in cases where the handler accesses VERA registers or VRAM, including the PSG sound registers. Reading from

FX_CTRL returns the current state, and writing 0 to FX_CTRL suspends the FX behaviors so that the VERA can be accessed normally without

mutating other FX state.

Preliminary documentation for the feature can be found here , but as this is a brand new feature, examples and documentation still need to

be written.

Commander X16 Programmer's Reference Guide

- 11 -

Programmable Sound Generator (PSG)

The audio functionality contains of 2 independent systems. The first is the PSG or Programmable Sound Generator. The second is the PCM (or

Pulse-Code Modulation) playback system.

16 entries (channels) of the following format:

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Frequency word (7:0)

1 Frequency word (15:8)

2 Right Left Volume

3 Waveform Pulse width

Frequency word sets the frequency of the sound. The formula for calculating the output frequency is:

sample_rate = 25MHz / 512 = 48828.125 Hz

output_frequency = sample_rate / (2^17) * frequency_word

Thus the output frequency can be set in steps of about 0.373 Hz.

Example: to output a frequency of 440Hz (note A4) the Frequency word should be set to 440 / (48828.125 / (2^17)) = 1181

Volume controls the volume of the sound with a logarithmic curve; 0 is silent, 63 is the loudest. The Left and Right bits control to which

output channels the sound should be output.

Waveform controls the waveform of the sound:

Waveform Description

0 Pulse

1 Sawtooth

2 Triangle

3 Noise

Pulse width controls the duty cycle of the pulse waveform. A value of 63 will give a 50% duty cycle or square wave, 0 will give a very

narrow pulse.

Just like the other waveform types, the frequency of the noise waveform can be controlled using frequency. In this case a higher frequency

will give brighter noise and a lower value will give darker noise.

PCM audio

For PCM playback, VERA contains a 4kB FIFO buffer. This buffer needs to be filled in a timely fashion by the CPU. To facilitate this an AFLOW

(Audio FIFO low) interrupt can be generated when the FIFO is less than 1/4 filled.

Audio registers

AUDIO_CTRL ($9F3B)

FIFO Full (bit 7) is a read-only flag that indicates whether the FIFO is full. Any writes to the FIFO while this flag is 1 will be ignored. Writing a

1 to this register (FIFO Reset) will perform a FIFO reset, which will clear the contents of the FIFO buffer, except when written in combination

with a 1 in bit 6.

FIFO Loop (bit 6+7): If a 1 is written to both bit 6 and 7 (at the same time), the FIFO will loop when played. Any other write to AUDIO_CTRL

clears this loop flag. Note: this feature is currently only available in x16-emulator and is not in any released VERA firmware.

FIFO Empty (bit 6) is a read-only flag that indicates whether the FIFO is empty.

16-bit (bit 5) sets the data format to 16-bit. If this bit is 0, 8-bit data is expected.

Commander X16 Programmer's Reference Guide

- 12 -

Stereo (bit 4) sets the data format to stereo. If this bit is 0 (mono), the same audio data is send to both channels.

PCM Volume (bits 0..3)controls the volume of the PCM playback, this has a logarithmic curve. A value of 0 is silence, 15 is the loudest.

AUDIO_RATE ($9F3C)

PCM sample rate controls the speed at which samples are read from the FIFO. A few example values:

PCM sample rate Description

128 normal speed (25MHz / 512 = 48828.125 Hz)

64 half speed (24414 Hz)

32 quarter speed (12207 Hz)

0 stop playback

>128 invalid

Using a value of 128 will give the best quality (lowest distortion); at this value for every output sample, an input sample from the FIFO is

read. Lower values will output the same sample multiple times to the audio DAC. Input samples are always read as a complete set (being

1/2/4 bytes).

AUDIO_DATA ($9F3D)

Audio FIFO data Writes to this register add one byte to the PCM FIFO. If the FIFO is full, the write will be ignored.

NOTE: When setting up for PCM playback it is advised to first set the sample rate at 0 to stop playback. First fill the FIFO buffer with some

initial data and then set the desired sample rate. This can prevent undesired FIFO underruns.

Audio data formats

Audio data is two's complement signed. Depending on the selected mode the data needs to be written to the FIFO in the following order:

Mode Order in which to write data to FIFO

8-bit mono <mono sample>

8-bit stereo <left sample> <right sample>

16-bit mono <mono sample (7:0)> <mono sample (15:8)>

16-bit stereo <left sample (7:0)> <left sample (15:8)> <right sample (7:0)> <right sample (15:8)>

Commander X16 Programmer's Reference Guide

- 13 -

VERA FX Reference

Author: MooingLemur, based on documentation written by JeffreyH

This is preliminary documentation and the specification can still change at any point.

