

Interfacing the DivX Encoder (API)

Application Note

Release Date: August 25, 2005

This document contains proprietary information that is protected by copyright. No part of this document may be photocopied,
reproduced, or translated without the prior written consent of DivX, Inc. The information contained in this document is subject to
change without notice.

DIVX, INC. CONFIDENTIAL
DO NOT COPY

Interfacing the DivX Encoder API Application Note Table of Contents

DivX, Inc. Confidential Do Not Copy Page i

Table of Contents
1 Introduction .. 1

1.1 In This Document... 1
1.2 References ..Error! Bookmark not defined.

2 Headers ... 2
2.1 EncoderInterface.h... 3

2.1.1 EncoderInterface* create(); ... 3
2.1.2 static void destroy (EncoderInterface* pIQEncoderInterface).................................. 3
2.1.3 Settings* getSettingsApi().. 3
2.1.4 void setFeedback(FeedbackInterface* pFeedbackInterface).................................... 4
2.1.5 void setEncoderCallback(EncoderCallback* pCallback) .. 4
2.1.6 const char* getVersionInfo().. 4
2.1.7 void setFormatInput(const FormatInfo* pFormatInfo).. 4
2.1.8 bool getFormatInput(FormatInfo* pFormatInfo) .. 4
2.1.9 bool getFormatOutput(FormatInfo* pFormatInfo) .. 4
2.1.10 void deliverFrame(const FrameInput* pFrameInput) .. 4
2.1.11 bool encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult) 5
2.1.12 bool encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) 5

2.2 Settings.h .. 7
2.2.1 Parameter Names ... 8
2.2.2 Parameter Types... 8
2.2.3 Setting and Querying Parameters ... 9
2.2.4 Exception ... 12
2.2.5 Copying and Saving the Settings Structure State.. 13

2.3 FormatInfo.h ... 13
2.3.1 int FormatInfo_getTotalPixels(const FormatInfo* pFormatInfo)............................. 14
2.3.2 int FormatInfo_getFrameSize(const FormatInfo* pFormatInfo) 14
2.3.3 double FormatInfo_getFramerate(const FormatInfo* pFormatInfo) 14

2.4 FrameInput.h... 14
2.5 FrameOutput.h .. 14

2.5.1 unsigned char* bitstreamBuffer.. 14
2.5.2 int sizeBitstreamBuffer... 15
2.5.3 int sizeBitstream ... 15
2.5.4 bool keyframe... 15

2.6 FrameResult.h (optional) .. 15
2.7 Cli.h (optional) ... 16

2.7.1 void render(std::string& cli, const Settings& settings) / << 16
2.7.2 void parse(std::string& cli, const Settings& settings) / >>.................................... 16
2.7.3 void showDisabledSettingsInNextCliRender(void) ... 16
2.7.4 static void base64Encode(const uint8_t* buffer, int size, char* string)................... 16
2.7.5 static void base64Decode(const char* string, uint8_t* buffer, int* size)................. 16

2.8 FeedbackInterface.h (optional).. 17
2.8.1 void setEncodingDouble(const char* type, double value)...................................... 17
2.8.2 void setDimensions(int width, int height)... 17
2.8.3 void setFrameDouble(const char* type, double value).. 17
2.8.4 void setMacroblockDouble(const char* type, int x, int y, double value) 18
2.8.5 void setFramePointerType(int index, const char* name)....................................... 19
2.8.6 void setFramePointers ... 19
2.8.7 int getActiveImage() ... 19
2.8.8 void notifyBeginFrame(int frame) ... 20

Interfacing the DivX Encoder API Application Note Table of Contents

DivX, Inc. Confidential Do Not Copy Page ii

2.8.9 bool notifyEndFrame(int) ... 20
2.8.10 void print(int level, const char* fmt, …)... 20

2.9 EncoderCallback.h (optional) ... 21
2.9.1 int getVersion()... 21
2.9.2 void enable(bool enable) ... 21
2.9.3 bool promptYesNo(const char* caption, const char* msg, bool bdefault) 21
2.9.4 void errorMessage(const char* caption, const char* msg) 21
2.9.5 void setProgress(bool enable, int percent, const char* caption, const char* msg)... 21

2.10 DivXException.h ... 21
3 Examples ... 23

3.1.1 Creating an Encoder.. 23
3.1.2 Creating Multiple Encoders... 23
3.1.3 Create and Configure an Encoder ... 24
3.1.4 Create an Encoder and Encode... 25
3.1.5 Create an Encoder and Perform n-pass Encode.. 26
3.1.6 Hints for Batch Encoding.. 27

Interfacing the DivX Encoder API Application Note Document History

DivX, Inc. Confidential Do Not Copy Page iii

Document History
Document
Version

Product Version File Name Release Date

1 Prerelease DivX 6 CE SDK RC-1 an_divx6_interfacingencoderapi.pdf 04/15/05
1 DivX 6 CE SDK V3.0 an_divx6_interfacingencoderapi.pdf 06/17/05
1.1 DivX 6 CE SDK V3.0.1 an_divx6_interfacingencoderapi.pdf 08/25/05
1.2 DivX 6 for Linux an_divx6_interfacingencoderapi.pdf 01/26/06

Document Change Log
Section
Number

Page Number(s) Description of Change

N/A ii-1 Updated publication date and Document History
5 2.1.11 Modified “encode(..)” to “encodeFrame(….)”.

Interfacing the DivX Encoder API Application Note Introduction

DivX, Inc. Confidential Do Not Copy Page 1

1 Introduction
This application note describes the interface to the DivX encoder libraries (libdivx.so) and provides
guidance in using them as part of the encoding DivX 6 video. This new version of the DivX encoder
has changed to a C++ interface. This new API is intended to assist you in quickly and easily
integrating the DivX Encoder into your application.

1.1 In This Document
This document contains the following sections:

• Headers for the Encoder Interface
This section defines all the headers that define the encoder interface and provides
guidance for setting them for your implementation.

• Examples
This section describes several examples you may wish to follow.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 2

2 Headers
The encoder interface is defined by the headers listed below. The subsections to follow provide
information and guidance in setting these headers for your implementation.

• EncoderInterface.h

• Settings.h

• FormatInfo.h

• FrameInput.h

• FrameOutput.h

• DivXException.h

Optional:

• FrameResult.h

• Cli.h

• EncoderCallback.h

• FeedbackInterface.h

Because there are many settings that can potentially conflict (and invalid settings are configured to
produce errors), we highly recommend that you catch and handle any thrown exceptions using a
try/catch around all calls to the DivX encoder libraries; this enables you to locate any problems in
configuring the DivX 6 Encoder. When you are configuring the Settings.h object, we also recommend
that you catch Settings::Exceptions. For guidance in handling exceptions, refer to Section 2.2.4 for
Settings::Exception and Section 2.10 for DivXException.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 3

2.1 EncoderInterface.h
This header defines the primary interface to the encoder: it is able to create, maintain, use, and
destroy a DivX encoder. This header is not the actual DivX encoder, but simply the usable
interface: the actual class inherits from this class (and overloads the pure virtual functions to
provide the real functionality). Since this class defines an interface, you cannot instantiate this
object, however, you can create a pointer to the interface and use it to EncoderInterface*
create(); an encoder.

