
PERIODS

Historical periods are the most complicated way to customize xconq, and can be difficult to get right.
There are many hundreds of numbers, each of which must be in balance with every other. At best, a mis-
take will result in a period whose winning strategies are quite simple; at worst, xconq will hang or core
dump. (xconq will make some efforts to check the numbers.) Although most historical periods are defined
in the period sections of mapfiles, one period is compiled into xconq (usually a version of WW II, since it is
most familiar). Compiling other periods (using the utility per2c) is straightforward, and there is no problem
with making unusual default periods for the program, but in practice, periods do not take very long to read.

The header of the period section has the form

Period extension

where extension is a flag indicating whether the period info is to replace (= 0) or add to (= 1) any existing
period info.

The remainder of the description is in a postfix language similar to Forth or Postscript(tm), but even sim-
pler. xconq includes an interpreter for this language, and program execution results in a filled-in period de-
scription. There is a compiler, called per2c; it is used to produce a C version of the period definition which
is then compiled into xconq.

The objects of this language are quite simple. There are only integers, strings, and vectors of integers. In-
tegers and strings have direct representation as tokens, as do symbols, while integer vectors must be con-
structed using square brackets or one of the predefined vector-returning words. Tokens are always sepa-
rated by whitespace, which means whitespace may never be part of a token (backslash may be used for this
purpose at some future date). Thus, the syntax for a token is fairly simple:

token -> [+-]*[0-9][0-9]*[%]* | "[˜"]*" | [˜"+-0-9].*

In other words, numbers are digits optionally preceded by +/- and followed by %, while strings are any-
thing enclosed in double quotes, and symbols are anything else that is not white space. A semicolon is the
comment character; the characters from the semicolon to the end of the line are discarded. Numbers are
limited to the typical range for signed shorts; -32768 to 32767. The percent sign % is just for readability
(since many numbers are percentages), and its presence or omission has no effect on anything.

Numbers and strings merely get pushed on the stack, while symbols are assumed to be defined words. The
reader looks them up in the dictionary and executes the associated C function, if one is defined (otherwise,
the symbol gets pushed). Nearly all words take a fixed number of arguments from the stack and push noth-
ing, although there are some exceptions. The program is terminated by the word end.

Integer vectors are useful for filling in large parts of arrays. They are individual objects, built using the
words [and].

Usage of these depends on the word, but typically words with two or more arguments may include two vec-
tors among them. For instance, the line

[1 1 2 8] [i a b B] hp

sets the hit points for four types of units; 1 for unit type i, 8 for unit type B, and so forth.

The words below generally follow some extremely regular patterns. Most one-argument words define
things for the entire period. Most two-argument words define attributes of units or resources, and may be
thought of one-dimensional array operations, while three-argument words usually fill in two-dimensional
arrays. In the two-argument and three-argument cases, the first argument (deepest in the stack) is the value,
while second and third arguments are indices. At present, there are no words with four or more arguments.

One-dimensional operations allow three cases of the four possibilities for vectors and scalars: scalar value
and index(set), scalar value/vector index (fill), vector value and index (mapping). Two-dimensional opera-
tions offer six of the eight possible combinations (encoded here with S for scalar and V for vector, in the or-
der value,index,index), disallowing only a vector value with either two scalar or two vector indices (VSS
and VVV), since these combinations are not very meaningful. The six other combinations are SSS (ele-
ment set), SVS and SSV (row fill), SVV (array fill), VVS and VSV (row mapping). All of these combina-
tions are useful - see existing periods for examples of their use.

-2-

The following descriptions cover all the predefined words of the period language. Most words correspond
to period attributes, and thus have an associated default value; when not explicitly mentioned, the default is
0. For arguments of type bool, both 1 and 0 or true and false are valid (an argument characterized as bool
may still be a vector of 1s and 0s). Arguments of type n, n%, and n.01% are all just integers.

First, there are some useful words not specific to period definition.

true

false Pushes a 1 and a 0 on the stack, respectively.

[Marks the beginning of a vector. The following objects must all evaluate to numbers only.