Introduction

This is a reference for the VERA FX features. It is meant to be a complement to the tutorial, currently found here .

The FX Update mainly adds "helpers" inside of VERA that can be used by the CPU. There is no "magic button" that allows you to do 3D

graphics for example. It mainly helps at certain CPU time-consuming tasks, most notably the ones that are present in the (deep) inner-loop of

a game/graphics engine. The FX Update does therefore not fundamentally change the architecture or nature of VERA, it extends and

improves it.

In other words: the CPU is still the orchestrator of all that is done, but it is alleviated from certain operations where it is not (very) good at or

does not have direct access to.

FX Update extends addressing modes, it does not add or extend renderers.

Usage

DCSEL

VERA is mapped as 32 8-bit registers in the memory space of the Commander X16, starting at address $9F20 and ending at $9F3F. Many of

these are (fully) used, but some bits remain unused. The DCSEL bits in register $9F25 (also called CTRL) has been extended to 6-bits to allow

for the 4 registers $9F29-$9F2C to have additional meanings.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F25 CTRL Reset

DCSEL

ADDRSEL

The FX features use DCSEL values 2, 3, 4, 5, and 6. This effectively gives FX 20 8-bit registers. Note that 15 of these registers are write-only,

2 of them are read-only and 3 are both readable and writable,

Important: unless DCSEL values of 2-6 are used, the behavior of VERA is exactly the same as it was before the FX update. This ensures that

the FX update is backwards compatible with traditional non-FX uses of VERA.

Addr1 Mode

When DCSEL=2, the main FX configuration register becomes available (FX_CTRL/$9F29), which is both readable and writable. The 2 lower

bits are the addr1 mode bits, which will change the behavior of how and when ADDR1 is updated. This puts the FX helpers in a certain "role".

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache Write

Enable

Cache Fill

Enable

One-byte Cache

Cycling

16-bit

Hop

4-bit

Mode

Addr1 Mode

Addr1 Mode Description

0 Traditional VERA behavior

1 Line draw helper

2 Polygon filler helper

3 Affine helper

By default, Addr1 Mode is set to 0 (=00b), which is the normal and already-known behavior of ADDR1 .

https://docs.google.com/document/d/1q34uWOiM3Be2pnaHRVgSdHySI-qsiQWPTo_gfE54PTg

Commander X16 Programmer's Reference Guide

- 14 -

Line draw helper

When Addr1 Mode is set to 1 (=01b) the line draw helper is enabled.

Setting up the line draw helper

Set ADDR1 to the address of the starting pixel

Determine the octant (see below) you are going to draw in, which will inform your ADDR0 and ADDR1 increments.

Set ADDR1 increment in the direction you will always increment each step

For 8-bit mode: (+1, -1, -320, or +320)

For 4-bit mode: (-0.5, +0.5, -160, or +160)

Set ADDR0 increment in the direction you will sometimes increment. Even though this is the increment for ADDR0 , we are

using it in line draw mode as an incrementer for ADDR1 .

For 8-bit mode: (+1, -1, -320, or +320).

For 4-bit mode: (-0.5, +0.5, -160, or +160)

For 4-bit mode, the half increments are set via the Nibble Increment bit and optionally the DECR bit in ADDRx_H . For the

Nibble Increment bit to have effect, the main Address Increment must be set to 0, and the 4-bit Mode bit must be set in

FX_CTRL ($9F29, DCSEL=2).

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F22
ADDRx_H

(x=ADDRSEL)
Address Increment

DECR
Nibble

Increment Nibble

Address

VRAM

Address

(16)

Commander X16 Programmer's Reference Guide

- 15 -

Octant 8-bit ADDR1 increment 8-bit ADDR0 increment 4-bit ADDR1 increment 4-bit ADDR0 increment

0 +1 -320 +0.5 -160

1 -320 +1 -160 +0.5

2 -320 -1 -160 -0.5

3 -1 -320 -0.5 -160

4 -1 +320 -0.5 +160

5 +320 -1 +160 -0.5

6 +320 +1 +160 +0.5

7 +1 +320 +0.5 +160

Set your slope into the two "X Increment" registers (DCSEL=3, see below). Note that increment registers are 15-bit signed fixed-point

numbers, and for this mode, the range should be 0.0 to 1.0 inclusive, so you'll either want to store the value of 1, or you'll want to set

only the fractional part.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29

FX_X_INCR_L

(DCSEL=3)

(Write only)

X Increment (-2:-9) (signed)

$9F2A

FX_X_INCR_H

(DCSEL=3)

(Write only)

X Incr. 32x X Increment (5:1) (signed)

X Incr. (0) X Incr. (-1)

Note: Of the two incrementers, the line draw helper uses only the X incrementer. However depending on the octant you are drawing in, this

incrementer will be used to depict either x or y pixel increments. So the "X" should not be taken literally here, it just means the first of the

two incrementers.