Once you have determined which type of bitstream packing you prefer, call either bool
encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) or bool
encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult). To assist you in
selecting your method, review the section below, which will help you understand the benefits and
tradeoffs of each method for your particular application. Select the object that provides the
output you require.

 Note: You should not mix these two calls within a particular instance of an
encoder.

2.1.1 EncoderInterface* create();

This method creates an instance of an encoder. Unless you instantiate an encoder, none of the
other functions have any meaning and results of any other function calls will be unpredictable at
best. The EncoderInterface* create(); call needs to always be paired with a static void destroy
(EncoderInterface* pIQEncoderInterface) in much the same way as you would pair new and
delete (or malloc and free). This call will return a pointer to an encoder interface which the client
must maintain; in the same way, you must not lose a pointer when you use new: you must keep
a pointer to the newly created encoder (or you will create memory leaks because there is will be
no way to destroy the encoder).

When you create an encoder, it is ready in a known good state, and no additional configuration
is required. Depending on your source input and desired output, however, more configuration
may be required. The DivX encoder is designed to be fully re-entrant so you can instantiate an
array of orthogonal encoders, however, you must destroy them when you are done.

 Note: 7-8 internal frame buffers may be required for each instance, so consider
your memory constraints carefully before creating multiple instances.

2.1.2 static void destroy (EncoderInterface* pIQEncoderInterface)

This method functions in the same way as using a delete call after new. When you are finished
with an instance of an encoder, destroy it and reclaim all the memory.

2.1.3 Settings* getSettingsApi()

This method provides access to the settings object that allows a user to query and configure the
encoder settings. For more details, refer to the Encoder API Settings Functional Specification
included with this SDK, and to Section 2.2, Settings.h.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 4

2.1.4 void setFeedback(FeedbackInterface* pFeedbackInterface)

This method enables you to create a feedback interface that can give you real-time information
during encoding. For an example, see the DivX VfW encoder feedback window (discussed in
Section 2.8, FeedbackInterface.h).

2.1.5 void setEncoderCallback(EncoderCallback* pCallback)

This method enables you to get feedback from the encoder during configuration and a way to
provide error messages to a client application. For further details see EncoderCallback.h section.
If you do not pass in an EncoderCallback object, the encoder will not use the callback.

2.1.6 const char* getVersionInfo()

This method returns the version of the encoder library. The text will resemble something like
“b1515-Feynman.” This function will allow you to identify and discriminate versions in a client
application.

2.1.7 void setFormatInput(const FormatInfo* pFormatInfo)

This method allows a client application to set the input format of the video being given to the
encoder. This information includes colorspace and dimensions of the input video. The format
information needs to be configured before actual encoding begins and once encoding has begun,
this information cannot change. For further details, refer to Section 2.3, FormatInfo.h.

2.1.8 bool getFormatInput(FormatInfo* pFormatInfo)

This method allows a client application to verify the input format information that is called
through the set method above; in principle, these should be identical. A return value of “True”
indicates success, and “False” indicates a problem with the input format. For more information,
refer to Section 2.3, FormatInfo.h.

2.1.9 bool getFormatOutput(FormatInfo* pFormatInfo)

This method retrieves the output format of the encoder. This information is largely controlled by
the settings of the encoder. Returns “True” for success, while “False” indicates a problem with
the input format or the settings (e.g. illegal resize under a profile). For further information, refer
to Section 2.3, FormatInfo.h.

2.1.10 void deliverFrame(const FrameInput* pFrameInput)

This function delivers a raw, uncompressed frame to the DivX encoder. This raw frame should
correspond to the input frame given above. This function does not encode the frame but simply
gives the frame to the encoder to be later encoded by a call to either bool encode(FrameOutput*
pFrameOutput, FrameResult* pFrameResult) or bool encodeFrame(FrameOutput*
pFrameOutput, FrameResult* pFrameResult). Call void deliverFrame(const FrameInput*
pFrameInput)with pFrameInput->m_pFrameT = 0 to indicate the end-of-stream. For more
information, refer to Section 2.4, FrameInput.h.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 5

2.1.11 bool encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult)

This method compresses the delivered frame. It returns a frame in bitstream order and the
caller must handle the packing. If no b-frames are enabled, the results should be the same as
the bool encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) call below.
However, with any GOV containing B-VOPs, you must be careful to pack the stream correctly.

For example:

I1 P2 P3 B4 B5 P6 …

Must be ordered in the stream as follows:

I1 P2 P3 P6 B4 B5 …

For proper decoding, the decoder must have P6 before it can decode B4 or B5. Bi-directionally
predicted frames predict from both the forward and backward P-frames around it, so both the
prediction VOPs must be present in the decoder before you can proceed to the B-VOPs.

The proper syntax to call this function is as follows:

{
 bool frameEncoded = false;
 pEncoder->deliverFrame(&frameInput);
 frameEncoded = pEncoder->encodeFrame(&frameOutput);
 yourPackBitstreamIntoContainerFunc(&frameOutput);
}

The pFrameOutput is a pointer to a structure that tells the encoder where it should write out the
bitstream. This memory is always filled with a frame after a successful call to bool
encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult) The client is
responsible for providing this memory to the encoder (to avoid excessive memory copies, for
efficiency). The pFrameResult pointer is an optional parameter that the encoder will populate
with information about the encoded frame. The sequenceNumber field of the structure must be
used to know what frame the results refer to. For details, refer to the sections FrameOutput.h
and FrameResult.h.

A return value of “True” indicates a successfully encoded frame; “False” indicates an error
(typically, an error that the encoder is waiting for a frame to be delivered).

2.1.12 bool encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult)

Unlike the previous method bool encodeFrame(FrameOutput* pFrameOutput, FrameResult*
pFrameResult), bool encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) can
handle the bitstream packing for you. The technique required to use this function is somewhat
more complex, however, since it handles the bitstream packing for you, the overall complexity to
the client application is reduced. Internally, this method calls bool encode(FrameOutput*
pFrameOutput, FrameResult* pFrameResult) to perform its job. The general form factor to follow
is shown below:

{
 pEncoder->deliverFrame(&frameInput);
 while (!pEncoder->encode(&frameOutput))
 yourPackBitstreamIntoContainerFunc(&frameOutput);
}

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 6

A return value of “True” means that you should examine pFrameOutput (and possibly
pFrameResult) to see what has been built. “False” indicates that a frame has been encoded, but
a bitstream chunk cannot be produced yet, so you need to keep calling bool
encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) until it goes true. Once bool
encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) returns true, it is time to
deliver the next frame.