] Marks the end of a vector. All numbers going back to the last [are popped and collected into a vec-
tor, which is pushed back on the stack.

value name define
Define the string name to be a word that pushes the object value onto the stack. This is especially
useful for assigning names to vectors, for instance a vector of all cities or all ships.

print
Print the current contents of the stack onto standard output, surrounded by /* */. Very useful for de-
bugging!

The global period definition words.

string period-name
Defines the name of the period that will be displayed on startup. Defaults to "unspecified".

string font-name
Defines the name of the font that will be used. This is not needed if bitmaps are being used instead.
Defaults to the name of the text font. See below for a discussion of bitmaps and fonts.

The words to define new kinds of units, resources, and terrain all add new words that push the number of
their unit, resource, or terrain type onto the stack. The numbering is in order; the first of each type will be
numbered 0. Most of the period definition words use these values as indices when filling up arrays of num-
bers.

char name string utype
Define a type of unit. The arguments are unit character (a string of length one), full name, and a one-
line help string. The unit may thereafter be referred to by either its character (as a one-char symbol)
or by its name. Things will not work if a blank or any other special characters (such as plus and mi-
nus signs) are used as a unit character. Mixing terrain characters and unit characters is also a bad
idea, since both may be used by a graphical display. At present, up to 30 or so unit types may be de-
fined.

char name help rtype
Define a type of resource, by both name and character, and supply a help string for it. The characters
must be distinct from unit characters, otherwise this word is identical to utype.

char name color ttype
Define a type of terrain. Unlike the other two definers, the terrain character does not become a new
word, although the name still does. The character should be defined in the basic xconq font (the one
named xconq.onx, in the X10 interface), if the period is to be used with an interface that needs it
(monochrome X only, at this writing). The color may be either approximate ("brown") or exact
("#334455"), but in any case, the interpretation is up to the interface.

u* Push a vector of all unit types in order.

r* Push a vector of all resource types in order.

t* Push a vector of all terrain types in order.

nothing
Push the index of a non-unit onto the stack. This word cannot be used for unit attributes, but it is use-
ful for certain attributes whose values are unit types (first-unit, first-product). Use of this as an in-
dex with any word that sets unit attributes is guaranteed to cause nasty coredumps...

-3-

string unit icon-name
Set the name of the icon for the given unit type. If undefined, then the unit’s character will be used in
whichever font is being used for unit icons (which may even be the text font - works but not too at-
tractive). Definition of an icon overrides any character in any font. As with the terrain, the exact in-
terpretation of this word is up to the graphics interface - for instance, the curses interface ignores both
the font-name and icon-name words entirely. In X, the name is the name of a file in the usual bit-
map format, as produced by the bitmap program. The actual file name is produced by appending
".b" for X10 bitmaps and ".b11" for X11 bitmaps. The X11 interface will also look for X10 bitmap
files.

terrain default-terrain
Set the type of terrain to be substituted while reading a map with incomprehensible terrain characters.
Occasionally useful, if the set of terrain types is a subset of the standard set.

Initialization characteristics of a period are used only during synthesis of maps, sides, and units, which hap-
pens when they are not supplied from a mapfile. Periods that are used only with complete scenarios need
not use any of these words.

n% terrain min-alt
Set the minimum percentile of terrain elevations that result in the given terrain type. Together with
the other three words following, it is possible to subdivide all the possible altitudes and moisture lev-
els into different kinds of terrain. For instance, desert in the standard period ranges from sea level
(70 desert min-alt) to high elevations (93 desert max-alt) but only in the lowest percentiles of mois-
ture (0 desert min-wet, 20 desert max-wet). It is important that all percentiles be assigned to some
terrain type, or the map generator will complain; when designing terrain combinations, it is helpful to
make a graph with altitude percentiles 0-100 on one axis and moisture percentiles on the other.

n% terrain max-alt
As for min-alt, but set the maximum altitude percentile. Defaults to 100.