As a side effect of in line draw mode, by setting FX_X_INCR_H ($9F2A, DCSEL=3), the fractional part (the lower 9 bits) of X Position

are automatically set to half a pixel. Furthermore, the lowest bit of the pixel position (which acts as an overflow bit) is set to 0 as well.

This effectively sets the starting X-position to 0.5 (the center) of a pixel.

Note: There is no need to set the higher bits of the X position, since the FX X position (accumulator) is only used to track the fractional

(subpixel) part of the line draw.

Commander X16 Programmer's Reference Guide

- 16 -

Polygon filler helper

When Addr1 Mode is set to 2 (=10b) the polygon filler helper is enabled.

Setting up the polygon filler helper

Assuming a 320 pixel-wide screen

Set ADDR0 to the address of the y-position of the top point of the triangle and x=0 (so on the left of the screen). Set its increment to

+320 (for 8-bit mode) or +160 (for 4-bit mode).

Note: ADDR0 is used as "base address" for calculating ADDR1 for each horizontal line of the triangle. ADDR0 should

therefore start at the top of the triangle and increment exactly one line each time.

There is no need to set ADDR1 . This is done by VERA.

Calculate your slopes (dx/dy) for both the left and right point. Unlike the line draw helper, these slopes can be negative and can

exceed 1.0. They are not dependent on octant, but cover the whole 180 degrees downwards. Below is an illustration of some (not-to-

scale) examples of increments:

Set ADDR1 increment to +1 (for 8-bit mode) or +0.5 (for 4-bit mode)

ADDR1 increment can also be +4 if you use 32-bit cache writes, explained later)

Set your left slope into the two "X increment" registers and your right slope into the two "Y increment" registers (DCSEL=3, see

below).

Important: They should be set to half the increment (or decrement) per horizontal line! This is because the polygon filler

increments in two steps per line.

Note that increment registers are 15-bit signed fixed-point numbers:

6 bits for the integer pixel increment

9 bits for the fractional (subpixel) increment

1 additional bit that indicates the actual value should be multiplied by 32

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29

FX_X_INCR_L

(DCSEL=3)

(Write only)

X Increment (-2:-9) (signed)

$9F2A

FX_X_INCR_H

(DCSEL=3)

(Write only)

X Incr. 32x X Increment (5:0) (signed) X Incr. (-1)

$9F2B

FX_Y_INCR_L

(DCSEL=3)

(Write only)

Y/X2 Increment (-2:-9) (signed)

$9F2C

FX_Y_INCR_H

(DCSEL=3)

(Write only)

Y/X2 Incr. 32x Y/X2 Increment (5:0) (signed) Y/X2 Incr. (-1)

Due to the fact that we are in "polygon fill"-mode, by setting the high bits of the "X increment" ($9F2A, DCSEL=3), the "X position"

(the lower 9 bits of the position in DCSEL=4 and DCSEL=5) are automatically set to half a pixel. The same goes for the high bits of

Commander X16 Programmer's Reference Guide

- 17 -

the Y/X2 increment ($9F2C, DCSEL=3) and Y/X2 position.

Set the "X position" and "Y/X2 position” to the x-pixel-position of the top triangle point.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29

FX_X_POS_L

(DCSEL=4)

(Write only)

X Position (7:0)

$9F2A

FX_X_POS_H

(DCSEL=4)

(Write only)

X Pos. (-9) -

X Position (10:8)

$9F2B

FX_Y_POS_L

(DCSEL=4)

(Write only)

Y/X2 Position (7:0)

$9F2C

FX_Y_POS_H

(DCSEL=4)

(Write only)

Y/X2 Pos. (-9) -

Y/X2 Position (10:8)

Steps that are needed for filling a triangle part with lines:

Read from DATA1

This will not return any useful data but will do two things in the background:

Increment/decrement the X1 and X2 positions by their corresponding increment values.