 Note: After every I-VOP, the bool encode(FrameOutput* pFrameOutput,
FrameResult* pFrameResult) will spit out a number of special placeholder
frames that is equal to the maximum number of allowed B-VOPs. These frames
are merely placeholders, and the resultant bitstream data is one byte in size (and is
equal to 0x7F). This is required because of how the bitstream needs the frames to
be ordered for proper decoding. After these placeholders, there is a one frame in,
one bitstream chunk out, correspondence (but sometimes there are multiple VOPs
in that chunk).

Unlike bool encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult), a call to
encode is not guaranteed to produce a frame; one frame input does not imply one frame output.
Because bool encode(FrameOutput* pFrameOutput, FrameResult* pFrameResult) handles the
bitstream packing, the pFrameOutput may contain zero, one, or two frames. The diagram below
illustrates this process:

The pFrameOutput is a pointer to a structure that tells the encoder where it should write out the
bitstream. This memory is always filled with a frame after a successful call to bool
encodeFrame(FrameOutput* pFrameOutput, FrameResult* pFrameResult) The client is
responsible for providing this memory to the encoder (to avoid excessive memory copies, for
efficiency). Refer to Section 2.5, FrameOutput.h for additional details

The pFrameResult pointer is an optional parameter that the encoder will populate with
information about the encoded frame. We recommend initializing at least the sequenceNumber
field to “-1” so that you know when this structure is filled by the encoder. Using this method, if
the encoder fills the structure, it will get a number from 0 to the total number of frames, and you
can remember the results accordingly. It is important to examine this structure on both the true
and false returns of encode() (inside the while loop and after it) along with sequenceNumber to
know the frame to which it refers. This call may report multiple results for a given frame. In the
example above, the encoder returns multiple results for frame 3 because it first tries it as a P-
VOP, then later as a B-VOP (after frame 5 is delivered). For this reason, you must use the last
information for a given frame because the encoder can change the way it wants to encode a
frame. For details on the structure, refer to Section 2.6, FrameResult.h.

1 I1 true I1
2 P2 true 0x7f
3 B3 true 0x7f
4 B4 true P2
5 P5 false false true P5B3
6 B6 true B4
7 P7 false true NotCoded (instruct decoder to display P5)
8 B8 true P7B5

…

Deliver
Frame

Encoder
Decision

encodeFrame()
return sequence Bitstream output

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 7

2.2 Settings.h
The Settings class enables you to configure the encoder. To get started in using this header,
perform the following preliminary steps.

Step 1. Enclose any attempts to change settings with a try/catch (Settings::Exception). The Settings
class is designed to throw an exception when an attempt to perform illegal operations is made
[e.g. getType(“this_parameter_does_not_exist”]. This will allow you to quickly isolate any
problems in configuring our encoder.

Step 2. Access the settings via the getSettingsAPI() function in the encoder interface.

Step 3. Check that your header file and library versions are in sync so you can call isCorrectHeader() to
verify this.

Step 4. Make sure that "working_folder" is set properly so the encoder can function properly. You must
tell the encoder a safe place to write persistent file output. Because this cannot be set internally
by the codec, it is the only parameter that is absolutely required before encoding (depending on
your application other parameters may also need to be changed, but that is application-
dependent).

Step 5. Perform any customization tasks to configure the encoder for your implementation, referring to
the Encoder API Settings Functional Specification included with this SDK and to the subsequent
topics in this section:

2.2.1 Parameter Names
2.2.2, Parameter Types
2.2.3, Setting and Querying Parameters
2.2.4, Exception
2.2.5, Copying and Saving the Settings Structure State

Step 6. Lastly, consider the conversion of the fourCC to an “encoder” enumeration:

 static Enum fourCC2Encoder(FourCC fourCC).

Currently, the encoder only supports MPEG-4, so the other enums will be rejected. Future
releases of the encoder may support other fourCC codes so that this function can provide an
easy means of conversion between an externally recognized fourCC code and the correct DivX
encoder to create it.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 8

2.2.1 Parameter Names

Every parameter is addressable by its name. For a complete list of parameter names, refer to
the Encoder API Settings Functional Specification included with this SDK. The Settings class
provides the functionality to discover the available settings during runtime.

To discover the name, you can query the settings structure using the getName() function, as
shown below.

//assumes an pEncoder is already created
int i = 0;
Settings::Name next;
const Settings* pSettings = pEncoder->getSettingsApi();

for(next=pSettings->getName(i); next.isValid(); i++)
{
 yourAddNextParameterFunction(next);
 next = pSettings->getName(i);
}

You can address a parameter by either using the Name object found in the settings class, or by
using string literals. Examples of each are shown below.

Settings::Name mode(“rcmode”); //create the Name object
pSettings->getType(mode); //pass into the settings

OR

pSettings->getType(“rcmode”); //in this case the string will be
 //automatically cast into a Name object

2.2.2 Parameter Types

Once you query a parameter’s name, the next step is to determine what type of parameter it is.
Each parameter has a type and you can only set and query it if you know its type. To learn the
type of a parameter, call getType() (using either a Name object or string literal):

Listed below are the possible parameter types:

• BOOLEAN (true = 1 or false = 0)

• INTEGER (an int)

• DOUBLE (a floating point with double precision)

• ENUM (an enumerated parameter, list of enumerations at the bottom of the header)

• STRING (an ASCII string parameter, char*)

• DATA (binary data)

 Note: getType() does not return the actual type; it simply returns the enumerated
types from the Settings object. This tells you how to set and query the parameter
(discussed in the next section).

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 9

As you will see in the next section, every parameter requires that you set or query it according to
its type.

2.2.3 Setting and Querying Parameters

Once you know a parameter’s name and type, the next step is to set and query the parameter.
The topics in this section help you understand the following aspects of this task:

• Parameter Precedence

• Parameter States

• Boolean Types

• Integer Types

• Double Types

• Enumerated Types

• String Types

• Binary Data Types
 Note: When you perform “illegal” operations on the Settings, the standard

response is to throw an assertion (e.g. set/query parameters that do not exist, do
not use the typed method that matches the type of the parameter, etc).

2.2.3.1 Parameter Precedence

The first step in setting and querying a parameter is to understand its precedence. Precedence
tells you what parameters are allowed to affect other parameters. This is important because
certain parameters of the DivX encoder can and will change other parameters in a cascading
effect. For example, if you set the “profile” parameter, there are a large number of dependent
parameters including, VBV values, output resolution, frame rate, and many others. So when you
set a parameter in the encoder, it is able to propagate that change throughout all the encoder
settings Settings. It allows a client application to have less responsibility and knowledge of the
inner workings of the DivX encoder.