n% terrain min-wet

n% terrain max-wet
Set the minimum and maximum percentiles of world moisture levels that result in the given terrain
type. Deserts should range in the low percentiles (0-20), while rain forests should be high (90-100).
The minimum defaults to 0, while the maximum is 100.

n% alt-roughness
Set a rather mysterious number that controls whether a random map tends toward large continents or
archipelagos of small islands. It must range between 0 and 100. Altitude roughness of 0 will result
in a map with one large continent, while 100 produces dozens of tiny random islands, and drastic alti-
tude variations from one hex to the next. Defaults to 80.

n% wet-roughness
Set the "moisture roughness", which is like altitude roughness, but affects the distribution of wet and
dry areas. Defaults to 70.

terrain edge-terrain
Set the type of terrain to fill in on the northern and southern edges of a map. Best user-friendliness is
to have a type that is scarce elsewhere, so the edges are not mistaken for normal terrain.

distance country-size
Set the radius of a randomly-placed country, in hexes. The country is always hexagonal in shape, and
the center hex is not counted in the radius. The radius should be sufficient to accommodate all the
initial units, without crowding them. For radius r, the number of hexes is 3/4*(2r+1)**2. Keep in
mind that terrain may reduce the number of available hexes even further. If one type of unit can oc-
cupy another, then they are free to be placed in the same hex. Defaults to 3.

distance country-min-distance

distance country-max-distance
Set the minimum and maximum distances of country centers from each other, in hexes. These values
are sometimes tricky to set properly. If too small, countries will mostly overlap; if too large, then

-4-

attempts to use small maps will fail; if too close to each other, placements can also fail. Default to 7
and 60 hexes, respectively.

unit first-unit
Set the type of unit that player will be started off in. Setting this to nothing has the effect of giving
every unit in the country to the player at the outset. Production will not be set automatically, so this
is not recommended for novices, who tend to find large numbers of units confusing at the outset. De-
faults to nothing.

unit first-product
Set the type of unit that will be built automatically first. A "cheap" (quick to build) type is usually
best, although interesting situations could result from, say, the automatic production of one atomic
bomb at the outset (note that all sides start out in exactly the same way). Defaults to nothing.

n unit in-country
Set the number of units of the given type in a player’s country. These units are randomly scattered,
with some bias towards the middle of the country, and subject to terrain limitations via the favored
parameter (see below).

n unit density
Set the total number of units appearing throughout the map, at the rate of one per ten thousand hexes.
The numbers of units appearing in countries is subtracted first, so that the final density of units is in-
dependent of the number of players. If this value is nonzero, then at least one unit will appear on the
map, even if the map is very small (i.e. the calculation of numbers rounds up not down). Units not
assigned to countries to meet the quota set by in-country always become neutral.

bool unit named
Set a type of unit to get a random name during initialization. The names are usually the names of
towns, so this flag should be used judiciously (A battleship named "Wankers Corner" is only briefly
amusing!). The value can also be set to 2, in which case the unit name will be displayed by itself,
without side name or unit type name.

name uname
Define the string name to be a plausible name for random assignment to an initial named unit. The
name will be included with any previously defined, including possibly ones in the compiled-in pe-
riod. This behavior, which is unlike any other period word except for sname, is intended to ensure
that each period need not define its own list of names.

clear-unit-names
Reset the list of unit names. This is appropriate if the compiled-in list is completely wrong for the
period.

n% terrain unit favored
Set the probability of the unit being on the given type of terrain at the outset. The default of 0 is an
absolute prohibition against placing the unit on that type of terrain, thus every period must specify at
least one non-zero value for some terrain type and some initial unit type. (Note that this does not pre-
clude a unit type with no favored terrain, but it must be able to occupy some other unit already
placed. In fact, this is a useful way to force one initial unit to start out inside another.)