Set ADDR1 to ADDR0 + X1

Then read the “Fill length (low)”-register. Its output depends on whether you're in 4 or 8-bit mode.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2B

FX_POLY_FILL_L

(DCSEL=5, 4-bit Mode=0)

(Read only)

Fill Len >=

16

X Position

(1:0)
Fill Len (3:0) 0

$9F2B

FX_POLY_FILL_L

(DCSEL=5, 4-bit Mode=1, 2-bit

Polygon=0)

(Read only)

Fill Len >=

8

X Position

(1:0)

X Pos.

(2)
Fill Len (2:0) 0

If fill_len >= 16 (or >= 8 in 4-bit mode) then also read the “Fill length (high)”-register:

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2C

FX_POLY_FILL_H

(DCSEL=5)

(Read only)

Fill Len (9:3) 0

Important: when the two highest bits of Fill Len (bits 8 and 9) are both 1, it means there is a negative fill length. The line should

not be drawn!

Together they give you 10-bits of fill length (ignore the other bits for now). Since ADDR1 is already set properly you can immediately

start drawing this number of pixels (given by Fill Len).

sta DATA1 ; as many times as Fill Len states

Then read from DATA0 : this will (also) increment X1 and X2

Check if all lines of this triangle part have been drawn, if not go to the first step.

There is also a 2-bit polygon mode, which is better explained in the tutorial

Affine helper

When Addr1 Mode is set to 3 (=11b) the affine (transformation) helper is enabled.

https://docs.google.com/document/d/1q34uWOiM3Be2pnaHRVgSdHySI-qsiQWPTo_gfE54PTg

Commander X16 Programmer's Reference Guide

- 18 -

When reading from ADDR1 in this mode, the affine helper reads tile data from a special tile area defined by two new FX registers:

FX_TILEBASE is pointed to a set of 8x8 tiles in either 4-bit or 8-bit depth. FX can support up to 256 tile definitions, and can overlap

the traditional layer tile bases.

FX_MAPBASE points to a square-shaped tile map, one byte per tile. This tile map has no attribute bytes. unlike the traditional layer

0/1 tile maps.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2A

FX_TILEBASE

(DCSEL=2)

(Write only)

FX Tile Base Address (16:11) Affine Clip Enable

2-bit Polygon

$9F2B

FX_MAPBASE

(DCSEL=2)

(Write only)

FX Map Base Address (16:11) Map Size

Affine Clip Enable changes the behavior when the X/Y positions are outside of the tile map such that it always reads data from tile

0. The default behavior is to wrap the X/Y position to the opposite side of the map.

Map Size is a 2 bit value that affects both the width and height of the tile map.

Map Size Dimensions

0 2×2

1 8×8

2 32×32

3 128×128

The Transparent Writes toggle in FX_CTRL is especially useful in Affine helper mode. Setting this toggle causes a write of zero to

leave the byte (or the nibble) at the target address intact. This toggle is not limited to affine helper mode, and it affects writes to

both DATA0 and DATA1.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes Cache Write

Enable

Cache Fill

Enable

One-byte Cache

Cycling

16-bit

Hop

4-bit

Mode
Addr1 Mode

When using the affine helper, the X and Y position registers (DCSEL=4) are used to set ADDR1 to the source pixel indirectly in the

aforementioned tile map, while the X and Y increments determine the step after each read of ADDR1.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29

FX_X_POS_L

(DCSEL=4)

(Write only)

X Position (7:0)

$9F2A

FX_X_POS_H

(DCSEL=4)

(Write only)

X Pos. (-9) -

X Position (10:8)

$9F2B

FX_Y_POS_L

(DCSEL=4)

(Write only)

Y/X2 Position (7:0)

$9F2C

FX_Y_POS_H

(DCSEL=4)

(Write only)

Y/X2 Pos. (-9) -

Y/X2 Position (10:8)

The affine helper supports the full range of X and Y increment values, including negative values.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Commander X16 Programmer's Reference Guide

- 19 -

$9F29

FX_X_INCR_L

(DCSEL=3)

(Write only)

X Increment (-2:-9) (signed)

$9F2A

FX_X_INCR_H

(DCSEL=3)

(Write only)

X Incr. 32x X Increment (5:0) (signed) X Incr. (-1)

$9F2B

FX_Y_INCR_L

(DCSEL=3)

(Write only)

Y/X2 Increment (-2:-9) (signed)

$9F2C

FX_Y_INCR_H

(DCSEL=3)

(Write only)

Y/X2 Incr. 32x Y/X2 Increment (5:0) (signed) Y/X2 Incr. (-1)