To query the query a parameters precedence call getPrecedence(). Return values range from 0,
the highest precedence, down to minus (-) the total number of parameters [the precedence is
simply -n in context of the getName(n) call]. A setting is allowed to (but doesn’t always) affect
settings with a lower precedence. For example, the “profile” parameter is the second highest
parameter in precedence (=-1), and it is allowed to change basically every setting when you
change the profile. Conversely, if you were to change the “resize_mode”, it could not change the
“profile” because it has a lower precedence.

In general, it is best to set parameters in descending order of precedence to ensure that all your
settings are maintained.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 10

2.2.3.2 Parameter States

A few states are associated with each parameter in the Settings object. They all return boolean
values to indicate if that particular state applies to a given parameter. These states are discussed
below.

• bool isReadOnly(Name name) const
This parameter cannot be set by the client application. There are any number of reasons
this can be true.

• bool isEnabled(Name name) const
Consider the “max_b_frames” setting. When this parameter is set to zero, no B-VOPS will be
inserted into the bitstream. You may, therefore, have the number of B-VOPs set to one, but
then set the “profile” to handheld. This profile does not allow B-VOPs, so the encoder
remembers that you want one B-frame, but it disables (isEnabled()=false) the
“max_b_frames” setting. This disables the B-VOPs while still remembering your state (so
when you return to a profile that allows B-VOPS, you do not have to reset the
“max_b_frames”). The function showDisabledSettingsInNextCliRender() allows you to show
disabled settings when you render a CLI; otherwise, the CLI will only show non-default,
enabled parameters.

• bool isDefault(Name name) const

• virtual void resetDefaults()

• void makeCurrentSettingsDefault()
These three functions allow you to query and set the defaults of all the encoder parameters.
When you create an encoder, all the parameters (except “working_folder”) are initialized to a
safe configuration. Every time you EncoderInterface* create(); an encoder, it always comes
up in this same state. The isDefault() function allows you to find out if the parameter is in its
default state. The makeCurrentSettingsDefault() method allows you to change the defaults
to whatever is currently in the Settings object, however, this is not persistent across
EncoderInterface* create();/static void destroy (EncoderInterface* pIQEncoderInterface)
calls (EncoderInterface* create(); always creates an encoder in the same state, there is no
way to alter this).

2.2.3.3 Boolean Types

The following two functions are used to query and set Boolean types:

• void setBool(Name name, bool value)

• bool getBool(Name name) const

 Note: If you pass in a name that is not a Boolean type variable, or try to set a
read-only, an assertion will be thrown.

2.2.3.4 Integer Types

The following four integer-based functions are used to control the parameters:

• void setInt(Name name, int value)

• int getInt(Name name) const

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 11

• int getIntMin(Name name) const

• int getIntMax(Name name) const

The getIntMin() and getIntMax() allow you to query the minimum and maximum values of a
specific parameter. Only integer type parameters can be addressed with these functions (other
types will throw assertions).

2.2.3.5 Double Types

Double types are very similar to integer types, and are listed below:

• void setDouble(Name name, double value)

• double getDouble(Name name) const

• double getDoubleMin(Name name) const

• double getDoubleMax(Name name) const

Much the like the integer types, the min and max functions allow you to query the limits of a
specific parameter. If you address other types of parameters with the double functions, an
assertion will be thrown.

2.2.3.6 Enumerated Types

The enumerated types use the following functions:

• void setEnum(Name name, Enum value)

• Enum getEnum(Name name) const

• Enum getEnumMask(Name name) const

In order to use enumerated types, it is important to understand how the enumerations are
defined. You will find the enumerated #defines at the bottom of the Settings.h file. You will also
notice that the types are defined by bit shifting. You can set and query the enumerated types
taking into consideration the #defines. The last function allows you to query the allowable
enumerations of a specific parameter.

For example, three options may be defined as:

#define EXAMPLE_FIRST 1<<0
#define EXAMPLE_SECOND 1<<1
#define EXAMPLE_THIRD 1<<2

In this example, the “example” parameter (not a real parameter) is queried for its enum mask,
and 0x05 = 5 = EXAMPLE_FIRST | EXAMPLE_THIRD is returned. This would mean that the
second option, EXAMPLE_SECOND is not currently available. This is similar to querying the limits
of an integer or double type. When the CLI with enumerated types is used, furthermore, the
value passed is the number of bit shifts. In order to set the example parameter to the third
option, therefore, the CLI syntax might look like this:

-example=2

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 12

For a more detailed description of the CLI, refer to the Encoder API Settings Functional
Specification included with this SDK.

 Note: As with all the other set/query methods, a type mismatch will throw an
assertion.

2.2.3.7 String Types

Some parameters carry string values, which you can set and query using the following two
functions:

• void setStr(Name name, const char* value)

• const char* getStr(Name name) const

You do not need to allocate any memory to hold the queried strings: you are provided with a
const pointer to the actual buffer. When you use the set function, you can either use string
literals (“string literal”), or you can allocate a string buffer and then pass the pointer in. The
parameter will make its own copy of the data, so you do not need to allocate any memory you
pass in.

 Note: You cannot change the default values of strings because the parameters are
declared with default values that are string literals and the space is limited; instead
using of complicated logic to manage this memory, the operation simply isn’t
allowed.

2.2.3.8 Binary Data Types

No Binary Data Type parameters are currently available, however, the API is present to support
the functionality for future requirements.

• void setData(Name name, const uint8_t* buff, int len)

• const uint8_t* getData(Name name) const

• int getDataLen(Name name) const

Since there are currently no binary data type parameters, calling these functions will only result
in an exception.

2.2.4 Exception

The Settings object defines its own exception so you can handle any exceptions caused by
improper use of the settings structure. You should always place any settings calls within a
try/catch block. To prevent unhandled exceptions, you need catch these exceptions and then
use the information to correct any errors within your program. Any calls that are not expressly
permitted will throw an exception, as shown below.

// C++ exception type used by the settings API.
class Exception
{
public:
 Exception(const char* info);
 const char* getErrorMessage() const;
private:
 const char* info;
};

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 13

Your code, therefore, should look similar to the example below:

try
{
 //assuming pEncoder points to a valid, create()’ed encoder…
 Settings* pSettings = pEncoder->getSettingsApi();
 pSettings->getType(“nonsense”);
}
catch(Settings::Exception& ex)
{
 YourPrintToConsoleFunction(ex.getErrorMessage);
}

...

//Would generate the following (because “nonsense” doesn’t exist)

invalid name

If you follow this model, you can ensure that any improper use of the Settings will not cause
undesired results in your application.