This parameter is tricky to use properly, and not very flexible. The problem is a widely differing fa-
vored terrains for initial units may be too constraining to work with the typical random map. For in-
stance, very few small countries will include both ice and open sea, or deserts and forests and
swamps. Failure to find such combinations will result in games exiting while still initializing, thus
frustrating erstwhile players of the period. Best results will be had if the favored terrains are the
same for all initial types of units, and the terrain types are common on random maps. (At present, the
most-favored, or the lowest-numbered type among equally-favored terrains should be plentiful on the
map; this is to get around a bug.)

n known-radius
Set the area of the world known about, in those cases where the world is not already known. n is
measured in hexes, and represents a radius which will be seen around each of the starting units.

-5-

bool unit already-seen
Set the type of unit that is or is not seen at the outset. This should usually be true of things like cities,
independently of their always-seen setting.

n% resource unit stockpile
Set the percentage of capacity for the given resource that each unit will start out with. Defaults to
100.

name sname
Declare the string name to be a plausible name for random assignment to a side. The name will be
added to the others already defined, including ones from the compiled-in period.

clear-side-names
Reset the list of side names. This is appropriate if the compiled-in list is completely wrong for the
period, but if used, you must supply at least as many side names as there are possible sides (7 or so).

n terrain inhabitants
Set the number of inhabitants in each hex of a country with the given type of terrain. The number is
relative, and at present is only treated as a boolean value.

n terrain independence
Set the "independence" of the inhabitants in the given type of terrain; how they react to enemy units
in terms in attrition, supply, etc. [not implemented yet]

The first phase in a turn is devoted to spying. This is the revealing of all or part of a side’s unit positions to
another randomly-selected side. It is controlled by only two parameters.

n% spy-chance
Set the percentage chance of spying occurring on this turn. If the chance is low, then the player doing
the spying will get a message, otherwise the display will be silently updated. The player spied upon
is never informed. Defaults to 1.

n% spy-quality
Set the percentage of enemy units that will be seen when spying is successful. Defaults to 50 (i.e. on
the average about half of the side’s units will be seen).

n% leave-map
Can the units leave the map?

The second phase in a turn determines any revolts or surrenders, attrition, and disasters. Since these are
(usually) rare events, the probabilities are set in one-hundredth percent increments. Revolts happen any-
where, while surrender happens only if enemy units are nearby. Attrition is the loss of single hit points,
without actually destroying a unit, while disaster is the complete destruction of the unit (both of these de-
pend on terrain).

Note that with 100 units in play, the lowest possible nonzero chance of 1 for a value still results in an oc-
curence of that sort of disaster every 100 turns or so, so these parameters require a "light touch".

n.01% unit revolt
Set the base chance for the unit to revolt spontaneously in that turn. This chance is reduced by better
morale and maybe other things.

n.01% unit surrender
Set the base chance for surrender to some adjacent enemy unit. Each enemy unit present adds to the
chance by this amount.

n.01% unit siege
Set the additional chance for surrender when the unit is completely surrounded by enemy units. This
is added to the basic surrender chance.

n.01% terrain unit attrition
Set the chance of a unit losing a single hit point while in the given terrain.

-6-

n unit attrition-damage
Number of hit points lost when attrition happens. Defaults to 1. Note that repair is in the following
phase, and 1 hp of attrition damage might be repaired immediately, and appear not to have happened.

string unit attrition-message
Set what to say when unit is hit by attrition. Defaults to "suffers attrition". If the string is "", then
the message will be suppressed entirely.

n.01% terrain unit disaster
Set the chance of completely losing the unit while in the given terrain. Accidents should be restricted
to definite hazardous situations, to go along with movement constraints - for instance, carriers in
shallow water should move more slowly and have a nonzero accident rate. See random movement
for another way to achieve similar effects.

string unit disaster-message
Set what to say when unit is lost in a disaster. Defaults to "has met with disaster".