32-bit cache

When the CPU reads a byte via DATA0 or DATA1, and "cache fill enable" is set, the value read will be copied into an indexed location inside

the 32-bit cache.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache Write

Enable

Cache Fill

Enable One-byte Cache

Cycling

16-bit

Hop

4-bit

Mode
Addr1 Mode

In 8-bit mode, a byte is cached, but in 4-bit mode, a nibble is cached instead. Afterwards, by default, the index into the cache is incremented,

and loops back around to 0 after the last index. The index can be set explicitly via the FX_MULT register. 8-bit mode uses bits 3:2 and ranges

from 0-3. 4-bit mode uses bits 3:1 and ranges from 0-7.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2C

FX_MULT

(DCSEL=2)

(Write

only)

Reset

Accum.
Accumulate

Subtract

Enable

Multiplier

Enable

Cache Byte

Index

Cache

Nibble

Index

Two-byte

Cache Incr.

Mode

Alternatively, the cache index can cycle between two adjacent bytes: 0, 1, and back to 0; or 2, 3, and back to 2. This option only has effect in

8-bit mode.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2C

FX_MULT

(DCSEL=2)

(Write

only)

Reset

Accum.
Accumulate

Subtract

Enable

Multiplier

Enable

Cache Byte

Index

Cache

Nibble

Index

Two-byte

Cache Incr.

Mode

Setting the cache data directly

Instead of filling the cache by reading from DATA0 or DATA1, the cache data can also be set directly by writing to the FX_CACHE* registers.

Setting the cache directly does not affect the cache index.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29

FX_CACHE_L

(DCSEL=6)

(Write only)

Cache (7:0) | Multiplicand (7:0) (signed)

$9F2A FX_CACHE_M

(DCSEL=6)

Cache (15:8) | Multiplicand (15:8) (signed)

Commander X16 Programmer's Reference Guide

- 20 -

(Write only)

$9F2B

FX_CACHE_H

(DCSEL=6)

(Write only)

Cache (23:16) | Multiplier (7:0) (signed)

$9F2C

FX_CACHE_U

(DCSEL=6)

(Write only)

Cache (31:24) | Multiplier (15:8) (signed)

Writing the cache to VRAM

If "Cache write enabled" is set, the cache contents are written to VRAM when writing to DATA0 or DATA1. The primary use is to write all or

part of the 32-bit cache to the 4-byte-aligned region of memory at the current address.

Control over which parts are written are chosen by the value written to DATA0 or DATA1. The value written is treated as a nibble mask

where a 0-bit writes the data and a 1-bit masks the data from being written.In other words, writing a 0 will flush the entire 32-bit cache.

Writing #%00001111 will write the second and third byte in the cache to VRAM in the second and third memory locations in the 4-byte-

aligned region.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache Write

Enable Cache Fill

Enable

One-byte Cache

Cycling

16-bit

Hop

4-bit

Mode
Addr1 Mode

Transparency writes

Transparent writes, when enabled, also applies to cache writes. If enabled, zero bytes (or zero nibbles in 4-bit mode) in the cache, which are

treated as transparency pixels, are not written.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes Cache Write

Enable

Cache Fill

Enable

One-byte Cache

Cycling

16-bit

Hop

4-bit

Mode
Addr1 Mode

When "one-byte cache cycling" is turned on and DATA0 or DATA1 is written to, the byte at the current cache index is written to VRAM. When

"Cache write enable" is set as well, the byte is duplicated 4 times when writing to VRAM.

Usually the incrementing of the cache index is only triggered by reading from DATA0 or DATA1 when cache filling is enabled. However it can

also be triggered by reading from DATA0 in polygon mode when cache filling is not enabled and "one-byte cache cycling" is enabled.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache Write

Enable

Cache Fill

Enable

One-byte Cache

Cycling 16-bit

Hop

4-bit

Mode
Addr1 Mode

Multiplier and accumulator

The 32-bit cache also doubles as an input to the hardware multiplier when Multiplier Enable is set.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2C

FX_MULT

(DCSEL=2)

(Write

only)

Reset

Accum.
Accumulate

Subtract

Enable

Multiplier

Enable Cache Byte

Index

Cache

Nibble

Index

Two-byte

Cache Incr.

Mode

To do a single multiplication, put the two 16-bit inputs into the two halves of the 32-bit cache.