2.2.5 Copying and Saving the Settings Structure State

A copy constructor is provided for the settings structure. Additionally, the = operator is
overloaded to allow the state to be easily copied. Combining this functionality allows a client
application to easily query, save, and restore the state of the settings. There are a number of
ways this can be useful to a client application: for example if you have a GUI that configures the
codec, it is easy to do the following:

EncoderInterface* myEncoder = 0;
myEncoder = EncoderInterface::create();

Settings* savedSettings(myEncoder->getSettingsAPI());

//change settings in the gui using the getSettingsAPI(), but
// user decides to cancel

*myEncoder->getSettingsAPI() = *savedSettings;

You can also use the CLI to set and store the state;for full details, refer to Section 2.7, Cli.h..

2.3 FormatInfo.h
This structure describes a compressed or uncompressed video format; the elements of the
structure are listed below:

• FourCC fourCC: fourCC of the video format.

• int bpp: bits per pixel (zero if not known). This field is used to distinguish the various
uncompressed RGB formats.

• int width: image width in pixels.

• int height: image height in pixels.

• int inverted: Set non-zero if the bottom line of the image appears first in the buffer.

• int pixelAspectX: horizontal part of the pixel aspect ratio.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 14

• int pixelAspectY: vertical part of the pixel aspect ratio.

• int sizeMax: maximum size (in bytes) of a video frame in this format.

• int timescale: number of units of time in a second (e.g. 1000 implies milliseconds)

• int framePeriod: frame duration in units of timescale (e.g. if timescale = 1000, 25 fps
means framePeriod = 40). In the case of a variable frame rate, this should be set to the
maximum expected frame period.

• int framePeriodIsConstant: should be set to “1” if frame rate is constant, otherwise “0”.

2.3.1 int FormatInfo_getTotalPixels(const FormatInfo* pFormatInfo)

This function is included for convenience. It multiples the height and width of the the formatInfo
structure to determine a number of pixels.

2.3.2 int FormatInfo_getFrameSize(const FormatInfo* pFormatInfo)

This function is included for convenience. It multiplies the height and width of the formatInfo
structure and multiplies to determine a number of pixels, and then multiplies by the bits-per-pixel
and divides by 8 to determine bytes. This only functions when bits-per-pixel are known and
properly set.

2.3.3 double FormatInfo_getFramerate(const FormatInfo* pFormatInfo)

This function is included for convenience. Using the formatInfo structure, this function returns
the timescale divided by the frame period to yield frames-per-second (fps).

2.4 FrameInput.h
This structure has 3 members:

• unsigned char* imageT

• unsigned char* imageB

• int timestampDisplay

This allows the user to point at the even lines (“T”op field) and odd lines (“B”ottom field)
individually. With progressive input, both pointers should be equal. The timestampDisplay is
simply the timestamp of the frame in units of timescale (see formatInfo structure).

2.5 FrameOutput.h
This object is simply a container for the output of the encoder. All the members are public
variables, and are listed below.

2.5.1 unsigned char* bitstreamBuffer

This is a pointer to a buffer that is owned by the client application. This memory is not managed
by the encoder, it is simply where the encoded bitstream is stored. The encoder uses this
memory to avoid excessive memory copies. See the next section for comments on size.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 15

2.5.2 int sizeBitstreamBuffer

This member tells the encoder how much memory is available for bitstream writing. This is an
input and should represent the memory allocated for the bitstreamBuffer. There is no absolute
rule for the size required by the encoder, but we recommend that you provide 12*height*width
in bytes. This will usually be excessive, but the alternative is to risk undefined behavior as the
encoder writes off the end of the bitstream buffer. Error checking is removed from release builds
because it tremendously slows the encoder.

The actual output from the encoder is very content-dependent and will usually be nowhere near
this limit, however, the theoretical limit is near the recommended number above. We do not
recommend economizing on the memory in this area.

2.5.3 int sizeBitstream

This object represents the actual size of the bitstream written out to the bitstreamBuffer. This
field is populated by the encoder.

2.5.4 bool keyframe

This object is set to “True” if the output bitstream describes a keyframe.

2.6 FrameResult.h (optional)
This is an optional parameter for the encoder. If you wish to learn more about the FrameOutput
from the encoder than the FrameOutput size and if it is a keyframe, you should use this object.
The elements of this structure are listed below. Moreover, you must consider the
sequenceNumber. You cannot assume that the frame you delivered is the one that is described
by this structure. You may also get multiple frame results that refer to a single frame, you must
use the latest one to make sure you have the correct information.

• int bitcountMotion: number of bits of encoded frame used for describing motion.

• int bitcountTexture: number of bits of encoded frame used for describing texture.

• int bitcountStuffing: number of bits of encoded frame used by stuffing.

• int bitcountTotal: total number of bits in encoded frame.

• int quantizer: actual frame-level quantizer used to encode frame.

• int sequenceNumber: display-order sequence number of encoded frame.

• int motionVectorSum: sum of logarithms of motion vector magnitudes.

• int motionVectorCount: count of motion vectors used to generate motionVectorSum.

• char frameType: actual frame-type ('I'/'B'/'P') of encoded frame. “0” = no frame
produced. Packed B-VOPs will be labeled as “B”.

• int timestampDisplay: display/composition timestamp of encoded frame.

• float psnr: PSNR of encoded frame. If “0” or negative, PSNR is unavailable.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 16

2.7 Cli.h (optional)
This header defines a namespace that allows you to use the DivX codec’s Command Line
Interface (CLI) to set and read settings. In addition to the defined functions the standard C++,
insertion and extraction operators are overloaded to insert and extract CLI strings onto and from
the Settings object. Unlike accessing the Settings directly via the API, the CLI is much more
forgiving when it receives unknown input: it typically ignores unknown input instead of throwing
exceptions. The elements of this structure are listed below.

2.7.1 void render(std::string& cli, const Settings& settings) / <<

This is a query method. This function defines how to take the current encoder settings and
render a CLI that represents them. This function and the stream extraction operator (<<)
function in the same fashion.

2.7.2 void parse(std::string& cli, const Settings& settings) / >>

This is a set method. This attempts to parse a CLI and attempts and apply it to the Settings.
The parse() function and the stream insertion operator (>>) function in the same fashion.

2.7.3 void showDisabledSettingsInNextCliRender(void)

This function allows you to render any disabled settings for the next call to render() or the
extraction stream operator (<<). For example, if B-VOPs are disabled because of the profile, it
will still tell you the current setting. If you do not call this on a render() or extraction, the
“max_b_frame” parameter will be dropped from the CLI string because it is disabled. Therefore,
the “max_b_frame” would be returned to it’s default value (currently 0) if and when this
rendered CLI is parsed() or inserted (>>) into the encoder’s Settings.

2.7.4 static void base64Encode(const uint8_t* buffer, int size, char* string)

Encodes a binary data block into a base-64 textual representation.