The next phase of a turn handles creation of new units and repair of damaged units. Units can only be cre-
ated by certain other kinds of units, limited both by time and raw materials. Also there are startup and re-
search times.

n unit2 unit make
Set the time in turns needed for a unit of type unit to build one unit of type unit2, assuming sufficient
resources to do so.

bool unit maker
Set the unit type to be a "maker". Makers always build unless explicitly idled, and may move while
building. If a period starts with no movers, then it needs at least one maker in the country, who will
prompt for a unit type at the beginning of a game.

bool unit occupant-produce
If true, then a unit may produce as the occupant of another unit. Default is FALSE. Makers ignore
this flag and always produce.

n% unit startup
Set the extra time needed to build the first unit, if the maker was producing something else before.
Startup time should be higher for high-tech or large units, for instance to represent tooling or produc-
tion pipeline startup.

n% unit research
Set the extra time needed for a side to build the very first unit of that type. This time is in addition to
the startup time for the first unit. Long research time is a good way to keep a unit type out of play for
awhile.

n% unit2 unit research-contrib
Percent of research on unit2 to count towards unit. All research contributions are summed and will
never do more than eliminate research on a unit type. Only completed research is counted (i.e., a unit
must already have been produced).

n resource unit to-make
Set the total amount of a resource type needed to build a unit. This amount is amortized over the nor-
mal construction schedule, which means that extra resources are consumed by startup or research
times (representing mistakes and experiments).

n unit2 unit repair
Set the time needed for the unit type unit to repair repair-scale hit points of damage to unit type
unit2. One of the two units must be able to occupy the other; It is also legitimate for a unit to repair
itself. If the unit being repaired was crippled, its repair will require the same kinds and amounts of
resources that were used to build it.

n repair-scale
Set the "scale" of repairs, meaning the overall amount that individual repair rates are relative to. So
for instance a repair-scale of 4 means that a repair time of 2 results in the recovery of 2 hp/turn. De-
faults to 1.

-7-

The supply phase of a turn handles both the production of resources and their distribution via supply lines.
Resource production involves a three-dimensional array indexing unit type, resource type, and terrain type,
but supply lines are measured only by length and resource type. Supply lines are always interrupted by en-
emy presence.

n resource unit produce
Set the basic amount of each resource produced by each unit in one turn.

n terrain unit productivity
Set the percentage productivity of a unit on a type of terrain. This is multiplied with the basic pro-
duction rate to get actual production, so productivity of 0 completely disables production on that ter-
rain type, and productivity of 100 is yields the maximum rate specified by produce.

n resource unit storage
Set the unit’s capacity to carry each sort of resource. Amount carried does not affect unit’s perfor-
mance. When the value is 0, displays for that type of unit will not mention this resource type at all.

n resource unit consume
Set the amount of resources consumed by the unit in a turn, even if it doesn’t move or do anything
else. This includes riding as a passenger. This only comes into play if the unit has used less than its
base consumption while moving. In other words, the total supply usage for one unit in one turn is
max(#moves * to-move, consume). If the unit runs out of a resource that it must consume, it dies due
to starvation.

n resource unit in-length

n resource unit out-length
These two are used together to determine the length (in hexes) of supply lines between units. The
given type of resource can only be transferred from unit type A to unit type B if the distance is less
than the minimum of the in-length of B and the out-length of A. For instance, the in-length for a
fighter’s fuel might be 3 hexes, while the out-length of fuel from a city is 4 hexes. If the fighter’s out-
length is 0, then it will be constantly supplied with fuel when within 3 hexes of a city, but will never
transfer any fuel to the city unless it actually lands there. An in- or out-length of 0 means that the
two units must be in the same hex, while a negative length disables the automatic transfer completely.
Long out-length lines should be used sparingly, since the algorithm uses the out-length to define the
radius of search for units to be resupplied. Supply lines are not affected by terrain at present.

bool unitconsume-as-occupant
If this is true, than this type of unit does not consume any supplies as long as it is an occupant on
some transport. This is useful for units such as planes which always consume fuel in the air but not
on the ground. This defaults to TRUE.

n% unit survival
Chance that a unit type can survive on no supplies. The test is made once per turn.

string unit starve-message
Set what to say when unit has no more of some supply to consume. Defaults to "runs out of sup-
plies and dies".