Commander X16 Programmer's Reference Guide

- 21 -

 lda #(2 << 1)

 sta VERA_CTRL ; $9F25

 stz VERA_FX_CTRL ; $9F29 (mainly to reset Addr1 Mode to 0)

 lda #%00010000

 sta VERA_FX_MULT ; $9F2C

 lda #(6 << 1)

 sta VERA_CTRL ; $9F25

 lda #<69

 sta VERA_FX_CACHE_L ; $9F29

 lda #>69

 sta VERA_FX_CACHE_M ; $9F2A

 lda #<420

 sta VERA_FX_CACHE_H ; $9F2B

 lda #>420

 sta VERA_FX_CACHE_U ; $9F2C

The accumulator can be used to accumulate the sum of several multiplications. Before doing this single multiplication, ensure this is reset

this to zero, otherwise the output will be added to the value of the accumulator before being written. There are two methods to do this. The

first is to write a 1 into bit 7 of FX_MULT ($9F2C, DCSEL=2). The other, more conveniently, is to read FX_ACCUM_RESET (the same register

location as VERA_FX_CACHE_L).

 lda FX_ACCUM_RESET ; $9F29 (DCSEL=6)

To perform the multiplication, it must be written to VRAM first. This is done via the cache write mechanism. Usually the cache itself is written

to VRAM if "Cache Write Enable" is set. However, if the "Multiplier Enable" bit is also enabled, the multiplier result is written to VRAM instead.

 ; Set the ADDR0 pointer to $00000 and write our multiplication result there

 lda #(2 << 1)

 sta VERA_CTRL ; $9F25

 lda #%01000000 ; Cache Write Enable

 sta VERA_FX_CTRL ; $9F29

 stz VERA_ADDRx_L ; $9F20 (ADDR0)

 stz VERA_ADDRx_M ; $9F21

 stz VERA_ADDRx_H ; $9F22 ; no increment

 stz VERA_DATA0 ; $9F23 ; multiply and write out result

 lda #%00010000 ; Increment 1

 sta VERA_ADDRx_H ; $9F22 ; so we can read out the result

 lda VERA_DATA0

 sta $0400

 lda VERA_DATA0

 sta $0401

 lda VERA_DATA0

 sta $0402

 lda VERA_DATA0

 sta $0403

Note: the VERA works by pre-fetching the contents from VRAM whenever the address pointer is changed or incremented. This happens even

when the address increment is 0. Due to this behavior, it is possible to have stale data latched in one of the two data ports if the underlying

VRAM is changed via the other data port. This example avoids this scenario by only using ADDR0/DATA0. This potential gotcha was not

introduced by the FX update, but rather has always been how VERA behaves.

Accumulation

One can also trigger the multiplication and add it to (or subtract it from) the multiplication accumulator by calling "accumulate" in one of two

different ways. We could write a 1 into bit 6 of FX_MULT ($9F2C, DCSEL=2), but more conveniently, we can read FX_ACCUM (the same

register location as VERA_FX_CACHE_M)

 lda FX_ACCUM ; $9F2A (DCSEL=6)

Once the accumulation is triggered, the result of the operation is stored back into the accumulator.

Commander X16 Programmer's Reference Guide

- 22 -

The default accumulation operation is (multiply then) add. This can be switched to subtraction by setting the Subtract Enable bit in FX_MULT

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F2C

FX_MULT

(DCSEL=2)

(Write

only)

Reset

Accum.
Accumulate

Subtract

Enable Multiplier

Enable

Cache Byte

Index

Cache

Nibble

Index

Two-byte

Cache Incr.

Mode

If the multiplication accumulator has a nonzero value, any multiplications carried out via a VRAM Cache write will be offset by the value of

the accumulator (either added to or subtracted from the accumulator), but they will not change the value of the accumulator.

16-bit hop

There is a special address increment mode that can be used to read pairs of bytes via ADDR1.

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$9F29
FX_CTRL

(DCSEL=2)

Transp.

Writes

Cache Write

Enable

Cache Fill

Enable

One-byte Cache

Cycling

16-bit

Hop 4-bit

Mode
Addr1 Mode

In this mode, setting ADDR1's increment to +4 will result in alternating increments of +1 and +3. Setting it to +320 will result in alternating

increments of +1 and +319. All other increment values, including negative increments, lack this special hop property.

After this bit is set, writing to ADDRx_L resets the hop alignment such that the first increment is +1.

This mode is useful for reading out a series of 16-bit values after a series of multiplications.

For a more detailed explanation of chained math operations, see the tutorial .

https://docs.google.com/document/d/1q34uWOiM3Be2pnaHRVgSdHySI-qsiQWPTo_gfE54PTg