2.7.5 static void base64Decode(const char* string, uint8_t* buffer, int* size)

Decodes a base-64-encoded string into a binary data block.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 17

2.8 FeedbackInterface.h (optional)
The feedback interface is an extremely powerful tool that allows a client application to get and
provide real-time feedback during encoding. If the feedback interface is enabled, the encoder
will make these function calls during runtime. The client application is responsible for inheriting
from this class and further defining how the functions are implemented. By default, the
functions provide empty implementations so that if the class is not used, the functions should be
optimized out (or at least provide very little impediment to the encoder speed). The feedback
information is controlled by the "enable_feedback" Setting (a Boolean type).

All the functions listed below will block the encoder. For example, if the notifyEndFrame()
function pops up a message box, the encoder will stop and wait until the user clicks “OK” until it
proceeds [in fact, the notifyEndFrame() function is used by the DivX VfW feedback window to
provide pause and the frame advance functions]. The feedback window can slow encoding if it is
not done in a quick and lightweight manner. The VfW feedback window is an excellent illustration
of the power of the feedback interface. It is up to you to maintain and use any or all of the
information provided in any manner you see fit. The feedback interface is extremely flexible and
you can use any of the parts for your application. Despite this, the FeedbackInterface is entirely
optional. If you do not wish obtain any of the following information, simply ignore it and set
"enable_feedback" to “False” (the default is true).

 Warning: When using a threaded GUI to service the feedback information,
beware of the dangers of shared information. The encoder may be updating
information while the GUI is attempting to read the information. Take the time to
set up the proper semaphore/critical section/mutex to guard against any threading
issues.

The methods of the object are are listed below.

2.8.1 void setEncodingDouble(const char* type, double value)

These parameters are valid across an entire encode. The types included are listed below:

• "frame rate": the encoded frame rate

• “pass”: the pass of the encode

2.8.2 void setDimensions(int width, int height)

This callback provides the feedback interface with the dimensions of the encoded image. This is
also an encoding scope parameter.

2.8.3 void setFrameDouble(const char* type, double value)

These parameters can change from frame to frame. The frame-level feedback parameters are
listed below:

• "quant": the frame quantizer

• "PSNR": the frame PSNR

• "gmc_block_frequency": The percentage of GMC macroblocks

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 18

• "texture": the bits used to code the textures of the frame (RLE DCT data)

• "motion": the bits used to code the motion vector data

• "bits_1v": the total number of bits used for single motion vectors

• "bits_4v": the total number of bits used for 4mv motion vectors

• "part_4v": the percentage of total motion bits used for 4mv motion vectors

• "GMC": Boolean value for to indicate S-VOP

• "bits": total bits used to encode a frame

2.8.4 void setMacroblockDouble(const char* type, int x, int y, double value)

This function provides information about individual macroblocks (16x16 pixels in the luma plane).
The (x,y) coordinates give the position of the macroblock for which information is being recorded
and (0,0) is the upper-left corner of the image. The value is the double value that describes the
type of information that is contained at macroblock (x,y). The units of (x,y) are macroblocks.

The types of data are listed below:

• “dct_type": the DCT type used for the macroblock

• “quantizer": the quantizer used for the macroblock

• "bits": the bits used to code the block

• "sad": sum of absolute differences (encoded versus source)

• "brightness": the average brightness of the luma

• "deviation": the deviation from the “brightness” level (like SAD, but with brightness)

• "4mv": A Boolean for 4mv

• "qpel": (mv_x & 3) + 4*(mv_y & 3)

• "field_mode": field_prediction ? ((forward_top_field_reference?1:0)+2*(
forward_bottom_field_reference?1:0)) : 4)

• "GMC": mcsel

• "mb_type": the MPEG-4 defined macroblock type

• "maxdev": the difference between the frame-level quantizer and the macroblock
quantizer

• "PV level": the psychovisual level

• "mv_x": the x component of a macroblock with one motion vector

• "mv_y": the y component of a macroblock with one motion vector

• "mv2_x1": the x component of the backward motion vector of a bi-directional
macroblock

• "mv2_y1": the y component of the backward motion vector of a bi-directional
macroblock

• "mv2_x2": the x component of the forward motion vector of a bi-directional macroblock

• "mv2_y2": the y component of the forward motion vector of a bi-directional macroblock

• "mv4_x1": the x component of block 1 motion vector of a 4mv macroblock

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 19

• "mv4_y1": the x component of block 1 motion vector of a 4mv macroblock

• "mv4_x2": the x component of block 2 motion vector of a 4mv macroblock

• "mv4_y2": the y component of block 2 motion vector of a 4mv macroblock

• "mv4_x3": the x component of block 3 motion vector of a 4mv macroblock

• "mv4_y3": the y component of block 3 motion vector of a 4mv macroblock

• "mv4_x4": the x component of block 4 motion vector of a 4mv macroblock

• "mv4_y4": the y component of block 4 motion vector of a 4mv macroblock

2.8.5 void setFramePointerType(int index, const char* name)

This function is intended to be used in conjunction with setFramePointers(). This is an encode
scope call—in other words, it does not change during an encode. This simply informs the user of
the feedback interface what types of images to expect from the setFramePointers() call. Current
image types are listed below:

• “encoded frame”: a picture of the encoded frame, index=1;

• “difference”: the residual textures, index=2

• "compensated frame”: output from motion compensation, index=3

These images can be understood as follows:
“encoded frame” = “difference” + “compensated frame”.

This function will be called once per encode per type (i.e. it will be called three times at the start
of an encode to tell you that you can expect the three image types above; prepare yourself to
receive them.). This function will be called before setFramePointers()

2.8.6 void setFramePointers

(const char* name, const unsigned char* pY, const unsigned char* pU, const unsigned char* pV,
int iStrideY, int iStrideUV)

As mentioned in the previous section, the setFramePointerType() call will tell you the type of
images to expect during encoding. The next step is to provide you with the pointers to the
actual images. This function accesses the encoder’s internal frame buffers (hence the const
qualifier on the pointers).

 Warning: Do not attempt to modify these buffers. The frame buffers are read-
only and they are for informational purposes.

Neither the “compensated frame” pointer nor the “difference” pointer change over an encode,
however, the “encoded frame” pointer varies with frame type (I, P, or B VOP) so you must be
able to follow this change. Unless you inform the encoder of which images you require (with the
appropriate index in getActiveImage()), the image will not be built.

2.8.7 int getActiveImage()

This is an important function to use in conjunction with the index from void
setFramePointerType(int index, const char* name). The encoder informs the client application of
what images are available to it and the index associated with those images. The client
application is then responsible for pushing the current active image back down to the encoder so

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 20

that it knows what images it needs to build for the feedback interface. Conceptually, this
function is the encoder asking the client application which image to build; you can only build one
image at a time. After you deliver the next frame, you can change the image type. See void
setFramePointerType(int index, const char* name) (previously discussed) for the indices. If you
do not require any images, simply return the default value of “-1”.

2.8.8 void notifyBeginFrame(int frame)

This method informs the feedback that it is attempting to encode the nth “frame”. This functional
may make multiple passes at this frame; it may pass multiple times with the same frame
number.