The movement phase is the main part of a turn in xconq, and the only part involving interaction with play-
ers. All combat happens during the movement phase.

n unit speed
Set the maximum theoretical speed of a unit, in hexes/turn. If the unit cannot move on any sort of
terrain, it will never be prompted about - thus every period should define at least one type of moving
unit.

n terrain unit moves
Set extra moves used up on each type of terrain. 0 indicates no decrease from theoretical max, 2 indi-
cates a move into that type of terrain uses up 3 moves instead of 1, and -1 indicates that movement on
that type of terrain is not possible. Defaults to -1.

n.01% terrain unit random-move
Set the randomness of movement of a unit on the terrain. This is different from disaster and attrition,

-8-

since it is not always fatal, and happens only during attempts to move. However, collisions with
other units or with impassable terrain, due to random moves, are always fatal.

bool unit free-move
Set whether the unit can move even if there is insufficient movement allowance remaining in this
turn. Defaults to true. (Most board wargames make this false - if you don’t have enough movement
points to meet the entry requirement for a hex, that’s too bad.) Can be useful to make "double move-
ment phases", if attack time is equal to movement allowance; a unit can only attack units that it is ad-
jacent to at the start of the movement phase.

bool unit one-move
Set whether the unit can make exactly one move before dying (appropriate for rockets and other auto-
matic equipment). [not implemented yet]

bool unit jump-move
Set whether a unit can jump over another unit to get somewhere. [not implemented yet]

n resource unit to-move
Set the amount of resource used by a unit to move one hex. The amount taken is independent of the
terrain in the hex. If the unit is out of any movement resource, it is immobilized until it gets more.

Transportation-related parameters. Capacity is measured both by number and volume of occupants. For in-
stance, if you wanted a transport to carry up to 8 infantry and/or armor, but no more than 4 armor units,
then capacity for infantry should be 8 and capacity for armor 4, the volumes for each should be 1, while the
transport hold-volume should be 8.

n unit2 unit capacity
Set the basic carrying capability of a transport type unit for its occupants of type unit2.

n unit hold-volume
Set the volume capacity of a transport. Volume measure is quite arbitrary, and is used only for com-
parison. The default value of 0 implies infinite capacity, volume-wise.

n unit volume
Set the volume of a unit. The volume of a unit may be smaller than its hold-volume, the code will
not care about this.

n unit2 unit enter-time
Number of moves needed to enter a transport. This is a time measure; extra supplies are not used up.

n unit2 unit leave-time
Number of moves needed to leave a transport; similar to enter-time.

n% unit2 unit alter-mobility
Set the effect of an occupant on the transport’s speed as a ratio of the transport’s usual speed. De-
faults to 100; smaller values slow the transport, and 0 prevents it from moving entirely. To simplify
the code, only the effect of one (randomly chosen) type of occupant has this effect. If a transport has
two types of occupants each of which alter its speed differently, the resulting transport speed will be
unpredictable. The total slowdown is multiplied by the number of occupants of all types.

Seeing is an important part of xconq, and needs parameters to accommodate submarines, radar installations,
and Indians hiding in the woods. The visibility of a unit and the intensity of viewing are computed sepa-
rately, and compared to get the final decision on seeing something. This doesn’t allow for much differential
between two types of units viewing a third, but that’s life. For units seeing things at a distance, the chances
are interpolated linearly, from the best conditions (adjacent hex) to worst (maximum range).

bool all-seen
If true, then all sides see all of each other’s units. If secrecy unneeded (as in a board game), this will
speed up the display process somewhat.

n% unit see-best
Set the basic chance of one unit seeing any other, under best possible conditions. Defaults to 100.

n unit see-range
Set the maximum distance in hexes at which the unit can see anything. Defaults to 1 (adjacent hexes

-9-

only).

n% unit see-worst
Set the chance of seeing a unit at the maximum range. Defaults to 100.

n unit visibility
Set the basic chance of a unit to be seen. Crippled unit is more visible, in proportion to hp loss. De-
faults to 100.

n% terrain unit conceal
Set the percent effect of terrain on seeing the unit. This is subtracted from the basic chance, since it
is a "concealment factor".

bool unit always-seen
Declare the unit to be of a type that is always seen and up-to-date. This applies only to units whose
underlying hexes have been seen. This is useful for units like towns, which are unlikely to disappear
secretly.

Combat is part of movement, and has its own large set of parameters. The basic plan of combat is for at-
tackers and defenders to hit each other, then attackers to attempt to capture. Success of a hit attempt de-
pends on a number of attributes, including chances, terrain, and the availability of the correct sort of ammo.

bool unit multi-part
Set a unit to be treated as an aggregate of smaller identical units. Affects various things. [not imple-
mented yet]

n unit hp
Set the maximum number of hit points for each part of a unit. Defaults to 1, may never be set any
lower.

n unit crippled
Set the hit point level below which the unit is considered to be crippled. Below this level, repair and
construction ceases, supply production is reduced, maximum speed starts to decrease, and the bridg-
ing capability is disabled.

n% unit2 unit hit
Base chance of a single attack by the type unit hitting the defender unit2, assuming the resources are
available. If chance to hit is 0, attacker cannot attack or defend itself.

n% terrain unit defense
Set the decreased chance of hitting if the defending type unit is in that terrain type. Percentage is
subtracted from base chance.

n% neutrality
Set the change in defense for neutral units. This is subtracted from chances to hit and capture, but the
n% can be negative, which would make it harder to hit/capture.

n unit2 unit damage
Number of hit points that the defender unit2 loses when hit by its attacker unit.

n nuke-hit
Minimum damage for a hit to qualify as a nuclear blast and be displayed appropriately. Default value
is 50.

bool unit self-destruct
Declare that unit self-destructs when it attacks. This eliminates some weird messages and hit
chances.

bool counterattack
When true, combat is two-way; the initiator of an attack is also hit by a counterattack. Otherwise, the
defender must wait to get its revenge. Defaults to true.

bool capturemoves
When true, a captured unit can immediately be moved. If false, then a captured unit can not be
moved until the next turn. Default is TRUE.

-10-

bool unit can-counter
Like counterattack, but applies only to particular unit types being attacked. Defaults to true.

n% unit2 unit capture
Set the base chance of the type unit capturing the defender type unit2. This is conditional on both at-
tacker and defender surviving initial hits, and is modified by morale and quality of both sides.

bool unit2 unit bridge
True if the unit type unit can capture another unit unit2, even across impassable terrain.

n% unit changes-side
Set chance that the given unit will change sides if captured. This is appropriate for units that are pri-
marily hardware or otherwise indifferent to their fate. Units that are captured and do not change
sides become prisoners (prisoners are not implemented yet).

n unit2 unit guard
Set the number of unit hit points required to garrison or guard a captured type unit2, whether or not
the captured unit has changed sides (at present, it always does). The hit point loss is permanent.

n% unit retreat
Set the base chance that a unit will retreat rather than be hit. This choice depends on ability to move
into an adjacent hex and on morale, quality, and fatigue.

n resource unit hits-with
Set the amounts of each resource used as ammo by the unit.

n resource unit hit-by
Set the amounts of each resource necessary to score a hit on the unit. This is correlated with the pre-
vious parameter to decide if right sort of ammo is available for an attack.

n unit2 unit protect
Set the level of protection that unit offers to unit2. Transports protect their occupants by only letting
a percentage of hits get through. Occupants protect their transports by reducing the chance of a hit
and increasing chance of a counterattack. (The default of 0 implies terrible carnage if a full transport
is hit.)

n unit combat-time
Set the extra number of moves used by an attack.

string unit destroy-message
Set what to say when a unit is killed in combat, as an active verb for what the destroying unit has
done to its victim. Defaults to "destroys".