2.8.9 bool notifyEndFrame(int)

This function is called when the encoder has finished encoding a frame. The integer parameter
is a char that represents the frame type. When cast to a char, it should return “?”, “I”, “P”, or
“B”’. The “?” signifies re-encode, and the others signify the encoded frame types.

The Boolean return value of this function provides a great deal of power to the feedback
interface because the feedback interface can chose to accept the frame with a “True” statement
or reject the frame with a “False” statement. If the frame is accepted by the feedback interface,
the encoder moves on, if not, it will continue encoding the frame until this value is set to true.
(Meanwhile, you can attempt to change Settings to get the results you desire.)

2.8.10 void print(int level, const char* fmt, ...)

This method provides textual debug information to the feedback object. It is like a printf() with a
an ability to control the level of detail of the messages. The levels are as follows:

• 0 = no tracing

• 1 = codec-level tracing

• 2 = frame-level tracing

• 3 = slice-level tracing

• 4 = macroblock-level tracing

• 5 = bitstream-level tracing

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 21

2.9 EncoderCallback.h (optional)
The encoder callback allows the encoder to call back to the client application with various status
updates including errors. The messages that the encoder will produce are listed in the header
file. The strings are provided so that a translation layer may be inserted if desired/required.
These functions must be overloaded in the client application. The elements of this structure are
listed below.

2.9.1 int getVersion()

For future use.

2.9.2 void enable(bool enable)

This is a passthrough for the “use_dialogs” Setting. If this is not enabled, you should not show
any dialog boxes.

2.9.3 bool promptYesNo(const char* caption, const char* msg, bool bdefault)

For future use. This function will allow the encoder to attempt to prompt a user for a “yes”
(return “True”) or “no” (return “False”) answer. It allows both a message and a caption for the
prompt. It also informs the client of the “default” answer.

2.9.4 void errorMessage(const char* caption, const char* msg)

This allows the encoder to send an error message to the client application.

2.9.5 void setProgress(bool enable, int percent, const char* caption, const char* msg)

At various points in the encode process, the encoder may be “thinking”. This callback allows the
client application to determine what the encoder is doing and the encoder’s progress. Tthe
message and caption are provided to the client.

2.10 DivXException.h
All calls to the DivX encoder need to be inside a try/catch block. This structure includes the
following functions:

• int GetValue() const

• const char* GetFile() const

• int GetLine() const

and for WIN32 specific applications:

• int GetExceptCode() const

• struct _EXCEPTION_POINTERS* GetExceptInformation() const

In general, the exceptions are provided for informational purposes. This information may be
helpful in the event that you need to contact DivX, Inc. to solve a problem.

Interfacing the DivX Encoder API Application Note Headers

DivX, Inc. Confidential Do Not Copy Page 22

For example:

try
{
 EncoderInterface* pEncoder = NULL;

 pEncoder = EncoderInterface::create();

 //do your thing...

 EncoderInterface::destroy(pEncoder);

}
catch(DivxException& ex)
{
 //something went wrong
 ofstream errorLog(“c:\\divxError.txt”)

 errorLog << “value = ” << ex.GetValue() << endl;
 errorLog << “file = ” << ex.GetFile() << endl;
 errorLog << “line = ” << ex.GetLine() << endl;
}

Potential exception values are listed below:

• ENC_BUFFER = -2: Returned by encore() when bitstream is too long for the buffer provided
by caller. Only returned by special builds of the codec that test for buffer overflow.

• ENC_FAIL = -1: Returned by bool encode(FrameOutput* pFrameOutput, FrameResult*
pFrameResult)/bool encodeFrame(FrameOutput* pFrameOutput, FrameResult*
pFrameResult) when call failed

• ENC_OK = 0: Returned by bool encode(FrameOutput* pFrameOutput, FrameResult*
pFrameResult)/bool encodeFrame(FrameOutput* pFrameOutput, FrameResult*
pFrameResult) when call succeeded

• ENC_MEMORY = 1: Returned by bool encode(FrameOutput* pFrameOutput, FrameResult*
pFrameResult)/bool encodeFrame(FrameOutput* pFrameOutput, FrameResult*
pFrameResult) when encoder has failed to allocate sufficient memory.

• ENC_BAD_FORMAT = 2: Returned by bool encode(FrameOutput* pFrameOutput,
FrameResult* pFrameResult)/bool encodeFrame(FrameOutput* pFrameOutput,
FrameResult* pFrameResult) if input video format proposed by user is not supported.

• ENC_INTERNAL = 3: Returned by bool encode(FrameOutput* pFrameOutput, FrameResult*
pFrameResult)/bool encodeFrame(FrameOutput* pFrameOutput, FrameResult*
pFrameResult) if there was an internal problem.

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 23

3 Examples
This section provides a few examples of how to use the API. It is the user’s responsibility to
determine how to best use the DivX Encoder Libraries (via your client application). These examples
are intended to be a starting point to your implementation. Depending on your application, you may
have additional requirements.

 Note: Functions that begin with “your….”, such as “YourGetInputFrame”, indicate
that these functions must be provided by your client application. This code has not
been compiled and may not be syntactically correct.

This section provides a mixture of code snippets that is intended to get you started. It is designed to
show you the general form and function of the DivX codec libraries.

3.1.1 Creating an Encoder
try
{
 //create a pointer to the interface
 EncoderInterface* myEncoder = 0;

 //create an encoder
 myEncoder = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder);

 //use encoder

 //clean up when you no longer need the encoder
 EncoderInterface::destroy(myEncoder);
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);
}

3.1.2 Creating Multiple Encoders
try
{
 //How many
 const int numEncoders = 3;
 int i = 0;

 //create a pointer to the interface
 EncoderInterface* myEncoders[numEncoders] = {0};

 //create an encoder
 for(i = 0; i<numEncoders; i++)
 {
 myEncoders[i] = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder[i]);

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 24

 }

 //use encoders

 //clean up when you no longer need the encoders
 for(i = 0; i<numEncoders; i++)
 {
 EncoderInterface::destroy(myEncoders[i]);
 }
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);
}

3.1.3 Create and Configure an Encoder

Note the ability to use the Name object or a string literal when addressing the settings.

try
{
 //create a pointer to the interface
 EncoderInterface* myEncoder = 0;

 //create an encoder
 myEncoder = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder);

 //configure encoder
 try
 {
 Settings* mySettings = myEncoder->getSettingsApi();
 Settings::Name name;

 //set the profile
 name = “profile”;
 mySettings->setEnum(name, PROFILE_HOME_THEATER);

 //set the bitrate, note the shorthand use of a string literal
 mySettings->setEnum(“performance”, PERFORMANCE_VERYSLOW);