General characteristics are not really classifiable anywhere else.

n unit territory
Set the territorial value of a unit. Primarily used by machine players and win/lose conditions.

n unit max-quality
Set the maximum quality achievable by a unit.

n% unit veteran
Set the effect of one point of quality on hit and capture chances.

n unit max-morale
Set the maximum morale to which a unit can rise.

n% unit control
Set the chance of a unit obeying its orders. Defaults to 100. When the unit does not obey orders, it
makes a decision using the machine players’ algorithm.

bool unit can-disband
Set whether a ’D’ disband command can be used to get rid of a unit. It should not be possible to dis-
band a city, for instance, to eliminate it as a strategic target. Note that the default of 0 effectively dis-
ables the disbanding command entirely.

-11-

n% efficiency
Units disbanded in a transport can have the resources used to build them reclaimed - this parameter
sets the percentage that is actually obtained.

bool unit neutral
Set to true if unit can exist as a neutral. If false, then anything that would cause the unit to become
neutral (revolt, surrender of owner) has the effect of removing it instead. Defaults to false.

Miscellaneous words.

n hostility
Set the level of hostility exhibited by a population toward a unit from some other side. [not imple-
mented yet]

begin{notes}
Declare the beginning of the designer’s notes. This word kicks in a special reader that absorbs all
lines until it sees the line "end{notes}". The intervening lines are saved as period notes and listed out
in "parms.xconq". The notes should rationalize the design and discuss features of special interest to
the player.

end Marks the end of the period description.

Nearly all the elementary programming errors are checked, such as stack over/underflow, and as many of
the period parameters as possible will be checked, although there is plenty of room for subtle loopholes.
You should think carefully about the consequences of each parameter, being particularly sensitive to degen-
erate winning strategies. Most common are units that are too powerful, or that are built so quickly that they
overwhelm any opposition. The players should always be a little "hungry"; not able to get quite as much of
units or resources as they would really like.

Although there are many interesting possibilities inherent in this period description language, you should
avoid making the period too complex to be humanly playable. The compiled form of the period description
can involve over 16,000 individually settable numbers, each with an expected range of perhaps 100 distinct
values. It is clearly possible to spend many years exploring a single set of these numbers. For more
playable and enjoyable games, either pick a single aspect to treat in detail, or else do all aspects in a simpli-
fied way. Aspects could include exploration, logistics, naval operations, "shoot-em-up", renditions of fa-
miliar board games or even some team sports (rugby for instance). Another thing to keep in mind is that
the introduction of a new type may have far-reaching consequences - a new unit type will need its interac-
tions with all other unit types defined. One approach is to introduce a new type as a slight modification of
an existing type, then to share most of the definitions.

Something else to keep in mind is that the period parameters have been chosen for their ability to combine
in interesting ways, rather than for obvious usefulness. For example, past startup, the production rate for
units is constant and unending. But suppose you want to put a limit on the numbers of that type of unit?
One way is to define a resource that is essential for construction of that type, let the builder have an initial
supply, but provide no way to get more of that resource. When it runs out, no more units! Another trick is
to motivate an activity by making it a prerequisite to the basic builtin goal of defeating the other player.
The age of discovery worked this way. The kings of that time weren’t interested in new lands per se; they
wanted exploitable possessions that could be used to get gold to buy armies big enough to defeat their
neighbors. The period language could describe this situation almost exactly, by making gold a resource ob-
tainable only by the capture of neutral mines thinly scattered over the map. Be inventive! Studying the
predefined periods should reveal a number of tricks.

Completely new periods usually have a number of bugs. The tools are rather limited, but then most of the
bugs are fairly obvious. The print word is useful for examining the stack, and a number of errors (such as
stack overflow/underflow) have messages. Finding out where the problem occurred requires the use of the
xconq debugging flag -D, which has the effect of listing out each period token as it is read. This can also be
used with the period compiler, which starts up faster; invoke it as "per2c -D <newperiod.per". The most
serious problems with periods are play balance issues. Some can be found out by watching a machine
player, since its decisions are based on perceived values of the units. The most subtle bugs can only be un-
covered by extensive play interspersed with judicious alteration of parameters. I find it useful to play for a
while, then go over all the period parameters, thus avoiding tweaking one parameter only to find that it

-12-

results in another being inconsistent. Parameters interact in many ways - you should keep this in mind
when experimenting.