 //want to do a single pass encode
 if(RCMODE_VBV_1PASS != mySettings->getEnum(“rcmode”))
 {
 mySettings->setEnum(“rcmode”, RCMODE_VBV_1PASS);
 }

 //set bitrate to 500 kbps
 mySettings->setInt(“bitrate”, 500000);

 //set “working_folder” note: it needs to be a valid location
 //that the encoder will be allowed to write files to
 mySettings->setStr(“working_folder”, “c:\\yourLocationPath”);

 }
 catch(Settings::Exception& ex)

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 25

 {
 YourHandleDivXSettingsException(ex);
 }
 //done configuring encoder

 //use encoder

 //clean up when you no longer need the encoder
 EncoderInterface::destroy(myEncoder);
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);
}

3.1.4 Create an Encoder and Encode
try
{
 //create a pointer to the interface
 EncoderInterface* myEncoder = 0;

 //create an encoder
 myEncoder = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder);

 //inputs to encoder
 FrameInput myFrameInput;
 FormatInfo myFormatInfo;
 FrameOutput myFrameOutput;

 //read data about your video source
 YourGetInputFormat(&myFormatInfo);//client defined

 //configure encoder to encode your source
 myEncoder->setFormatInput(&myFormatInfo)

 //set up bitstream buffer
 const int bitstreamSize=12*FormatInfo_getTotalPixels(myFormatInfo);
 myFrameOutput.bitstreamBuffer = new unsigned char[bitstreamSize];
 assert(myFrameOutput.bitstreamBuffer);
 myFrameOutput.sizeBitstreamBuffer = bitstreamSize

 int frames = YourQueryTotalNumberOfFrames();//client defined

 //see Create and Configure an Encoder section
 yourConfigureEncoder (myEncoder->getSettingsApi());//client defined

 for(int i=0; i<frames; i++)
 {
 //get the next frame from the source video
 YourGetInputFrame(&myFrameInput);//client defined

 myEncoder->deliverFrame(&myFrameInput);

 while (!myEncoder->encode(&frameOutput));

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 26

 //don’t write placeholder to bitstream
 if(1 != myFrameOutput.sizeBitstream &&
 0x7F != myFrameOutput.bitstreamBuffer[0])
 {
 yourPutBitstreamIntoContainerFunc(&frameOutput);//client defined
 }
 }
 //clean up bitstream buffer
 delete myFrameOutput.bitstreamBuffer;

 //clean up when you no longer need the encoder
 EncoderInterface::destroy(myEncoder);
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);//client defined
}

3.1.5 Create an Encoder and Perform n-pass Encode
try
{
 //create a pointer to the interface
 EncoderInterface* myEncoder = 0;

 //create an encoder
 myEncoder = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder);

 //inputs to encoder
 FrameInput myFrameInput;
 FormatInfo myFormatInfo;
 FrameOutput myFrameOutput;

 //read data about your video source
 YourGetInputFormat(&myFormatInfo);//client defined

 //configure encoder to encode your source
 myEncoder->setFormatInput(&myFormatInfo)

 //set up bitstream buffer
 const int bitstreamSize=12*FormatInfo_getTotalPixels(myFormatInfo);
 myFrameOutput.bitstreamBuffer = new unsigned char[bitstreamSize];
 assert(myFrameOutput.bitstreamBuffer);
 myFrameOutput.sizeBitstreamBuffer = bitstreamSize

 int frames = YourQueryTotalNumberOfFrames();//client defined

 yourConfigureEncoder (myEncoder->getSettingsApi());//client defined

 //this configure should be in a try/catch loop, but it has been
 //omitted for clarity and brevity
 Settings* pSettings = myEncoder->getSettingsApi();
 pSettings->setEnum(“rcmode”, RCMODE_VBV_MULTIPASS_1ST);

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 27

 //perform first pass
 for(int i=0; i<frames; i++)
 {
 //get the next frame from the source video
 YourGetInputFrame(&myFrameInput);//client defined

 myEncoder->deliverFrame(&myFrameInput);

 while (!myEncoder->encode(&frameOutput));

 //this pass generates *NO* output
 //frame output will be filled with a single byte of zero

 }

 //again try/catch has been omitted
 pSettings->setEnum(“rcmode”, RCMODE_VBV_MULTIPASS_NTH);

 //perform second pass
 for(int i=0; i<frames; i++)
 {
 //get the next frame from the source video
 YourGetInputFrame(&myFrameInput);//client defined

 myEncoder->deliverFrame(&myFrameInput);

 while (!myEncoder->encode(&frameOutput));

 //don’t write placeholder to bitstream
 if(1 != myFrameOutput.sizeBitstream &&
 0x7F != myFrameOutput.bitstreamBuffer[0])
 {
 yourPutBitstreamIntoContainerFunc(&frameOutput);//client defined
 }
 }

 //at this point you could repeat the last for loop for a 3rd pass
 //in fact you could repeat this loop as many times as you like
 //to keep refining the encode.

 //clean up bitstream buffer
 delete myFrameOutput.bitstreamBuffer;

 //clean up when you no longer need the encoder
 EncoderInterface::destroy(myEncoder);
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);//client defined

}

3.1.6 Hints for Batch Encoding

It is very easy to use the CLI to perform state saves of the encoder settings. You can use this
example to perform batch encodes along with multipass encoding.

try
{

Interfacing the DivX Encoder API Application Note Examples

DivX, Inc. Confidential Do Not Copy Page 28

 //create a pointer to the interface
 EncoderInterface* myEncoder = 0;

 //create an encoder
 myEncoder = EncoderInterface::create();

 //make sure the encoder is instantiated
 assert(myEncoder);

 int batchNumber = 0;

 //first set up your batch encodes and store them in an appropriate
 //location. It could be a file or simply a place in memory
 //depending on when you actually intend to perform the encodes.
 while(yourSetUpAnotherBatchEncode())
 {
 std::ostrstream batchJob;

 try
 {
 //set up an encoder configuration see section labeled
 //Create and Configure an Encoder for details
 yourEncoderConfigurationFunction(myEncoder->getSettingsApi());

 //not necessary, but useful to illustrate how to use this method
 Cli::showDisabledSettingsInNextCliRender();

 //render the cli string
 batchJob << *myEncoder->getSettingsApi();

 //store the cli string
 yourStoreBatchJob(batchJob);

 }
 catch(Settings::Exception& ex)
 {
 yourHandleSettingsException(ex);
 }
 }

 std::strstream nextJob;
 while(yourGetNextJob(nextJob))
 {
 //shove the saved configuration into the settings
 nextJob >> *myEncoder->getSettingsApi();

 //perform the encode, see Create an Encoder and Encode
 //section for additional details
 yourReadSourceAndEncodeFunction(myEncoder);
 }

 EncoderInterface::destroy(myEncoder);
}
catch(DivxException& ex)
{
 //something went wrong
 YourHandleDivXExceptionFunction(ex);//client defined
}

